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Abstract
Dialogue State Tracking (DST) is a key part
of task-oriented dialogue systems, identifying
important information in conversations. How-
ever, its accuracy drops significantly in spo-
ken dialogue environments due to named en-
tity errors from Automatic Speech Recogni-
tion (ASR) systems. We introduce a simple
yet effective data augmentation method that tar-
gets those entities to improve the robustness of
DST model. Our novel method can control the
placement of errors using keyword-highlighted
prompts while introducing phonetically similar
errors. As a result, our method generated suf-
ficient error patterns on keywords, leading to
improved accuracy in noised and low-accuracy
ASR environments.

1 Introduction

Task-oriented dialogue systems (TODs) assist users
in achieving specific objectives through conversa-
tions and are used in various sectors, including
customer service and hotel reservations. A cru-
cial component of these systems is Dialogue State
Tracking (DST), which extracts vital information
from conversations in a slot-value format (e.g.,
hotel-name: Claire Hotel). This information is
essential for querying databases and generating re-
sponses (Young et al., 2013).

However, DST models face significant chal-
lenges in spoken dialogue environments, where
user utterances are converted into text by automatic
speech recognition (ASR) (Pal et al., 2020; Kim
et al., 2021; Yoon et al., 2023). Notably, Soltau
et al. (2022) observed a drastic reduction in model
accuracy from 41.6% to 23.6% in such environ-
ments. This decline is primarily due to ASR errors,
which frequently misrecognize named entities—a
key target in DST (Nechaev et al., 2021).

To address ASR inaccuracies, data augmenta-
tion has emerged as a viable, cost-efficient strategy.

*This work was conducted at POSTECH.

Existing text augmentation methods, such as word
swapping (Wei and Zou, 2019) and back transla-
tion (Sennrich et al., 2015), do not maintain audio
similarity with the original text, leading to discrep-
ancies with ASR error patterns. To bridge this gap,
Sharma et al. (2020) and Jacqmin et al. (2023) syn-
thesized audio from text with text-to-speech (TTS)
model (Shen et al., 2018) and processed it through
ASR, while Hrinchuk et al. (2020) and Zhang et al.
(2021) employed translation model structure to in-
troduce ASR-like errors directly into texts. Huang
and Chen (2020) further leveraged word confusion
network (WCN) representations for data augmen-
tation to generate acoustically consistent errors.

Despite these advancements, prior methods of-
ten fail to provide sufficient error for DST model
training. Accurately identifying key terms is vi-
tal for DST performance; thus, models need to be
trained on a broad spectrum of ASR-errored key-
words. Unfortunately, many current strategies do
not ensure that errors are positioned within crit-
ical keywords, often generating trivial examples
by altering non-essential words such as random
words (Wei and Zou, 2019) or sentence structure
(Sennrich et al., 2015). This oversight results in
sub-optimal performance against ASR errors.

To address these limitations, we introduce Error
Positioning Augmentation (EPA), a straightforward
yet effective method that ensures sufficient errors
in keywords. Our method leverages large language
models (LLMs) (Ouyang et al., 2022; Touvron
et al., 2023; Zhang et al., 2022), which have demon-
strated impressive capabilities in semantic augmen-
tation (Whitehouse et al., 2023; Sahu et al., 2023)
and precise text generation control (Sun et al., 2023;
Liang et al., 2024). Despite their strengths, LLMs’
potential for phonetic augmentation remains largely
unexplored.

In our method, we utilize in-context learn-
ing (Brown et al., 2020) with phonetically similar
examples to introduce general ASR errors and de-
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Tagging

Errors to 
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Key-word Information

Figure 1: Illustration of the EPA process. Step 1 introduces overall ASR-like distortions using in-context examples
of original–errored pairs, while Step 2 applies keyword-specific phonetic corruptions guided by highlighted slot
spans. Combining both steps generates realistic and diverse ASR-style errors for robust DST training.

vise a highlighting method to explicitly localize the
error to a target span. Surprisingly, without requir-
ing extensive domain-specific user speech data, a
publicly available audio dataset and a small set of
in-context examples (fewer than 10 samples) are
sufficient to generate a wide variety of ASR-errored
keywords for DST. This significantly simplifies the
error generation process.

In the experiment, to reflect diverse real-world
conditions, we evaluated EPA under four ASR en-
vironments: a low-accuracy ASR system, noisy au-
dio with café and traffic background, a paraphrased
input setting where users naturally rephrased
transcriptions, and a high-accuracy ASR sys-
tem. In these experiments, EPA significantly im-
proved model robustness, increasing accuracy from
45.76% to 51.12% with high keyword diversity
(95.4%), surpassing the previous best-performing
model. Our analysis suggests that this improve-
ment is primarily driven by keyword-level augmen-
tation, which effectively mitigates errors in ASR-
affected values.

2 Method
2.1 Notation

Before detailing each step, we first clarify the nota-
tion. Dialogue context from turn 1 to t is denoted
as Dt={(s1, u1), ..., (st, ut)} where s denotes for
system and u for user utterance. DST model pre-
dicts the dialogue state (also called belief state) Bt

given Dt. Bt is composed with slot sl and value
v pairs, denoted as Bt = {(sl1, v1), ..., (slJ , vJ)} ,
where slj and vj is j-th slot name and value. J is
the total number of slots.

