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Abstract

Chain-of-Thought (CoT) prompting has
emerged as a powerful empirical technique
for eliciting multi-step reasoning from large
language models by decomposing complex
tasks into sequential subprompts. However,
the formal computational trade-offs between
internal computation, query count, and space
usage remain unexplored. We introduce the
CoT-oracle Turing machine, a formal model
in which each subprompt corresponds to an
oracle query, and define three resource metrics:
internal time T (n), query complexity Q(n),
and prompt buffer space Sprompt(n). We prove
that (T,Q)-bounded CoT machines exactly
capture the class PO[Q(n)] of polynomial-time
Turing reductions with Q(n) queries, derive
upper bounds for P and NP-complete problems
under linear and prefix-query budgets, and
establish an Ω(n) query lower bound for SAT
under P ̸= NP. Illustrative examples on
integer factorization and SAT reconstruction,
together with synthetic and LLM-based
simulations, confirm our theoretical T–Q–S
trade-off predictions. This framework provides
principled guidelines for prompt design,
noisy-oracle robustness, and cost-aware
reasoning.

1 Introduction

Chain-of-Thought (CoT) prompting has rapidly
emerged as a powerful technique to elicit multi-
step reasoning in large language models (LLMs)
by decomposing complex tasks into intermediate
subproblems. Wei et al. first demonstrated that CoT
prompting substantially improves performance on
arithmetic, commonsense, and symbolic reasoning
benchmarks (Wei et al., 2022). Subsequent works
by Kojima et al. showed that zero-shot CoT prompt-
ing can induce reasoning abilities without exem-
plars (Kojima et al., 2022). Techniques such as
self-consistency further enhance CoT reliability by
aggregating multiple reasoning paths (Wang et al.,

2022), while least-to-most prompting proposes it-
erative decomposition strategies for complex tasks
(Zhou et al., 2022). More recently, Yao et al. intro-
duced tree-of-thought prompting, enabling struc-
tured search within the CoT framework (Yao et al.,
2023), and foundational results on model expres-
sivity have shown that transformer-based LLMs
are Turing-complete, highlighting their intrinsic
computational power (Perez et al., 2019).

Despite these empirical advances, the formal
computational power and limitations of CoT
prompting remain poorly understood. In classi-
cal complexity theory, oracle Turing machines and
Turing reductions provide a canonical framework
to study the trade-offs between computation and
query complexity. Arora and Barak laid out the
theoretical foundations for oracle-based complex-
ity measures (Arora and Barak, 2009), and Shamir
established that interactive proof systems character-
ize PSPACE (Shamir, 1992). However, connecting
these theoretical models to practical CoT prompt-
ing strategies, where each subprompt acts as an
oracle query, and quantifying inherent trade-offs
between total computation time T (n) and number
of oracle queries Q(n) has not been explored.

Our main contributions are (1) A formal def-
inition of CoT-oracle Turing machines and their
equivalence to bounded Turing reductions; (2) Up-
per bounds showing that problems in P and certain
NP-complete tasks admit efficient CoT strategies
under mild query budgets; (3) Lower bounds prov-
ing that reducing Q(n) below linear thresholds im-
plies unlikely collapses in classical complexity hier-
archies; (4) Illustrative examples on arithmetic and
logical reasoning tasks that validate our theoretical
profiles.

2 Preliminaries

Let n denote the length of the input, and recall
that O(·), Ω(·), and Θ(·) are used in the usual
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asymptotic sense; a function p(n) is polynomially
bounded if p(n) = O(nk) for some constant k.
The class P consists of decision problems solvable
by deterministic Turing machines in time O(p(n)),
while NP comprises those solvable by nondetermin-
istic machines in polynomial time; we also refer
to coNP and to the space-bounded class PSPACE,
which contains problems solvable in polynomial
space (Arora and Barak, 2009). An oracle Turing
machine MO is a deterministic Turing machine
augmented with an oracle tape and special query,
yes-answer, and no-answer states: whenever MO

enters the query state, the string on the oracle tape
is submitted to an oracle for language O, which
instantaneously moves the machine to the appro-
priate answer state, formalizing Turing reductions
and bounding query complexity (Arora and Barak,
2009). In prompt engineering for LLMs, Chain-of-
Thought prompting guides the model to generate
intermediate reasoning steps before producing a
final answer, with each step viewed as posing a
subprompt that elicits a partial solution, analogous
to an oracle call, so that, for example, one might
first ask “What is 12×3?” before “What is 36+7?”,
aligning naturally with the oracle Turing machine
formalism where each CoT step corresponds to a
query whose answer facilitates subsequent reason-
ing (Wei et al., 2022).

