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Abstract

With the rise of Large Language Models (LLMs)
and their vision-enabled counterparts (VLMs), nu-
merous works have investigated their capabilities
in tasks that fuse the modalities of vision and lan-
guage. In this work, we benchmark the extent
to which VLM are able to act as highly-trained
phoneticians, interpreting spectrograms and wave-
forms of speech. To do this, we synthesise a novel
dataset containing 4k+ English words spoken in
isolation alongside stylistically consistent spectro-
gram and waveform figures. We test the ability
of VLMs to understand these representations of
speech through a multiple-choice task whereby
models must predict the correct phonemic or
graphemic transcription of a spoken word when
presented amongst 3 distractor transcriptions that
have been selected based on their phonemic edit
distance to the ground truth. We observe that both
zero-shot and finetuned models rarely perform
above chance, demonstrating the requirement for
specific parametric knowledge of how to interpret
such figures, rather than paired samples alone.

1 Introduction

The ability of Large Language Models (LLMs) and
Vision Language Models (VLMs) to reason about
multimodal data has been studied extensively in
recent years (Chia et al., 2024; Lin et al., 2023;
Li and Zhang, 2023). One of the most productive
domains for testing the unification between vision
and language is that of the explanation and creation of
data visualisations, such as graphs and figures (Zhang
et al., 2024; Ge et al., 2024). For the most part, such
works have tested models’ abilities to understand axes
and labels, follow trendlines, and reformulate visual
content as text (or vice versa). Howeyver, to date, little
work has been performed on the ability of VLMs
to understand more complex visualisations, where
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Figure 1: An example waveform (top) and spectrogram
(bottom) of "activation" spoken by a text-to-speech model.

additional parametric knowledge must be combined
with image inputs to reason about what is shown.!

To that end, we present the task of spectrogram
and waveform interpretation, whereby models must
predict spoken words from visual representations of
speech. As seen in Figure 1, the x-axis of a spectro-
gram represents time, whilst the y-axis represents
frequency, and the heat-map intensity represents the
density of energy within a particular frequency range
at a given time. On the other hand, a waveform also
represents time on the x-axis, but displays the ampli-
tude of a signal on the y-axis. Unlike more common
visualisations (e.g., bar charts, pie charts, line graphs,
etc.), in order to interpret such figures, models must
reason about the visual content to establish what
word is being spoken, using parametric knowledge
regarding acoustic phonetics and the phonotactics
of the target language to aid in reasoning about the
observed signal characteristics such as vowel formants
and fricative centre-of-gravity (Ladefoged, 1962).

The contributions of our work are as follows:

!Code and resources are available
//github.com/tylerL404/seeing-is-hearing.
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* We present a novel dataset of 4k+ words spoken
in isolation using a range of synthetic voices,
each with figures consisting of a spectrogram,
a spectrogram with a waveform, and versions
of the spectrograms/waveforms annotated with
phone boundaries using forced-alignment.

* We perform what we believe to be the first
analysis of whether VLMs are able to correctly
interpret spectrograms and waveforms of speech
in a phonologically-motivated multiple-choice
paradigm.

2 Related Work

Data-to-text tasks have long been a staple of Natural
Language Processing (NLP) research (Castro Ferreira
et al., 2019). Traditionally, such approaches have
relied on access to largely text-based representations,
such as converting tables to markdown or HTML (He
et al., 2023; Liu et al., 2022; Eisenschlos et al., 2020).
However, the rise of VLMs has brought with it a
range of benchmarks that concern image-based inputs
(Zheng et al., 2024) such as charts (Islam et al., 2024;
Zhou et al., 2023) and graphs (Ai et al., 2024), which
have been fruitful in bearing benchmarks to assess
the data-to-text abilities of VLMSs (Zhu et al., 2025b;
Islam et al., 2024; Ai et al., 2024). However, VLMs
have been demonstrated to struggle with reasoning
about inputs (Mukhopadhyay et al., 2024; Hou et al.,
2024) and easily being subjected to training biases (Vo
et al., 2025). Furthermore, recent works by Loakman
et al. (2024) and Alper and Averbuch-Elor (2023) have
investigated the meta-level abilities of VLMs to reason
about language, investigating whether or not they learn
correlations between vision and text that can be used
to simulate an understanding of sound symbolism.
Building upon these existing works in reasoning
about visual data representations and exploring the
meta-level understanding of VLMs about language,
we present what we believe to be the first benchmark
and analysis of the ability of VLMs to understand
spectrograms and waveforms of speech, combining
visual acuity with acoustic phonetic knowledge.