2.2 Step 1: ASR Error for Overall Utterance

In this step, we augmented the overall utterance
by introducing general ASR errors. We began by
constructing example sets for in-context learning,
utilizing an open-source audio dataset (Ardila et al.,

2020). From this dataset, we randomly selected
300 hours of audio along with their corresponding
gold transcripts (g) and transcribed the audio using
an off-the-shelf ASR model (e.g., Whisper-base
(Radford et al., 2022)) to obtain the erroneous tran-
scriptions (e). We denote this example dataset as
DB = {(g1, e1), . . . , (gI , eI)}.

Next, we inject errors into u by prompting the
LLM with in-context examples. We retrieved (g, e)
pairs from the database (DB) based on phonetic
similarity between u and g (Figure 1, Step 1). To
compute phonetic similarity, we converted the char-
acters of both u and g into phonemes using the
International Phonetic Alphabet (IPA), and calcu-
lated similarity using a frequency-based retrieval 1.
After selecting the top-k (g, e) pairs, we concate-
nated the instruction, in-context examples, and u
into a single prompt and provided it to the LLM.
This process results in the overall ASR-errored user
utterance, denoted as u̇. Concretely, u̇ can be ob-
tained by

u̇t = LLM(Inst1⊕(g1, e1) · · · (gk, ek)⊕ut) (1)

where ⊕ denotes concatenation, and we set k = 3
throughout our experiments. Retrieved examples
are provided in Appendix A.3.

2.3 Step 2: ASR Error for Keywords
While Step 1 introduces general ASR-style errors
into u, it does not ensure sufficient error diversity
in keyword tokens. To construct a more effective
training dataset, we explicitly generate keyword-
focused ASR errors in Step 2 (Figure 1). In this
step, we highlight the keywords in u̇ using the
<hl> tag and instruct the LLM to inject errors
specifically within the highlighted spans. For the

1We used BM25(Robertson et al., 2009), a retrieval model
based on term frequency. While neural retrievers (e.g.,
DPR(Karpukhin et al., 2020)) could be applied, we opted for
a frequency-based method, as neural models tend to capture
semantic similarity.
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Idx Method Examples

1
Original Tuesday, going to bailey’s crossroads please.
+EPA Tuesday, going to baley’s crossroads, peas .

1
Original I’d like to find a vegetarian restaurant, if possible.
+EPA I’d hike to find a veggie tarian restroom , if possible.

3
Original I am going to auburn.
+EPA I am flowing to auburng .

4
Original Hi! Could you find me a train to loris on thursday?
+EPA Oh ! Could you find me a trai to lorri on thursdae ?

5
Original Ashby is my destination.
+EPA Ashy’s my desity .

Table 1: Examples of ASR errors from EPA.

DST task, we treat dialogue state values (v) as key-
words, although the definition of a keyword may
vary depending on the task. To facilitate this pro-
cess, we provide a few examples that illustrate how
values within <hl> tags are intended to be modi-
fied during augmentation. Given these instructions
and examples, the LLM generates an augmented
utterance ü that includes both general and keyword-
specific ASR errors. Formally, we obtain üt as
follows:

üt = LLM(Inst2 ⊕ (g0, e0) · · · (gk, ek)⊕ u̇t).
(2)

The used prompts are provided in Appendix A.1.

2.4 Examples of EPA

Table 1 shows examples of ASR errors generated
by EPA. We have highlighted utterance level over-
all errors in yellow and keyword-specific errors in
orange . For instance, in Row 1, the model intro-

duces a keyword-level error (bailey’s → baley’s) as
well as an additional phonetically plausible inser-
tion (peas), simulating realistic ASR noise. Further
examples can be found in Appendix A.4.

3 Experiments

3.1 Experimental Setup

Dataset. The DSTC11 dataset (Soltau et al., 2022),
an audio version of MultiWOZ 2.1 (Eric et al.,
2019), comprises 8,000 dialogues for training,
1,000 for validation, and 1,000 for testing. To en-
hance generalization, we conducted experiments
across four distinct ASR environments, character-
ized by Word Error Rate (WER) and noise levels:
(1) a low accuracy ASR model (WER > 0.03), (2)
a cafe and traffic noised audio, (3) a paraphrased
setting where users naturally paraphrased the tran-
scriptions, and (4) a high accuracy ASR model.
Metrics. For overall performance evaluation, we
used joint goal accuracy (JGA), which requires
all slot-value pairs to match the gold label. We

also reported named entity accuracy (N-acc), the
average accuracy across named entity slots.
Compared methods. We compared our method
with two established approaches: text-based aug-
mentations, AEDA (Karimi et al., 2021), EDA
(Wei and Zou, 2019), and Back Translation (BT)
(Sennrich et al., 2015), and audio-aware augmenta-
tion methods, using synthesized audio (TTS-ASR)
and translation model structure (ASR-translation).
Lastly, we included Olisia (Jacqmin et al., 2023),
the top-ranked method in the DSTC11 competition.
Models. For performing EPA, we used diverse
types of LLMs, including GPT-3.5(Ouyang et al.,
2022), LLAMA2-7B(Touvron et al., 2023) and
OPT-6.7B(Zhang et al., 2022). For the DST
task, we fine-tuned a T5-base(Roberts et al., 2019)
model. Further details about the experimental set-
tings are provided in Appendix B.

3.2 Robustness Improvement through EPA

EPA improves robustness. The results in Ta-
ble 2 shows the effectiveness of EPA in robust-
ness to ASR errors. Remarkably, EPA outper-
formed existing text-based and audio-based aug-
mentation, showing substantial improvement in
JGA and named entity accuracy. It also surpassed
the previous best-performing model, Olisia, partic-
ularly in challenging environments.