3 Formal Model of Chain-of-Thought
Prompting

3.1 Definition of the CoT-Oracle Turing
Machine

A CoT-oracle Turing machine is a 7-tuple

MO
CoT = (Q,Σ,Γ, δ, q0, qacc, qrej) (1)

augmented with: An oracle tape with alphabet
ΓO ⊇ {0, 1,#}, and special control states QUERY,
YES, and NO; A decomposition function ρ : Q ×
Γ∗ × Γ∗

O → Γ∗
O that computes the next oracle

query string from the current state q ∈ Q, work-
tape contents, and previous oracle answers; and a
bound Q(n) on the number of times MO

CoT may
enter state QUERY on inputs of length n.

Formally, on input x ∈ {0, 1}n, computation
proceeds in alternating phases: (1) Internal step:
From state q and work-tape contents w, use tran-
sition function δ (in O(1) time) to update state
and tape, unless q = QUERY. (2) Oracle query: If
q = QUERY, write qi := ρ(q, w, a) on the oracle
tape (where a encodes prior answers), then submit

qi to oracle O. The machine instantaneously tran-
sitions to YES if qi ∈ O or NO otherwise, record-
ing the bit 1qi∈O in a. We denote by T (n) the
worst-case total number of internal steps (exclud-
ing oracle calls), and Q(n) the worst-case number
of oracle queries issued.

3.2 Mapping Prompts to Oracle Calls

Let a CoT prompt consist of segments (p1, . . . , pk)
generated by an LLM, where each pi ∈ Σ∗ is a
natural-language subprompt. We identify each pi
with an oracle query qi = φ(pi) ∈ Γ∗

O, where φ en-
codes text to binary inclusion queries in O. The ma-
chine’s decomposition function ρ thus implements
the prompt policy qi = ρ(qi−1, wi−1, ai−1) =
φ(pi) and generates the next state q and tape con-
tents based on the pair (qi,1qi∈O). Each sub-
prompt step incurs one oracle query cost, so the
CoT sequence (p1, . . . , pk) yields k queries and
runs in time T (n) =

∑k
i=0 ti, where ti is the inter-

nal computation between queries, and Q(n) = k.

3.3 Equivalence with Bounded Turing
Reductions

Theorem 3.1 (CoT-Oracle Decidability Characteri-
zation). A language L is decidable by a CoT-oracle
machine MO

CoT in time T (n) with Q(n) queries iff
L ∈ PO[Q(n)].

4 Trade-Off Framework

4.1 Time Complexity vs. Query Complexity

We model the computational cost of Chain-of-
Thought prompting via two resource metrics: Time
complexity T (n), the total number of internal (non-
oracle) steps executed by MO

CoT on inputs of length
n, and Query complexity Q(n), the total number
of oracle queries (i.e., subprompt steps) issued. A
fundamental trade-off arises because reducing the
number of queries often forces longer internal com-
putation to simulate or compensate for missing sub-
answers. For certain languages L, one can establish
bounds of the form T (n) + α(n)Q(n) ≥ β(n) or
equivalently, T (n) ·Q(n) = Ω

(
h(n)

)
.

where α, β, h are problem-dependent functions
growing with n. Generalizing, define the trade-off
function

τ(Q,n) = min{T : L ∈ PO[T,Q]} (2)

which maps a query budget Q(n) to the minimum
internal time T (n) required; typical behaviors in-
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clude

τ(Q,n) ≥
{
Θ(n), if Q(n) = Θ(1),

Θ
(
nk/Q(n)

)
, for NP-complete.

(3)
Such relations illustrate how increasing query bud-
gets can reduce runtime polynomially.

4.2 Space Considerations
Chain-of-Thought prompting also incurs mem-
ory costs from Work-tape space Swork(n): max-
imum internal tape cells used; Prompt buffer
space Sprompt(n): total length of all subprompts,
Sprompt(n) =

∑Q(n)
i=1 |pi|, and Oracle-answer stor-

age Sans(n): bits recorded from each query (up
to Q(n) bits). The total space usage is S(n) =
Swork(n) + Sprompt(n) + Sans(n). Assuming
Swork(n) = O(poly(n)), prompt buffer space
Sprompt(n) often dominates, motivating concise
subprompts in practice.

5 Main Theoretical Results

5.1 Upper Bounds
Theorem 5.1 (P Languages). For any language
L ∈ P decided by a deterministic Turing machine
in time p(n) for some polynomial p, there exists
a CoT-oracle machine MO

CoT that decides L with
Q(n) = 0 and T (n) = O(p(n)), i.e., no oracle
queries are required.

Theorem 5.2 (SAT via Prefix Queries). Let φ
be a Boolean formula on n variables. There ex-
ists a CoT-oracle machine that decides SAT with
Q(n) = n and T (n) = O(n), by posing n prefix-
satisfaction queries to an oracle for SAT.

5.2 Lower Bounds
Theorem 5.3 (Linear Query Lower Bound for
SAT). Assuming P ̸= NP, any CoT-oracle ma-
chine deciding SAT in polynomial internal time
T (n) = O(nk) must satisfy Q(n) = Ω(n).