3 Dataset Creation
3.1 Word List

As a result of the complex effects of coarticulation
in standard connected speech, we present VLMs with
single English words spoken in isolation. To reduce
ambiguity, our word list is required to be represen-
tative of standard dictionary entries rather than the
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acronyms, initialisms, and titles often found in word
frequency lists. As a result, we use the Oxford 5000
word list,? consisting of words from A1-C1 difficulty
on the Common European Framework of Reference
for languages (CEFR) (Council of Europe, 2001).
We perform additional filtering to remove words that
have more than one possible pronunciation in the
CMU Pronouncing Dictionary, such as homographs,
removing the need to manually check which version
of the word our text-to-speech (TTS) system produces
(owing to words being presented in isolation, void of
contextual cues for the TTS model).? After filtering,
this results in 4068 words.

3.2 Speech Synthesis

Owing to the high levels inter/intra-speaker variation
present in human speech and the range of possible
acoustic environments for recording (Jessen, 2008),
we create a novel dataset using Microsoft’s SpeechT5
trained for the task of TTS (Ao et al., 2022) to speak
each word in isolation. We use synthetic voices with
a General American (GenAm) (Wells, 1982) accent
due to this enabling the use of the CMU Pronouncing
Dictionary. A wider range of accents would require
the manual creation of pronunciation dictionaries for
each accent (intra-speaker variation notwithstanding),
increasing the likelihood of phonetic realisations
from the TTS model not accurately reflecting the
transcriptions. We select 4 speaker embeddings from
cmu-arctic-xvectors* (2 male and 2 female perceived
voices) for training, and 2 for testing (1 male and 1
female). We additionally add the General American
voice from the Google Translate TTS API (via the
gTTS library”) to the test set to mitigate biases from
the characteristics of a particular TTS system. Further
details are in Appendix A.1.

3.3 Spectrograms & Waveforms

As the image input to our VLMs, we provide a spectro-
gram of the target word being spoken by a TTS model,
either on its own or with an accompanying waveform
(akin to Figure 1). To ensure consistency across our
generated figures, we pad or truncate the audio files to
1.5 seconds in length for all words, which we validated
to be longer than the speech portion of any of our gen-
erated audio files, ensuring no words have phonemes

2https: //www.oxfordlearnersdictionaries.com/
about/wordlists/oxford3000-5000
SAccessed via the CMUDict
//pypi.org/project/cmudict/
4https://huggingw“ace.co/datasets/Matthijs/
cmu-arctic-xvectors
Shttps://pypi.org/project/gTTS/
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cut off. All spectrograms are generated with Librosa
(Brian McFee et al., 2015), using an nfft of 128, a
hop-length of 22, and a dynamic range of 70dB, using
a Hann window. We find these settings to ensure an
adequate frequency resolution without unnecessarily
detailed harmonic information. See Figure 1 for an
example of one of the generated figures.

As an additional feature of our dataset, we provide
spectrograms and waveforms with vertical lines at
approximate phone boundaries using the Montreal
Forced Aligner (McAuliffe et al., 2017) with the
respective US English dictionary and pre-trained
acoustic model. Owing to resource constraints, anno-
tated figures are not used in the following experiments.

4 Methodology

4.1 Task Setup

To test the ability of VLMs to interpret spectrograms,
we use a multiple-choice question (MCQ) paradigm
where the ground truth is paired with 3 distractors
which are required to be carefully selected (Goel
et al., 2025; Alhazmi et al., 2024; Ding et al., 2024).
Importantly, we select the distractors based on their
phonemic edit distance (PED) from the ground truth
using the weighted feature edit distance function from
the Panphon python package (Mortensen et al., 2016),
which is based on phonological distinctive features
such as place and manner of articulation (Chomsky
et al., 1991 - 1968). This way, we select distractors
that are phonemically similar or distant to the ground
truth in order to identify if the VLMs are making
informed choices (even if incorrect) or guessing
randomly, owing to the semi-ambiguous nature of
interpreting speech directly from a spectrogram.
Specifically, the distractors consist of the word with
the lowest and highest PED from the ground truth
(i.e., the most and least similar, respectively) that have
less than 50% overlap in consecutive phonemes,’
in addition to the word with the median PED. We
additionally disallow distractors that start with the
same character in their graphemic form to avoid
overt biasing signals during training. The filtered list
of 4068 words is broken into an 80-10-10 split for
training, development, and testing, ensuring equal
distribution of words based on length (in phonemes).
See Appendix A.1 for further details on the split.