Effectiveness of keyword-specific error. In Ta-
ble 2, we present an ablation study to evaluate the
effectiveness of keyword-level augmentation. We
found that adding keyword-specific ASR errors im-
proved DST performance across all environments
and was particularly helpful in enhancing the ro-
bustness of named entity accuracy. Additional ex-
periments, including generalization to other back-
bones and tasks, as well as statistical significance
analysis, are provided in Appendix C.

3.3 Comparison with Error Correction
Models

In Table 3, we compare our method with two ASR
error correction approaches. For ERROR CORREC-
TION MODEL 1, We fine-tuned a pre-trained on
300 hours of ASR-errored and gold transcription
pairs (same as in Section 2.2) in a seq2seq manner,
minimizing L = −∑N

i=1 logP (gi | ei), where
gi and ei denote the gold and errored transcrip-
tions, respectively. Training used early stopping
(patience=3) with batch size 16. For ERROR COR-
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Method
Features Low-acc ASR Noised Aud. Paraphrased High-acc ASR

Aud. Utt-aug Key-aug LLM JGA N-Acc JGA N-Acc JGA N-Acc JGA N-Acc
Baseline - - - - 29.88 45.76 29.70 46.77 28.92 48.79 34.87 52.07
AEDA (Karimi et al., 2021) - ✓ - - 29.90 46.46 29.74 47.48 29.12 48.86 34.94 52.32
EDA (Wei and Zou, 2019) - ✓ - - 29.22 47.65 28.70 49.51 28.08 49.99 33.68 53.78
BT (Sennrich et al., 2015) - ✓ - - 31.69 49.17 31.26 50.98 29.90 51.73 36.27 54.81
TTS-ASR ✓ ✓ - - 29.94 46.34 29.99 47.37 29.08 48.88 35.07 52.03
ASR-translation ✓ ✓ - - 30.40 47.65 30.14 48.45 29.54 50.38 35.25 53.66
EPA (Opt 6.7B) ✓ ✓ ✓ ✓ 31.82 50.73 32.03 51.92 29.57 52.49 37.05 55.78

w/o Keyword Aug ✓ ✓ - ✓ 31.43 49.63 31.51 50.56 30.41 52.02 36.34 54.57

EPA (LLAMA2-7B) ✓ ✓ ✓ ✓ 31.54 51.12 31.55 52.27 30.10 53.55 36.22 55.49
w/o Keyword Aug ✓ ✓ - ✓ 31.12 50.33 31.44 52.07 30.01 53.49 35.70 54.90

EPA (GPT3.5) ✓ ✓ ✓ ✓ 32.39 51.12 32.24 52.70 30.95 53.34 36.61 55.87
w/o Keyword Aug ✓ ✓ - ✓ 31.31 50.67 31.13 52.29 30.06 52.85 35.40 55.80

Olisia (Jacqmin et al., 2023) - - - - 30.17 46.25 30.43 48.07 29.13 49.21 36.1 52.58

Table 2: Comparison of various augmentation methods in enhancing the robustness of DST models across different
ASR environments. In the feature columns, “Aud.” indicates the use of audio-based augmentation, “Utt-aug.”
denotes utterance-level text augmentation, “Key-aug.” refers to keyword-specific augmentation, and “LLM”
indicates whether large language models were used for error generation. All results were averaged over three seeds
for better consistency.

Method
Weak-ASR Noised-ASR Strong-ASR

JGA N-acc JGA N-acc JGA N-acc
Baseline 29.88 45.76 29.70 46.77 34.87 52.07
+ CORRECTION MODEL 1 23.30 41.50 23.96 42.86 26.68 46.14
+ CORRECTION MODEL 2 30.14 46.79 29.82 47.68 34.62 52.00
+ EPA (with GPT, ours) 32.39 51.12 32.24 52.70 36.61 55.87

Table 3: Comparison with ASR error correction models
under different ASR conditions.

RECTION MODEL 2, we adopted an off-the-shelf2

text correction model to revise typos and transcrip-
tion errors. Each model corrected the test tran-
scriptions from the weak, noised, and strong ASR
systems before DST evaluation. As in the table,
CORRECTION MODEL 1 underperforms the base-
line, often altering named entities unnecessarily
(e.g., "Grifon" → "Bristol"), likely due to limited
training diversity. CORRECTION MODEL 2 yields
minor improvements, while our EPA achieves the
highest robustness across all ASR conditions.

3.4 Qualitative Assessment of EPA Method

Automatic evaluation. Although Table 2 con-
firms EPA’s effectiveness, it remains unclear
whether the LLM-generated augmentations truly
reflect diverse, keyword-focused ASR-style errors.
To this end, we perform the quality analysis based
on three metrics (Table 4): the unique word in-
crease rate, named entity change rate, and pronunci-
ation similarity with original sentence. The results
show that EPA achieves remarkable diversity in
unique words (1.81×) and the highest named entity
change rate (95.47%), while maintaining high pro-

2urlhttps://huggingface.co/oliverguhr/spelling-correction-
english-base

Method
Uniq.
Words

NE.chg
[ % ]

Pronoun
Sim.[%]

Baseline 1 - -
AEDA (Karimi et al., 2021) 1.00× 44.29 91.57
EDA (Wei and Zou, 2019) 0.86× 70.03 61.14
BT (Sennrich et al., 2015) 1.21× 73.46 77.17
TTS-ASR 1.01× 38.84 98.93
Translating 0.84× 39.59 94.07
EPA 1.81× 95.47 91.57

w/o Keyword Err. 1.57× 68.81 93.14

Table 4: Assessment of EPA dataset quality: Unique
word increased rate, Named entity changed rate
(NE.chg), and pronunciation similarity.