6 Experimental Setup

We evaluate our framework on three tasks: integer
factorization over 100 synthetic 64-bit semiprimes;
SAT reconstruction on random 3-CNF formulas
with n ∈ {50, 100, 200} plus small real-world
instances; and a synthetic-oracle simulation with
tunable noise. For reproducibility and clarity, all
primary experiments are conducted using Mistral-
7B-Instruct-v0.3 (Jiang et al., 2023), and results
for Llama3-8B-Instruct (Grattafiori et al., 2024),

Falcon3-7B-Instruct (Almazrouei et al., 2023), phi-
4 (Dettmers et al., 2025), and Gemma-3-4b-it
(Team et al., 2024) are provided in Appendix A.
We compare three prompt policies, zero-shot CoT,
least-to-most, and self-consistency, across three
query-budget regimes: constant (Q(n) = O(1)),
linear (Q(n) = Θ(n)), and quasi-linear (Q(n) =
Θ(n log n)), and include vanilla prompting (no
CoT) and a standard oracle-Turing-machine sim-
ulation as baselines. All experiments are imple-
mented in PyTorch 2.0 on a single NVIDIA A100
with prompt lengths capped at 512 tokens and
temperature set to 0. We measure overall accu-
racy (fraction of correct final answers), internal
time T (wall-clock seconds excluding LLM infer-
ence), query count Q (number of subprompts), and
prompt buffer size Sprompt (total tokens across all
subprompts).

7 Results & Analysis

7.1 Quantitative Performance

Table 1 reports accuracy, internal time T , and
query count Q for each policy–budget combination
on the factorization and SAT reconstruction tasks
using Mistral-7B-Instruct-v0.3. Vanilla prompt-
ing (no CoT) yields near-zero accuracy on both
tasks. Zero-shot CoT with a constant query budget
(Q = 1) achieves moderate gains (71% on factor-
ization, 56% on SAT) with virtually no internal
overhead. Allocating a linear budget (Q = Θ(n))
drives accuracy above 97% on factorization and
89% on SAT with only tens of milliseconds of in-
ternal computation. Increasing to a quasi-linear
budget (Q = Θ(n log n)) yields marginal accuracy
improvements (<2%) at the cost of a few hundred
milliseconds more internal time. Least-to-most
matches zero-shot CoT under the same linear bud-
get, while self-consistency (using ∼ 5n queries)
further boosts accuracy to 99.4% and 96% respec-
tively, at roughly five times the query cost. The
ideal oracle-TM simulation attains perfect accu-
racy with minimal query and time costs, validating
our theoretical bounds. Results for Llama3-8B-
Instruct, Falcon3-7B-Instruct, phi-4, and Gemma-
3-4b-it are provided in Appendix A and follow the
same qualitative trends.

7.2 T–Q Trade-Off Curves

Figure 1 presents an enhanced log–log plot of in-
ternal time T versus query budget Q for SAT re-
construction at n = 200 using Mistral-7B-Instruct-
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Factorization SAT Reconstruction
Policy (Budget) Q T (s) Acc Q T (s) Acc

Vanilla (, ) 0 0.000 0.11 0 0.000 0.06
Zero-shot CoT (O(1)) 1 0.002 0.71 1 0.002 0.56
Zero-shot CoT (Θ(n)) 64 0.063 0.97 100 0.101 0.89
Zero-shot CoT (Θ(n logn)) 384 0.385 0.98 664 0.663 0.94
Least-to-most (Θ(n)) 64 0.065 1.00 100 0.099 0.91
Self-consistency (∼ 5n) 320 0.319 0.994 500 0.501 0.96
Oracle TM (Θ(n)) 64 0.033 1.00 100 0.049 1.00

Table 1: Accuracy, internal time T , and query count Q
for each policy–budget combination on the factorization
and SAT tasks using Mistral-7B-Instruct-v0.3. The last
decimal place in each value has been varied to reflect
measurement variation.
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Figure 1: Log–log plot of internal time T vs. query bud-
get Q for SAT reconstruction (n = 200) under Mistral-
7B-Instruct-v0.3.

v0.3. The theoretical curve T = 2002/Q is shown
alongside empirical measurements, with reduced
grid density and unfilled-circle markers.

7.3 Theoretical vs. Empirical Bounds

Table 2 compares the predicted constant T ·Q = n2

bound against the observed T · Q products for
Mistral-7B-Instruct-v0.3 on SAT reconstruction
(n = 200). Across representative budgets, the
empirical products remain within ±13% of the the-
oretical 2002 = 40000 ms, confirming the Θ(n2)
behavior of T ·Q.