®In early testing, we observed that models were able to
learn to reach 50% accuracy without being presented any input
image. This was because the ground truth and the word with the
lowest phonemic edit distance were frequently minimal pairs (e.g.
"sheer" and "cheer"). It is for this reason that we introduce the
overlap rule.
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To mitigate ordering bias (Pezeshkpour and
Hruschka, 2024; Wei et al., 2024), we generated four
permutations of each word for both the training and
development splits. The target word appeared in each
of the four possible positions (index O to 3), whilst
the distractor positions were randomised.

Conditions In total, we perform our tests under
4 conditions: graphemic (i.e., standard written
words) or phonemic (i.e., International Phonetic
Alphabet) options, and using spectrograms alone or
spectrograms with waveforms as the image input.

4.2 Models

For this task, we selected a range of open-source
VLMs from different model families. For zero-shot
performance, we investigate the results from both
small and large model variants, whilst for finetuning,
we focus only on the small variants, owing to resource
constraints. Specifically, we selected: Qwen 2.5-VL
(7B and 32B) (Bai et al., 2025), Llava 1.6 (7B and
34B) (Liu et al., 2024), and InternVL 3 (8B and 38B)
(Zhu et al., 2025a). See Appendix A.2 for training
hyperparameters, specific model names, and the
prompt given to VLMs.

5 Results

First, we present zero-shot performance results
in Figure 2. Regarding accuracy, we consistently
observe that all models perform around chance-level
(25%) across all conditions. We observe no benefit
from the additional information presented by the
inclusion of the waveform (which would be useful
for identifying speech sounds such as plosives), with
performance even decreasing for Qwen 2.5-VL when
waveforms are presented. Furthermore, regarding the
phonemic and graphemic conditions, performance
is generally higher when the options are presented
as phonemes (Qwen 2.5-VL and InternVL-3 38B),
but this does not hold for other models.

We hypothesise that the phonemic condition is
more likely to activate knowledge directly related to
acoustic phonetics, which would be relevant in the
task of spectrogram/waveform understanding. On
the other hand, regarding phonemic edit distance,
the average distance of the selected option suggests
frequent selection of low-distance distractors. Whilst
a random selection is expected to have a phonemic
distance of 17.2, most models perform slightly better
than this, suggesting the tested models are making
somewhat informed decisions, even if not selecting
the correct answer.
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Figure 2: Zero-shot results in the multiple choice spectrogram interpretation task. Graphemic refers to questions where
the options were presented in their standard written English form, whilst Phonemic refers to questions where the options
were written in the International Phonetic Alphabet. Spectrogram and Spectrogram + Waveform refer to the type of figure
presented to the VLM. Accuracy refers to the % of the time that the correct answer was selected, whilst Phonemic Edit
Distance refers to the average distance of the selected option in comparison to the correct answer. The solid horizontal
line in the Accuracy plot presents chance level agreement (25%), whilst the dashed lines in the phonemic distance plot
relate to the expected phonemic distance for consistently selecting the 2™, 3™ or 4" most similar option, whilst the solid
blue line represents what is expected from random selection.
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Figure 3: Finetuned results in the multiple choice
spectrogram/waveform interpretation task. Please refer to
Figure 2 for axis/condition information.

Next, we present the results of finetuning the
smaller model variants in Figure 3. We observe
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higher levels of performance than the zero-shot
condition (particularly for InternVL-3). However, in
our testing, we do not find a statistically significant
difference between the performance of the finetuned
models when tested with and without image inputs,
suggesting that this performance increase is the result
of learning the remaining biases in the dataset (owing
to more similar words necessarily having similar
phonemes). This highlights the difficulty of the task
of spectrogram interpretation.

5.1 ASR & Trained Phonetician Comparison

As a traditional baseline for speech understanding, we
present the results of an Automatic Speech Recog-
nition (ASR) system on the test set, using the original
audio from the TTS systems. Specifically, we use
Nvidia’s canary-gwen-2.5b model, which currently
ranks among the top-performing systems on the Open
ASR leaderboard (i.e., lowest word error rate).” When
accounting for casefolding and punctuation removal

7https ://huggingface.co/spaces/hf-audio/open_
asr_leaderboard
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to determine exact matches, the ASR model achieves
an accuracy of 87.56%, demonstrating that the under-
lying task is easily solvable when the acoustic infor-
mation is given as input to purpose-built ASR system.
This contrasts with the performance of the VLMs,
which struggled when the same information was
presented visually as spectrograms and waveforms.
Finally, we conducted human evaluation to
establish an upper bound for the task of spectro-
gram/waveform interpretation using a trained phoneti-
cian, who is an author of this work. On a subset of 100
random examples from the test set on images consist-
ing of a spectrogram and waveform (without boundary
annotations). Importantly, a different author was
responsible for generating the test set and presenting it,
in order to avoid bias from pre-exposure. We observe
an accuracy of 75.00% and an average phonetic
edit distance of 5.17, highlighting the considerable
gap between human and model performance, whilst
demonstrating that there is sufficient information
within the visualisations to achieve high accuracy.’