Method
Text Dist.(↓) Phoneme Dist.(↓)

ASR-L ASR-B ASR-L ASR-B
TTS-ASR (Whisper-B) 0.030 0.048 0.056 0.061
TTS-ASR (Whisper-S) 0.030 0.048 0.070 0.077
ASR trans. (T5-base) 0.025 0.039 0.104 0.116
EPA (Llama2 7B) 0.218 0.123 0.204 0.256
EPA (OPT 6.7B) 0.115 0.106 0.071 0.091
EPA (GPT 3.5) 0.033 0.010 0.009 0.007

Table 5: Distribution distance (JSD) between
Whisper Large/Base model and simulation dataset.
(ASR-L=Whisper Large, ASR-B=Whisper Base).

nunciation similarity (91.57%). Notably, keyword-
level augmentation plays a key role in enhancing
named entity variability, increasing the change rate
from 68.81% to 95.47%.

Comparison with Authentic ASR Errors. In
this analysis, we explored the similarity between
simulated ASR errors and authentic ASR errors
from the perspective of edit distance. Specifically,
we examined the distribution of edit distances in
simulated data and in errors produced by Whisper
large/base models, considering both character- and
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Whisper(Large)
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EPA  (OPT 6.7B)
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TTS-ASR(Base)

ASR-trans.(T5- Base)

EPA (Llama 7B)

EPA  (OPT 6.7B)

EPA  (GPT 3.5)

Character Edit Distance

Phoneme Edit Distance

Figure 2: Distribution of edit distance. The x-axis rep-
resents edit distances, and the y-axis represents the cor-
responding ratio.

phoneme-level representations (Figure 2). To quan-
tify the distributional differences, we computed
the Jensen-Shannon Divergence (JSD), a symmet-
ric variant of the Kullback-Leibler divergence (Ta-
ble 5).

Our experiments yielded several noteworthy find-
ings. Notably, the LLM-simulated errors closely
matched the distribution of real ASR errors, par-
ticularly at the phoneme level. This suggests that
LLMs can effectively capture pronunciation-level
variations and generate realistic ASR-style dis-
tortions. In contrast, errors produced by TTS-
based synthesis or ASR-translation models ex-
hibited larger divergence from real ASR patterns,
likely due to their tendency to generate more di-
verse but less phonetically grounded outputs.

Human evaluation. To further verify the quality
of our EPA method, we conducted a human eval-
uation using 100 sentence pairs, each consisting
of an original sentence and its augmented counter-
part, with two human evaluators. Participants rated
how likely the change resembled an ASR error on
a 4-point Likert scale, where 1 indicated "not like
an ASR error" and 4 indicated "clearly an ASR
error." The average rating was 3.22 with moderate
inter-rater agreement (Gwet’s AC2 (Gwet, 2008)
= 0.590), suggesting that most EPA-generated ed-
its were perceived as realistic ASR errors. Details
on the evaluation metric and human evaluation are
provided in Appendix D.

Method Error Type
Wrong Ignore Spurious

Noised Audio

Baseline ▽0%
(6237)

▽0%
(3654)

▽0%
(2027)

EPA w/o Key-aug ▽5.29%
(5907)

▽3.72%
(3518)

▽6.31%
(1899)

EPA ▽8.19%
(5726)

▽7.25%
(3389)

▽1.33%
(2000)

Table 6: Ablation study with error analysis. Wrong
indicates the model predicts incorrect values, Ignore
refers to ignored mentioned slots, and Spurious denotes
predicting values for unmentioned slots. Actual error
numbers are in parentheses.

3.5 Error Analysis

We additionally analyze the impact of keyword aug-
mentation by examining how it influences specific
error types in DST predictions. Table 6 presents
the percentage reduction in error rates compared
to the baseline. The results demonstrate that EPA
is effective in "Wrong" and "Ignore" error types,
and keyword augmentation highly contributed to
this improvement by decreasing the error rate from
5.29% to 8.19%. Interestingly, while keyword aug-
mentation led to substantial reductions in "Wrong"
errors, it also caused a slight increase in "Spurious"
errors. This may be because the model, after re-
peatedly seeing phonetic noise around slot values,
becomes overly sensitive and starts hallucinating
unmentioned slots. A potential mitigation is to in-
troduce an additional loss term for slot presence
prediction (Heck et al., 2020; Kim et al., 2019) ,
helping the model better distinguish between men-
tioned and unmentioned slots.

4 Conclusion

We propose a novel data augmentation method tai-
lored for DST tasks that ensures sufficient error pat-
terns in both key phrases and overall text. By lever-
aging LLMs for their controlled text generation
capabilities, we strategically place errors within
key phrases. Our method demonstrates substan-
tially improved robustness in DST by generating
diverse, plausible keyword errors. Error case analy-
sis reveals that keyword augmentation significantly
enhances robustness against ASR errors. As the
pioneering research in leveraging LLMs for gener-
ating ASR errors, we hope this work lays a strong
foundation for future phonetic-based augmentation
research.
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Limitations

Through detailed error analysis, we identified a
trade-off introduced by our keyword-focused pho-
netic augmentation strategy. While the augmenta-
tion helps the model become more robust to noisy
slot expressions—leading to substantial reductions
in "Wrong" errors—it also increases the model’s
sensitivity to phonetic variations. As a result, we
observed cases where the model hallucinates slot
values that were not actually mentioned, thereby
increasing the number of "Spurious" errors. This
hallucination effect represents a key limitation of
our method. We attribute it to the model’s repeated
exposure to noisy keywords, which may cause it
to overgeneralize phonetic cues as valid slot men-
tions. As a direction for future work, we plan to
incorporate an auxiliary loss term for slot presence
prediction (Heck et al., 2020; Kim et al., 2019)
to help the model better distinguish between men-
tioned and unmentioned slots and mitigate this side
effect.