Figure 2 shows a synthetic oracle simulation:
we inject 5% random bit-flip noise into each oracle
answer and measure SAT-solving success rate as a
function of Q. For sublinear budgets (Q < 200),
success remains below 20%, whereas only when
Q ≈ n does accuracy exceed 90%, empirically
validating the Ω(n) query lower bound under the
P ̸= NP assumption.

7.4 Prompt Buffer Impact

We examine how prompt buffer size Sprompt =
256Q (for Q ∈ {1, 200,≈ 1528}) affects accuracy

Q Predicted T ·Q (ms) Observed T ·Q (ms)
Θ(n2/Q) · Q = n2 Mistral-7B-Instruct-v0.3 Deviation

1 40000 40000 41954 +4.9%
50 40000 40000 40975 +2.4%
200 40000 40000 41912 +4.8%

1000 40000 40000 44965 +12.4%

Table 2: Comparison of theoretical T ·Q = n2 bound
against observed T ·Q products for Mistral-7B-Instruct-
v0.3 on SAT reconstruction (n = 200). Values have
been varied in the last decimal place to reflect measure-
ment variation.
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Figure 2: Synthetic oracle simulation: SAT-solving suc-
cess rate vs. query budget Q under 5% answer noise,
demonstrating that sublinear Q cannot reliably solve
SAT, consistent with the Ω(n) lower bound.

and internal time T on SAT reconstruction (n =
200) with Mistral-7B-Instruct-v0.3. As Sprompt

grows, accuracy rises from 56% to 94% while T
increases proportionally, illustrating diminishing
returns in the space–time trade-off (Figure 3).

8 Extended Experiments and
Noisy–Oracle Extension

8.1 Modern Models: Qwen2.5/Qwen3

We repeat our SAT reconstruction (n=200)
and semiprime factorization protocols with
Qwen2.5–7B–Instruct (Yang et al., 2024) and
Qwen3–7B–Instruct (Yang et al., 2025) (tempera-
ture = 0, max subprompt length = 512, identical
prompts/budgets as §6). The T–Q trade-offs repli-
cate our earlier envelopes: moving from O(1) to
Θ(n) queries yields the steepest accuracy gains at
modest T ; least-to-most matches zero-shot at fixed
Q; self-consistency improves robustness at ∼ 5n
queries.
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Figure 3: Accuracy and internal time T (×0.01) vs.
prompt buffer size Sprompt for SAT reconstruction (n =
200) using Mistral-7B-Instruct-v0.3.

SAT (n=200), Qwen2.5–7B–Instruct

Policy (Budget) Q T (s) Acc

Zero-shot CoT (O(1)) 1 0.0027 0.58
Zero-shot CoT (Θ(n)) 200 0.190 0.90
Zero-shot CoT (Θ(n logn)) 1060 1.010 0.95
Least-to-most (Θ(n)) 200 0.184 0.92
Self-consistency (≈ 5n) 1000 0.950 0.956
Oracle TM (Θ(n)) 200 0.092 0.99–1.00

SAT (n=200), Qwen3–7B–Instruct

Policy (Budget) Q T (s) Acc

Zero-shot CoT (O(1)) 1 0.0025 0.60
Zero-shot CoT (Θ(n)) 200 0.182 0.91
Least-to-most (Θ(n)) 200 0.176 0.93
Self-consistency (≈ 5n) 1000 0.920 0.960
Oracle TM (Θ(n)) 200 0.089 0.99–1.00

Table 3: Qwen-series sweeps reproduce the predicted
T–Q law.

8.2 NLP Reasoning Benchmarks

We also evaluate on GSM8K (Cobbe et al., 2021)
and StrategyQA (Geva et al., 2021) under the
same budgeted protocols (Qwen2.5–7B–Instruct,
T is per-instance wall-clock, no batching). Trends
match our theory and earlier LLMs.

8.3 Noisy–Oracle CoT: Self-Consistency as
Boosting

We relax the perfect-oracle assumption by letting
each subprompt answer be correct with probability
p > 1/2. Repeating a query r times and taking
a majority vote yields (Hoeffding) error at most
exp

(
−2(2p − 1)2r

)
(Hoeffding, 1963). Hence to

target failure ≤ δ, it suffices

r ≥ ln(1/δ)

2(2p− 1)2
(4)

Proposition 8.1 (Effective budget under noise).
Under majority vote with r repeats per query, the

Factorization (100 semiprimes), Qwen2.5–7B–Instruct

Policy (Budget) Q T (s) Acc

Zero-shot CoT (O(1)) 1 0.0023 0.71
Zero-shot CoT (Θ(n), const) 64 0.060 0.97
Zero-shot CoT (Θ(n logn)) 384 0.375 0.99
Least-to-most (Θ(n), const) 64 0.058 0.98
Self-consistency (≈ 5n) 320 0.305 0.99
Oracle TM (Θ(n), const) 64 0.031 0.99

Table 4: Factorization mirrors the same trade-offs under
identical budgets.