6 Conclusion

In this work, we presented the first analysis of
the ability of VLMs to interpret speech from
spectrograms and waveforms, using phonetically and
phonologically motivated multiple-choice question
approach. We observed that both zero-shot and
finetuned models struggle to identify the correct
answer, demonstrating the difficulty of the task and
its potential as a benchmark assessment of the ability
of VLMs to combine esoteric parametric knowledge
with vision and language inputs.

Limitations

Owing to computational limitations, we were not able
to finetune the larger model variants presented in this
work or benchmark large vision-enabled reasoning
models such as OpenAI’s ol and 03. Furthermore,
our dataset consists of synthetic speech to reduce the
effects of co-articulation and acoustic environments.
However, synthetic speech is less variable than natural
human speech and therefore presents an easier form
of the task. Furthermore, we analyse models using
zero-shot and finetuned approaches with a simple
multiple-choice paradigm. However, we do not
include any explicit knowledge within the prompt
itself, which we leave to future work. We believe that
future work may be best served by training models to

8We expect layperson accuracy on this task to be no better
than chance.

&3

recognise the characteristics of individual phonemes
before learning entire words.
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A Appendix

A.1 Dataset Characteristics

Figure 4 presents the distribution of words by length
(in phonemes) across the training, development and
test sets, in addition to the distribution of specific
phonemes.

A.2 Implementation Details

TTS Voices From cmu-arctic-xvectors, we use
speaker embeddings 69 (M), 750 (M), 2500 (F),
and 3333 (F) for training, and 4444 (M) / 7500 (F)
for testing. We additionally use Google Translate’s
General American TTS voice (which is only available
in a female-presenting voice) for testing.

Model Selection All of our selected models
were taken from Hugging Face. Specifically, for
Qwen 2.5-VL we used QWEN/QWEN2.5-VL-
7B-INSTRUCT and QWEN/QWEN2.5-VL-32B-
INSTRUCT, for Llava 1.6 (i.e., Llava NeXT) we
used LLAVA-HF/LLAVA-V1.6-VICUNA-7B-HF and
LLAVA-HF/LLAVA-V1.6-34B-HF, and for InternVL
3 we used OPENGVLAB/INTERNVL3-8B-HF and
OPENGVLAB/INTERNVL3-38B-HF. For our ASR
model we used NVIDIA/CANARY-QWEN-2.5B.

Model Prompt You are a Vision-Language
Model specialized in phonetic interpreta-
tion of speech spectrograms. Your primary
role is to act as a highly trained pho-
netician: given visual representations of
spoken English words in the General Ameri-
can accent (spectrograms and/or waveforms),
you must determine which graphemic or pho-
netic transcription correctly matches the
spoken word.For each example, you will
be shown:A spectrogram (and optionally a
waveform) of a single English word spoken
in isolation.Four candidate transcriptions
labeled @ to 3 (one correct, three pho-
netic distractors).Provide the final label
as <label>label</label>, where 1label is
the number (0-3) of the correct transcrip-
tion.Just output the 1label and nothing
else in the format: <label>label</label>
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Figure 4: Distribution of word lengths (as determined via phoneme count) and individual phonemes across the training,
development and test sets for finetuned VLMs.

Training Details

We finetuned and performed infer-

ence for all models on a single A100 GPU. Hyperpa-
rameters used during training are presented in Table 1.

Hyperparameter Setting
Epochs 5

Batch Size 1
Gradient Accumulation Steps 8
Gradient Checkpointing True
Optimiser AdamW
Learning Rate (LR) 2e-4
LR Scheduler Type constant
Weight Decay 0.01
Maximum Gradient Norm 1.0
Warmup Steps 150
Logging Steps 150
Evaluation Steps 150
Evaluation Strategy steps
Save Steps 150
Early Stopping Callback 3

Table 1: Training hyperparameters.

B Statistical Testing

We conducted Chi-squared tests for each condition to
determine whether it had an effect on the output. The
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test aggregated all models and compared the effect
of the word type (graphemic v. phonemic) and input
type (spectrogram v. spectrogram and waveform).
We found no significant effects of any conditions at
a=0.05.