Ethical Considerations

Our phonetic augmentation method, while effective
for simulating ASR-style errors, may raise several
ethical concerns. One such concern is the potential
for accent bias, wherein phonetic transformations
may disproportionately reflect majority or standard
pronunciations, thereby marginalizing regional or
minority accents. Another concern is the inadver-
tent corruption of proper names, particularly those
that are less common or culturally specific, which
could lead to misrepresentation or reduced inclusiv-
ity. We acknowledge these risks and emphasize that
our method relies on LLMs trained on diverse and
large-scale corpora. As such, the phonetic errors
generated are likely to reflect dominant patterns
present in mainstream ASR systems, rather than
rare or region-specific variations. Nonetheless, we
recognize the importance of fairness and inclusiv-
ity in language technologies and believe that future
work should explore augmentation strategies that
are more sensitive to accent and cultural variability.
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A Details of the EPA Method

A.1 Prompt Used for EPA

The prompts used in Step 1 and Step 2 are provided
below.

Step 1 Prompt

Generate ASR error augmented text with similar pro-
nunciation but different words based on the given
gold text examples.
Apply character and word substitutions, additions, or
deletions while maintaining the overall pronunciation
and context.
Error rate should be high
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example 1
Original: they have a single naupliar eye
ASR-errored: they have a single nor pure eye

Example 2
Original: i must have saint louis then huzza
ASR-errored: i must have st louis then hazard

Example 3
Original: i wonder uncle did not have her come
ASR-errored: i wonder uncle did not have a problem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now, following the above examples, generate an
ASR-errored version of the following sentence:
Original: [Target utterance]

ASR-errored:

Step 2 Prompt

Change the key words in <hl> tag, to having a ASR
error. ASR error has similar pronounciation with the
correct word, but different charater.
Here is some example.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example 1
Original: I want to buy a book about <hl>luwombo
best</hl> restaurant.
Keywords : luwombo best
Result: I want to buy a book about luwambo vest
restaurant.

Example 2
Original: hi, i’m looking for a bus that is depart
from <hl>eliot<hl/> and arriving to <hl>holiday inn
williamsport<hl/>?
Keywords : eliot, holiday inn williamsport
Result: hi, i’m looking for a bus that is depart
from Ellyot and arriving to holliday inn william’s port

Example 3
Original: the <hl>chabuton ramen<hl/> is a
restaurant on the east.
Keywords : chabuton ramen
Result: the shabuton raymond is a restaurant on the
east.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now, following the above examples, generate an
ASR-errored version of the following sentence:
Original: [Target utterance with <hl> tag]

ASR-errored:

A.2 Detailed Keyword Highlighting Strategy
for EPA

Example of adding <hl> tag

Original Hi, I need to go to Green Day hotel, then book a
table at the Grill House.

Dialogue
State

hotel-name: Green Day, restaurant-name:Grill
House

With <hl>
tags

Hi, I need to go to <hl>Green Day</hl> hotel,
then book a table at the <hl>Grill House</hl>.

Table 7: Example of keyword highlighting using <hl>
tags based on dialogue state annotations.

To explicitly introduce keyword-specific ASR
errors, we first identify dialogue state values from
the training corpus and match them against the
user utterance (u̇). Matched values are then auto-
matically wrapped with <hl> tags based on slot
annotations (e.g., DST slot labels or NER tags),
as shown in Table 7. These highlighted utterances
are passed to the LLM, which is instructed to per-
turb the text within the <hl> tags while preserving
the rest. This keyword highlighting strategy is task-
agnostic and can be easily applied to other keyword-
sensitive tasks such as Named Entity Recognition
(NER) or Spoken Language Understanding (SLU),
where certain slot values or entities are critical for
downstream prediction.

A.3 Retrieved In-Context Example

In Section 2.2, we retrieved in-context examples
based on phoneme-level similarity. Table 8, we
present several representative examples to illustrate
this retrieval process, showing how phonetically
similar phrases (highlighted in color) are matched
between the target and retrieved utterances. This
demonstrates that the retrieval mechanism effec-
tively captures pronunciation-level patterns rele-
vant to ASR-style errors.

A.4 Additional Examples of ASR-style Errors

Table 9 presents additional examples of ASR-style
errors generated by our EPA method, including
both general and keyword-specific transformations.