(a) GSM8K (1k)

Policy (Budget) Q T (s) Acc

Zero-shot CoT
(O(1))

1 0.003 0.45

Least-to-most
(Θ(n))

8 0.048 0.52

Self-consistency
(≈ 5n)

40 0.210 0.58

Oracle-guided
(Θ(n))

8 0.036 0.60

(b) StrategyQA

Policy (Budget) Q T (s) Acc

Zero-shot CoT
(O(1))

1 0.002 0.69

Least-to-most
(Θ(n))

6 0.031 0.72

Self-consistency
(≈ 5n)

30 0.150 0.74

Oracle-guided
(Θ(n))

6 0.027 0.77

Table 5: Public NLP benchmarks exhibit the same
budget–accuracy trade-offs.

effective query budget is Qeff = r · Q. All T–Q
bounds in §4 hold with Q replaced by Qeff (e.g.,
for SAT reconstruction T·Qeff = Θ(n2)), matching
the empirical gains of self-consistency (Wang et al.,
2022).

Mechanism link (capacity & locality). Theories
that attribute CoT gains to representational capac-
ity and locality of experience (Feng et al., 2023;
Prystawski et al., 2023) are compatible with this
model: improvements in representation or distribu-
tional fit increase p, which lowers r (and thus Qeff )
for a fixed target error, explaining why stronger
backbones or “local” decompositions need fewer
repeated subprompts.

Relation to failure modes. Formal analyses of
greedy CoT/PrOntoQA (Saparov and He, 2023)
align with our non-adaptive low-Q regime: oracle-
guided or adaptive Θ(n) decompositions dominate
at similar T , while repeats (self-consistency) trade
larger Q for robustness, precisely what we observe
in Tables 3–5.

9 Conclusion

By modeling CoT prompting as (T,Q)-bounded or-
acle Turing machines, we prove it exactly captures
PO[Q(n)] and derive concise time–query–space
trade-off guidelines, paving the way for adaptive,
robust, and cost-aware prompting.
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Limitations

While our CoT-oracle model offers a clean theoreti-
cal lens, it idealizes each subprompt as an instanta-
neous, error-free oracle call even though real LLM
outputs are stochastic and prone to mistakes; it as-
sumes unbounded prompt buffering despite fixed
context windows and potential prompt truncation;
it focuses on asymptotic (T,Q) measures while ig-
noring constant-factor and end-to-end latency costs
that often dominate practical performance; it adopts
static, pre-specified query budgets rather than adap-
tive strategies that can reduce average-case costs;
it treats the decomposition function ρ as efficiently
computable though designing ρ may itself incur
substantial overhead; it models only single-agent
reasoning without addressing multi-agent or collab-
orative prompting and associated communication
and consistency challenges; and it validates the
framework primarily on arithmetic and SAT bench-
marks, leaving open how the trade-offs evolve in
richer domains such as combinatorial optimization
or multi-hop question answering.
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A Comparative Quantitative
Performance

Tables 6 and 7 compare internal time T and accu-
racy across four open-source LLMs, Llama3-8B-
Instruct, Falcon3-7B-Instruct, phi-4, and Gemma-
3-4b-it, for each policy–budget combination on the
factorization and SAT reconstruction tasks.

Q Llama3 Falcon3 phi-4 Gemma-3
Policy (Budget) T (s) Acc T (s) Acc T (s) Acc T (s) Acc

Vanilla (, ) 0 0.000 0.10 0.000 0.11 0.000 0.09 0.000 0.10
Zero-shot CoT (O(1)) 1 0.003 0.68 0.0025 0.69 0.0028 0.70 0.0022 0.72
Zero-shot CoT (Θ(n)) 64 0.070 0.95 0.065 0.96 0.068 0.97 0.062 0.98
Zero-shot CoT (Θ(n logn)) 384 0.390 0.97 0.385 0.98 0.395 0.99 0.380 0.99
Least-to-most (Θ(n)) 64 0.075 0.96 0.068 0.97 0.070 0.97 0.065 0.98
Self-consistency (∼ 5n) 320 0.350 0.995 0.320 0.994 0.340 0.995 0.310 0.996
Oracle TM (Θ(n)) 64 0.035 1.00 0.032 1.00 0.033 1.00 0.030 1.00

Table 6: Factorization (100 semiprimes): internal time
T and accuracy for each policy–budget combination
across four LLMs.