B Experimental Setup

B.1 Details of the ASR Environment

• Low-acc ASR environment: Whisper-base
model (74M)(Radford et al., 2022) is used for
transcription. WER on LibriSpeech.test-clean
is 0.05.
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Example 1

Target can you tell me the address to the police station in point pleasant?
Retrieved 1 frayser station was not the depot on the point

+ ASR freya station was not the deep watch on the point
Retrieved 2 can you get me the maldeamores saga

+ ASR can you get me the melamorphos
Retrieved 3 cannot you tell her whom i am eh joseph

+ ASR cannot you tell her whom i am

Example 2

Target no, i just need to make sure it’s cheap. oh, and i need parking.
Retrieved 1 i need fifty ten foot long segments of wire

+ ASR i need fifty ten foot long signals of my life
Retrieved 2 a drive with a different encoding mechanism would need different patterns

+ ASR and drive was a different building recognition would need different patterns
Retrieved 3 to reach to calcutta you need less time to reach dhaka

+ ASR to reach tukaukara you need last time to reach daka

Example 3

Target i’m open to any kind of food. i’m looking for something in the centre and on the expensive side.
Retrieved 1 kokai means open to the public or laid open

+ ASR cook eye means open to the public all laid open
Retrieved 2 the town of beauharnois was the major centre

+ ASR the town of bo hanwa was the major center
Retrieved 3 the gate is open at eleven

+ ASR the gate is open at 11

Table 8: In-context examples retrieved based on phoneme-level similarity. For each target utterance (top row), we
retrieve three (g, e) example pairs from the database using phonetic similarity between the target and g. Colored
segments highlight phonetically similar phrases between the target and retrieved examples.

Original Augmented
- no, i just need to make sure it’s cheap. oh, and i need parking - no, i just need to make sure it’s sheep. oh, and i need parking.
- i am departing from marion - - i am departing from maryland
- no, i don’t need anything else right now. thank you for your
assistance. good bye.

- no, i don’t need anyone else right now. thank you for your
persistence. good buy.

- i would like to go to sandy please. - i would like to go to cindy please.
- i would like to keep it in the moderate range, please. - i would like to keep it in the mod rain, please
- could i get the address for it? i would also like an expensive
place to eat around it.

- could i get the actress for it? i would also like an extensive
place to eat around it.

- i need to take a train out of garrett, i will be leaving town on
wednesday

- i need to make a plane out of garrett, i will be weaving town on
wednesday.

- do you have any indian restaurants in the south in a different
price range?

- do you have any indonesian restaurants in the south in a differ-
ent prize range

- nope, same people. - nope, same pupil.
- i’m looking for a college type attraction - i’m looking for a knowledge-type action.
- yes, please book me a room for friday - yes, please cook me a broom for friday
- yes, could you please email or fax me the fare amount, as well
as the reference number?

- yes, could you please email or text me the fair amount, as well
as thereference code?

- ois el shaddai a guest house or hotel? iz let shadai a gest house or motel?
- great! i also need a train from mount pleasant to sabattus,
please.

- great! i also need a strain from mount pleasant to suspicious,
please

- yes, can you help me find a train that can take me from lovelock
to abbot?

- yes, can you help me find a plane that can take me from love
lock to rabbit?

Table 9: Examples of augmented utterances generated by injecting phoneme-level ASR-style errors. For each
original utterance (left), the corresponding augmented version (right) includes substitutions that mimic realistic
ASR recognition mistakes. Blue-colored phrases indicate changes in keywords that are used as slot values in DST,
while orange-colored phrases represent overall ASR-style errors.

• Noisy audio environment: Incorporated au-
thentic cafe and traffic noise from https://
freesound.org/ with a 10 to 20 Signal-
to-Noise Ratio (SNR) and transcribed it using
the Whisper large model.

• Paraphrased environment: When recording

the audio, the text was paraphrased to re-
semble more natural, real-life spoken lan-
guage(Soltau et al., 2022).

• High-acc ASR environment: Whisper-large
model (1550M) is used for transcription.
WER on LibriSpeech.test-clean is 0.027.
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B.2 Comparison Methods
• AEDA (Karimi et al., 2021): We randomly

inserted punctuation marks, effectively main-
taining the original word order.

• EDA (Wei and Zou, 2019): We aug-
mented data by applying edit-based technique
that implements four rule-based modifica-
tions—synonym replacement, random inser-
tion, swapping, and deletion.

• Back Translation (Sennrich et al., 2015): We
translated original texts to error texts and then
back to the original texts for generating syn-
tactic variations during the process. We use
English to German 3 and German to English4

models as translator.

• TTS-ASR : We used Tacotron2 (Shen et al.,
2018) for the TTS model to synthesize the
audio and use Whisper-base (Radford et al.,
2022) as an ASR model to simulate the ASR
errors.

• ASR translation: We employed a sequence-to-
sequence structure to translate clean text into
ASR-errored text. Our training set comprised
300 hours of paired clean and ASR-errored
text. We fine-tuned the model based on the T5-
base architecture (Roberts et al., 2019), using
the loss function defined in equation 3. The
loss function is as follows:

L = −
I∑

i=1

logP (ei|gi). (3)

B.3 Training Details
In training models, we used T5-base (Roberts et al.,
2019) as the backbone model and instructed the
model to generate the Bt by given Dt in sequence
to sequence manner, as in (Su et al., 2021) and the
loss function is

L = −
T∑

t=1

logP (Bt|Inst, Dt). (4)

We set the learning rate as 4e-5 and used the
AdamW (Loshchilov and Hutter, 2017) optimizer.
One GeForce RTX 3090 is used for training and
the batch size is 16. Trained until reaching the max
patient, which is 3.

3facebook/wmt19-en-de
4facebook/wmt19-de-en

Method
Low-acc ASR Noised Aud. Paraphrased High-acc ASR
JGA N-acc JGA N-acc JGA N-acc JGA N-acc

Baseline – – – – – – – –
AEDA ns ns ns ns ns ns ns ns
EDA * * ** ** ns ** ** **
BT ** ** ** ** * ** ** *
TTS-ASR ns ns ns ns ns ns ns ns
ASR trans. ns * ns ns ns * * *
EPA (GPT-3.5) *** ** *** *** ** ** * **

Table 10: Statistical significance results compared to the
Baseline using paired t-tests across three random seeds.
Stars indicate significance levels: * for p < 0.05, ** for
p < 0.01, *** for p < 0.001, and ns for non-significant
differences.

C Further Experiments

C.1 Statistical Significance Analysis

To assess the reliability of our results, we con-
ducted paired t-tests between each method and
the Baseline to determine whether the observed
performance improvements are statistically signifi-
cant. We report 95% confidence intervals to reflect
performance variability. Statistical significance is
denoted using asterisks: ∗ for p < 0.05, ∗∗ for
p < 0.01, and ∗ ∗ ∗ for p < 0.001.

As shown in Table 10, EPA (GPT-3.5) achieves
statistically significant gains in nearly all evalua-
tion settings, particularly under low-accuracy and
noised ASR conditions. These results confirm that
the improvements brought by our method are both
consistent and statistically reliable.

C.2 Baseline Performance Comparison with
Clean Text

For comparison, we report the baseline perfor-
mance on an error-free, clean test dataset. Please
note that DSTC11 (Soltau et al., 2022) does not
provide a text script for the test dataset, so we are
manually cleaning 50 dialogues to ensure they are
error-free. In the experiment, the baseline model
achieved a JGA score of 45.2 % and an N-ACC
score of 86.5 % in an ASR error-free environment.
Compared to the JGA, which is 34.8 %, and N-
ACC, which is 52.07 %, in the ASR-errored envi-
ronment (High-acc ASR model environment), this
discrepancy highlights the significant impact of
ASR errors on performance degradation.

C.3 Effect of Keyword Augmentation

To further validate the contribution of each com-
ponent in our method, we conducted an ablation
study separating Step 1 (overall error augmenta-
tion) and Step 2 (keyword-specific error augmen-
tation), using GPT-3.5 as the generator. Both aug-
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Method
Weak-ASR Noised Audio Strong ASR

JGA N-acc JGA N-acc JGA N-acc
Baseline 29.88 45.76 29.70 46.77 34.87 52.07
+ Overall Error (Step 1) 31.31 50.67 31.13 52.29 35.40 55.80
+ Keyword Error (Step 2) 31.66 49.88 31.61 51.02 36.12 54.23
EPA (Step1+2) 32.39 51.12 32.24 52.70 36.61 55.87

Table 11: Ablation on overall and keyword-specific
augmentation steps. Combining both (EPA) yields the
highest robustness across ASR conditions.

Method
Low-acc ASR Noised Aud. Paraphrased
JGA N-acc JGA N-acc JGA N-acc

Baseline 29.9 45.82 27.25 41.81 25.81 44.51
+ EPA 30.63 48.54 27.5 46.52 27.65 47.96

Table 12: Experiment with GPT-2 model as baseline.

mentation strategies individually improved perfor-
mance over the baseline. Step 1 yielded consistent
gains across all ASR settings, while Step 2 notably
enhanced slot-value accuracy. When combined
(EPA, ours), the model achieved the highest robust-
ness in all evaluation conditions, confirming that
the two strategies are complementary.

C.4 Experiments with a Different Baseline

In the main experiments, we use T5-base as the
backbone model. To assess the generalizability of
our approach, we additionally conduct experiments
using a GPT-2 (Radford et al., 2019) model, as
shown in Table 12. The results show a consistent
trend with those of T5-base, demonstrating that
our method is effective across different backbone
architectures.

C.5 Generalizability to Other Tasks

To evaluate the generalizability of our approach
beyond the DST domain, we extended our exper-
iments to two additional spoken language under-
standing tasks: Named Entity Recognition (NER)
and Spoken Language Understanding (SLU). We
applied our EPA methodology under three ASR
conditions—low-accuracy ASR, noised audio, and
high-accuracy ASR—using the same experimental
setup as in the DSTC11 evaluation. We used asap-
p/slue dataset for NER task(Shon et al., 2022), and
SLURP dataset (Bastianelli et al., 2020) for SLU
task.

The results, shown in Table 13 and Table 14,
demonstrate that our method consistently improves
performance across all ASR conditions for both
NER and SLU tasks. Notably, the gains are es-
pecially prominent under low-accuracy and noisy
conditions, confirming that our approach is broadly

Method Low-acc ASR Noised Audio High-acc ASR
Baseline 56.29 60.50 60.02
+ OPT 6.7B 59.64 62.84 62.47
+ LLaMA 7B 58.29 60.53 60.46
+ GPT-3.5 (125B) 59.39 62.62 62.16

Table 13: NER results on the ASAPP/SLUE dataset
under different ASR conditions. We reported the F1
score.

Method Low-acc ASR Noised Audio High-acc ASR
Baseline 55.25 63.23 64.32
+ OPT 6.7B 56.97 64.94 66.10
+ LLaMA 7B 57.24 64.26 65.56
+ GPT-3.5 (125B) 58.78 66.16 67.49

Table 14: SLU results on the SLURP dataset under
different ASR conditions. We reported F1 score.

applicable to other tasks.