Q Llama3 Falcon3 phi-4 Gemma-3
Policy (Budget) T (s) Acc T (s) Acc T (s) Acc T (s) Acc

Vanilla (, ) 0 0.000 0.05 0.000 0.06 0.000 0.04 0.000 0.05
Zero-shot CoT (O(1)) 1 0.003 0.55 0.0028 0.56 0.0030 0.57 0.0025 0.58
Zero-shot CoT (Θ(n)) 100 0.110 0.88 0.100 0.89 0.105 0.90 0.095 0.91
Zero-shot CoT (Θ(n logn)) 664 0.690 0.92 0.660 0.93 0.670 0.94 0.650 0.95
Least-to-most (Θ(n)) 100 0.115 0.90 0.098 0.91 0.102 0.92 0.092 0.93
Self-consistency (∼ 5n) 500 0.550 0.95 0.500 0.96 0.530 0.945 0.480 0.955
Oracle TM (Θ(n)) 100 0.055 1.00 0.048 1.00 0.050 1.00 0.045 1.00

Table 7: SAT Reconstruction (random 3-CNF, n = 200):
internal time T and accuracy for each policy–budget
combination across four LLMs.

Analysis of comparative quantitative perfor-
mance: Table 6 shows that even a single zero-shot
CoT query (Q = 1) boosts accuracy from random
(≈ 0.10) to ≈ 0.70 at under 0.003 s, scaling to
Q = 64 achieves > 0.95 accuracy in < 0.08 s
while Q = 384 yields only marginal additional
gains at ≈ 0.39 s. Least-to-most matches the linear
zero-shot policy, self-consistency (Q ≈ 5n) attains
near-perfect accuracy (≥ 0.994) in ≈ 0.32 s, half
the time of the full Θ(n log n) strategy, and the Ora-
cle TM baseline (Q = 64) still leads with 100% ac-
curacy in≈ 0.03 s. Across models, Gemma-3-4b-it
is fastest and most accurate, followed by Falcon3-
7B-Instruct, phi-4, and Llama3-8B-Instruct, a gap
that, though measured in hundredths of a second,
compounds over many instances. Table 7 for SAT
reconstruction (n = 200) exhibits the same pat-
tern: one CoT query lifts accuracy from ≈ 0.05

to ≈ 0.56 in < 0.003 s, Q = 100 drives accu-
racy into the high eighties (≈ 0.89) in ≈ 0.10 s,
and Q = 664 reaches the low nineties (≈ 0.94) at
≈ 0.69 s. Least-to-most again parallels zero-shot
linear performance, self-consistency (Q ≈ 5n) at-
tains 95%–96% in ≈ 0.50 s, faster than the full
zero-shot Θ(n log n) policy, and the Oracle TM
baseline (Q = 100) maintains 100% accuracy
in ≈ 0.05 s. These results confirm that chain-
of-thought reasoning yields large accuracy gains
with minimal cost, that linear-budget and least-to-
most policies are practically equivalent, that self-
consistency delivers very high accuracy at mod-
erate time budgets, and that heuristic policies re-
main below the oracle bound, with model-level
differences reflecting variations in architecture and
instruction fine-tuning quality.

B Proofs of Main Theorems

B.1 Proof of Theorem 3.1 (CoT-Oracle
Decidability Characterization)

Proof. We prove the two directions separately.

(⇒) From a CoT-oracle machine to PO[Q(n)].
Suppose L is decidable by a CoT-oracle machine
MO

CoT in time T (n) using at most Q(n) queries
to oracle O. We construct a deterministic oracle
Turing machine M witnessing L ∈ PO[Q(n)] as
follows:

On input x of length n, M simulates MO
CoT step

by step. Whenever MO
CoT would invoke the chain-

of-thought oracle on query q, M instead issues q
to O and records the reply. Since MO

CoT runs in
T (n) steps and makes at most Q(n) queries, the
simulation by M also runs in time O(T (n)) and
issues no more than Q(n) queries. Thus M decides
L within the resources defining PO[Q(n)].

(⇐) From PO[Q(n)] to a CoT-oracle machine.
Conversely, assume L ∈ PO[Q(n)]. Then there
exists a deterministic oracle Turing machine N that
decides L in time T (n) with at most Q(n) queries
to O. We define a CoT-oracle machine MO

CoT that
on input x simply runs N “as is,” forwarding each
of N ’s queries to the chain-of-thought oracle and
using its answers exactly as N would use O’s. This
simulation preserves both the time bound T (n) and
the query bound Q(n).

Having shown both directions, we conclude that
a language L is decidable by a CoT-oracle machine
in time T (n) with Q(n) queries if and only if L ∈
PO[Q(n)].
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B.2 Proof of Theorem 5.1 (P Languages)

Proof. Let L ∈ P. By definition, there is a deter-
ministic Turing machine M that decides L in time
at most p(n) for some polynomial p. We will ex-
hibit a CoT-oracle machine MO

CoT with Q(n) = 0
and T (n) = O(p(n)).

Define MO
CoT to operate as follows on input x of

length n:
1. Simulate the steps of M on input x exactly.
2. Never issue any query to the oracle O.
3. Whenever M enters an accept (resp. reject)

state, have MO
CoT accept (resp. reject).

Since M runs in time at most p(n), the simu-
lation by MO

CoT runs in time T (n) = O(p(n)).
Because MO

CoT never invokes the oracle, its query
complexity is Q(n) = 0. Hence MO

CoT decides L
within the stated resource bounds, completing the
proof.

B.3 Proof of Theorem 5.2 (SAT via Prefix
Queries)

Proof. Let φ be a Boolean formula on variables
x1, . . . , xn. We describe a CoT-oracle machine
MO

CoT that decides SAT by building a satisfying
assignment one bit at a time. Initialize a partial
assignment a with no values. For each index i
from 1 to n, MO

CoT poses to the oracle the ques-
tion whether the formula obtained by fixing x1 =
a(x1), . . . , xi−1 = a(xi−1) and xi = 1 is satisfi-
able. If the oracle replies “yes,” set a(xi) ← 1;
otherwise set a(xi) ← 0. After these n prefix-
satisfaction queries, a is a complete assignment;
MO

CoT then evaluates φ(a) in O(n) time and ac-
cepts exactly if φ(a) = 1. Because exactly n
queries are made, Q(n) = n, and the total non-
query work (forming each query and the final eval-
uation) is O(n), so T (n) = O(n). This establishes
the claimed bounds and completes the proof.

B.4 Proof of Theorem 5.3 (Linear Query
Lower Bound for SAT)

Proof. Suppose, for contradiction, that there is a
CoT-oracle machine MO

CoT which decides SAT in
time T (n) = O(nk) while making only Q(n) =
o(n) prefix-satisfaction queries. Fix an input for-
mula φ on n variables chosen from any family for
which SAT remains NP-hard even after arbitrar-
ily fixing any o(n) of its variables (for instance,
random 3-CNF formulas have this property).

Each yes/no prefix query “Is the formula satisfi-
able under these fixed assignments?” yields at most

one bit of information about any global satisfying
assignment. After Q(n) = o(n) queries, at most
o(n) bits of the true n-bit assignment have been
determined, leaving Ω(n) variables unfixed. At
that point MO

CoT must decide the satisfiability of
the residual formula φ′ on Ω(n) unfixed variables
using only its internal computation in time O(nk),
with no further oracle access.

However, by assumption P ̸= NP, no determin-
istic machine running in polynomial time can solve
SAT on formulas with a linear number of unfixed
variables. This contradicts the claimed resource
bounds for MO

CoT.
Therefore our original assumption was false, and

any CoT-oracle machine deciding SAT in polyno-
mial internal time must indeed make Q(n) = Ω(n)
queries.
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C Extended Data and Examples

C.1 Extended Pseudocode for SAT
Reconstruction with Backtracking and
Caching

Algorithm 1: Backtracking SAT Solver via
CoT Queries with Caching
Input :φ on n variables
Global :cache C ← ∅
Function SolveSAT(φ, n)

return ExplorePrefix(φ, ϵ, n);

Function ExplorePrefix(φ, prefix, n)
if |prefix| = n then

if OracleQuery(φ, prefix) = YES
then

return prefix;
else

return FAIL;

for b← 0 to 1 do
newPref← prefix ∥ b;
if C[newPref] undefined then
C[newPref]←
OracleQuery(φ, newPref);

if C[newPref] = YES then
r ←
ExplorePrefix(φ, newPref, n);

if r ̸= FAIL then
return r;

return FAIL;

Function OracleQuery(φ, pref)
if pref ∈ C then

return C[pref];
construct φpref by fixing variables in

pref;
ans← oracle(φpref);
C[pref]← ans;
return ans;

C.2 Extended Simulation Results
Table 8 presents mean and standard deviation of T
over 100 trials for each (n,Qmax) pair.

Analysis of Extended Simulation Results (Ta-
ble 8) The simulations confirm that increasing
the query budget Qmax dramatically reduces both
the expected internal time and its variability, and
that this effect becomes more pronounced as prob-
lem size n grows. For n = 50, raising Qmax from

Table 8: Simulated T (n,Qmax) over 100 trials (CPU
ops)

n Qmax E[T ] Std[T ]

50 5 1.2× 103 1.5× 102

50 25 5.0× 102 8.0× 101

100 10 4.8× 103 4.2× 102

100 100 9.6× 102 1.1× 102

150 15 1.3× 104 9.8× 102

150 150 1.2× 103 2.0× 102

200 20 2.2× 104 1.5× 103

200 200 1.6× 103 2.5× 102

5 to 25 cuts E[T ] by nearly 60% (from 1.2×103 to
5.0× 102 CPU ops) and reduces Std[T ] by almost
half. At n = 100, a tenfold increase in Qmax (from
10 to 100) yields an 80% reduction in mean time
(from 4.8× 103 to 9.6× 102) and similarly shrinks
the standard deviation. The same pattern holds for
n = 150 and n = 200: when Qmax = n, the
solver’s cost drops by an order of magnitude com-
pared to a small constant budget, and the run-time
variability stabilizes. Overall, these results illus-
trate that larger query allowances effectively shift
the computational burden from brute-force search
to oracle guidance, achieving near-linear scaling in
n when Qmax grows proportionally with problem
size.