C.6 Additional Fine-grained Metrics

Method Precision Recall F1 Slot Accuracy
Baseline 50.5 50.1 50.3 92.8
+ TTS-ASR 49.5 49.6 49.5 93.4
+ ASR-Translation 51.8 51.7 51.7 93.1
+ EPA (GPT3.5) 55.2 54.8 55.0 93.7

Table 15: Fine-grained DST metrics under Low-
accuracy ASR setting.

To supplement the main results focusing on
JGA and N-Acc, we report additional fine-grained
metrics—Precision, Recall, F1, and Slot Accu-
racy—under two ASR corruption settings: Low-
accuracy ASR and Noised ASR. These metrics
provide a more comprehensive view of model be-
havior in diverse error conditions in table 15 and
16.

C.7 Results with Different Random Seeds

Table 17 reports the results of our main experi-
ments (Table 2) repeated with three different ran-
dom seeds, demonstrating the consistency of the
observed trends.

D Details of Quality Evaluation

D.1 About Metric

As described in Section 3.4, we use a phonetic sim-
ilarity metric to evaluate pronunciation-level con-
sistency between the original and augmented text.
Specifically, we compute the normalized phoneme
edit distance, which quantifies the minimal num-
ber of phoneme-level operations required to trans-
form one utterance into another. A higher score
indicates greater phonetic similarity. We used the
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Method Precision Recall F1 Slot Accuracy
Baseline 52.0 51.3 51.6 92.5
+ TTS-ASR 53.7 53.1 53.4 92.8
+ ASR-Translation 53.8 53.0 53.4 92.5
+ EPA (GPT3.5) 56.1 55.3 55.7 93.2

Table 16: Fine-grained DST metrics under Noised ASR
setting.

Method
Low-acc ASR Noised Aud. Paraphrased High-acc ASR
JGA N-acc JGA N-acc JGA N-acc JGA N-acc

Baseline 30.05 46.48 29.80 47.49 29.08 48.85 34.73 52.31
AEDA 29.99 46.53 29.80 47.60 28.95 49.02 34.94 52.40
EDA 29.16 47.67 28.93 49.50 28.12 50.10 33.74 53.66
BT 31.54 49.21 31.43 51.25 29.90 51.60 36.25 54.85
TTS-ASR 30.09 46.16 30.32 47.74 29.26 49.31 35.28 51.95
ASR trans. 29.98 47.70 29.95 48.49 29.72 50.43 34.82 53.35
EPA (GPT3.5) 32.56 51.62 32.27 53.48 31.10 53.91 36.65 56.14
Baseline 29.82 45.63 29.75 46.20 28.55 48.75 34.83 51.44
AEDA 29.77 46.29 29.69 47.40 29.26 48.93 34.93 52.26
EDA 29.27 47.48 28.57 49.41 28.20 49.99 33.59 53.68
BT 31.66 49.16 31.05 50.81 29.88 51.75 36.19 54.73
TTS-ASR 29.75 45.99 29.80 46.87 29.10 48.12 34.97 51.49
ASR trans. 30.86 47.47 30.52 48.53 29.63 50.11 35.73 53.59
EPA (GPT3.5) 32.33 50.74 32.41 52.28 31.02 53.15 36.75 55.82
Baseline 29.77 45.18 29.56 46.61 29.12 48.76 35.05 52.47
AEDA 29.94 46.55 29.72 47.45 29.16 48.62 34.94 52.29
EDA 29.22 47.79 28.59 49.61 27.92 49.88 33.71 53.99
BT 31.86 49.13 31.31 50.87 29.91 51.85 36.38 54.85
TTS-ASR 29.98 46.86 29.84 47.51 28.88 49.20 34.97 52.66
ASR trans. 30.37 47.78 29.94 48.32 29.26 50.60 35.20 54.05
EPA (GPT3.5) 32.27 51.01 32.04 52.33 30.72 52.96 36.42 55.66

Table 17: Experiment result with different seeds.

eng-to-ipa library5 for phoneme conversion in
our implementation, as shown in the code snippet
below.
def phonetic_similarity(original_text,

augmented_text):

original_ipa = to_phoneme(original_text)
augmented_ipa = to_phoneme(augmented_text)

edit_distance = nltk.edit_distance(
original_ipa, augmented_ipa)

# Normalize the edit distance
max_length = max(len(original_ipa), len(

augmented_ipa))
normalized_distance = float(edit_distance) /

float(max_length)

# Convert to similarity score
similarity_score = 1 - normalized_distance
return similarity_score

D.2 Human Evaluation Details
To assess the plausibility of the generated ASR-
style errors, we conducted a human evaluation in-
volving two graduate students. Each participant
was asked to rate whether a given sentence trans-
formation could plausibly be attributed to an ASR
error, using a 4-point Likert scale:

• 1 – Not at all: The change is unlikely to be
due to an ASR error. It appears to stem from
other factors such as meaning alteration or
stylistic variation.

5https://pypi.org/project/eng-to-ipa/

• 2 – Unlikely: The transformation is probably
not caused by an ASR error.

• 3 – Somewhat likely: The transformation
may plausibly be caused by an ASR error.

• 4 – Very likely: The transformation clearly
appears to result from an ASR error.

Each sentence pair (original and transformed)
was rated independently by both annotators. Inter-
rater agreement and average scores are reported in
Section 3.4. The distribution of Likert scores for
each annotator is as follows : Annotator 1 assigned
5% of scores as 1, 7% as 2, 17% as 3, and 71% as
4. Annotator 2 assigned 3% of scores as 1, 24% as
2, 53% as 3, and 20% as 4.
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