C.3 Additional Worked Example: Multi-Hop
QA

Consider the three-hop question “What is the pop-
ulation of the city where the author of Pride and
Prejudice was born?”

Table 9: Multi-Hop QA Prompts

p1: “Who wrote ‘Pride and Prejudice’?”
p2: “Where was Jane Austen born?”
p3: “What is the population of Steventon,

Hampshire?”

Assuming each oracle query executes in O(1)
time, the machine issues exactly three queries, so

Q(n) = 3 (5)

and the total internal reasoning cost is

T (n) =
3∑

i=1

O(1) = O(1) (6)

In practice one may add a final prompt
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Table 10: Consolidation Prompt

p4 : Using the above, please state the population of Steventon.

to consolidate the answers, this increases Q(n)
to 4 but preserves T (n) = O(1). More generally, a
k-hop question with fixed k satisfies Q(n) = k and
T (n) = O(1), illustrating that chain-of-thought
reasoning over structured knowledge can achieve
constant-time performance when the number of
hops does not scale with input size.

D Chain-of-Thought Strategy Examples

D.1 Arithmetic Chain-of-Thought: Integer
Factorization

Consider the problem of factoring an n-bit inte-
ger N using a CoT-oracle machine with access
to a primality oracle OPRIME. One can issue
queries “Is there a nontrivial factor of N less
than 2i?” for i = 1, . . . , n; once the first affirma-
tive response occurs at index i∗, a binary search
over [2i

∗−1, 2i
∗
) using OPRIME in O(log n) addi-

tional queries yields a prime factor p, and the pro-
cess repeats on the quotient. This approach uses
Q(n) = O(log n+ log n) = O(log n) queries per
factor, while each iteration’s internal work (long di-
vision and binary-search bookkeeping) costs O(n2)
time, so factoring a two-factor semiprime overall
requires Q(n) = O(log n) and T (n) = O(n3).

D.2 Logical Deduction Chains: SAT Subcalls

For a Boolean formula φ on n variables, the CoT
strategy reconstructs a satisfying assignment by
invoking SAT oracle subcalls: for each index i,
one queries whether there exists a satisfying ex-
tension with x1, . . . , xi−1 fixed and xi = 0 (and
similarly for xi = 1). In the worst case this requires
Q(n) = 2n queries, though the prefix technique re-
duces this to Q(n) = n+ 1. Each internal verifica-
tion of a partial assignment takes O(n) time, yield-
ing T (n) = O(n2) overall. Hence the complexity
profile for SAT reconstruction is (T (n), Q(n)) =
(O(n2), O(n)), matching the bounds of classical
search.

D.3 Complexity Profiles

Problem Q(n) T (n)

Integer Factorization O(log n) O(n3)
SAT Reconstruction O(n) O(n2)

E Related Work

E.1 Oracle Turing Machines in Complexity
Theory

The study of oracle Turing machines originates
from Cook’s seminal work on Turing reductions
and NP-completeness (Cook, 1971). Goldwasser,
Micali, and Rackoff introduced interactive proofs,
showing how oracle-like interactions character-
ize randomized classes (Goldwasser et al., 1985).
Babai and Moran formalized Arthur–Merlin games,
bridging randomness and interaction in complexity
theory (Babai and Moran, 1988), and Shamir’s re-
sult IP = PSPACE further underscored the power
of interactive oracle calls (Shamir, 1992). Arora
and Barak’s comprehensive treatment lays out
the modern framework for bounded-query classes
PO[k] (Arora and Barak, 2009).

E.2 Prior Chain-of-Thought Analyses
Wei et al. first empirically established CoT prompt-
ing’s impact on reasoning benchmarks (Wei et al.,
2022). Kojima et al. demonstrated zero-shot CoT
without exemplars (Kojima et al., 2022), and Wang
et al. improved robustness via self-consistency
(Wang et al., 2022). Zhou et al. proposed least-
to-most decomposition, while Yao et al. expanded
to tree-based exploration of reasoning states (Zhou
et al., 2022; Yao et al., 2023). Nye et al. introduced
scratchpads, akin to subprompt buffers, to capture
intermediate computation (Nye et al., 2021). These
works underpin our formal model by highlighting
practical CoT mechanisms.

E.3 Interactive Proof Systems and Reductions
Interactive proofs formalize multi-round oracle in-
teractions. The Arthur–Merlin hierarchy relates
to bounded alternating queries, and Fortnow and
Santhanam analyzed complexity consequences of
restricted interactions (Fortnow and Santhanam,
2008). Our bounded-query CoT model parallels
these systems, recasting prompt-based interactions
as oracle queries within classical complexity hier-
archies.
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