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Abstract

Minimum Bayes risk (MBR) decoding gener-
ates high-quality translations by maximizing
the expected utility of output candidates, but it
evaluates all pairwise scores over the candidate
set; hence, it takes quadratic time with respect
to the number of candidates. To reduce the num-
ber of utility function calls, probabilistic MBR
(PMBR) decoding partially evaluates quality
scores using sampled pairs of candidates and
completes the missing scores with a matrix
completion algorithm. Nevertheless, it de-
grades the translation quality as the number of
utility function calls is reduced. Therefore, to
improve the trade-off between quality and cost,
we propose agreement-constrained PMBR (AC-
PMBR) decoding, which leverages a knowl-
edge distilled model to guide the completion
of the score matrix. Our AC-PMBR decoding
improved approximation errors of matrix com-
pletion by up to 3 times and achieved higher
translation quality compared with PMBR de-
coding at a comparable computational cost on
the WMT’23 En↔De translation tasks.

1 Introduction

Maximum a posteriori (MAP) decoding, which
finds the most probable candidate, is the stan-
dard inference strategy in translation tasks, while
such high-probability translations do not always
align with human assessment (Koehn and Knowles,
2017; Eikema and Aziz, 2020). To overcome the
limitation, minimum Bayes risk (MBR) decod-
ing selects a high-quality translation rather than
a high-probability one by maximizing expected
utility (Goel and Byrne, 2000; Kumar and Byrne,
2004). For estimating expected utility, it calculates
the utility score matrix, evaluating all candidates
against multiple pseudo-references, which are sam-
ple translations drawn from the output distribution.
Thus, it requires utility function calls proportional
to the square of the number of candidates and is
computationally expensive, especially when using

neural metrics that highly correlate with human
assessment, e.g., BLEURT (Sellam et al., 2020).

Recent studies improve the efficiency of MBR
decoding (Cheng and Vlachos, 2023; Jinnai and
Ariu, 2024; Deguchi et al., 2024b; Vamvas and
Sennrich, 2024; Trabelsi et al., 2024). Among
them, probabilistic MBR (PMBR) decoding (Tra-
belsi et al., 2024) drastically reduces the number of
utility function calls by completing the score ma-
trix using partially observed scores. Nevertheless,
as the number of utility function calls is reduced,
the approximation error of matrix completion in-
creases, and the translation quality deteriorates.
That is, there exists a trade-off between comple-
tion accuracy and computational cost.

To relax this trade-off, we propose agreement-
constrained PMBR (AC-PMBR) decoding, which
facilitates score matrix completion by leveraging
a knowledge distilled metric. Our agreement con-
straint minimizes the difference between the target
and distilled low-rank matrices, thereby reducing
the approximation error in matrix completion.

Experiments demonstrated that our AC-PMBR
decoding improved the matrix completion accu-
racy by up to 3 times in mean squared error (MSE)
against the full score matrix and achieved higher
translation quality compared with PMBR decod-
ing at comparable costs in the WMT’23 En↔De
translation tasks (Kocmi et al., 2023).

2 Background

MBR decoding MBR decoding finds higher-
quality translations than widely used MAP de-
coding, such as N -best beam search, by max-
imizing the expected utility of output candi-
dates (Kumar and Byrne, 2004; Eikema and Aziz,
2020). Let T be all possible translations. The
goal of MBR decoding is to find the transla-
tion that maximizes the expected utility, i.e.,
argmaxy∈T Eŷ∼Pr(y|x)[u(y, ŷ)], where x is an in-
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Figure 1: Overview of our proposed Agreement-
Constrained PMBR (AC-PMBR) decoding.

put text, Pr(y|x) is the true translation probability,
and u : T × T → R denotes a utility function that
satisfies y ⪰ y′ ⇐⇒ u(y, ŷ) ≥ u(y′, ŷ) under the
preference relation ⪰. Since enumerating all y ∈ T
is infeasible and calculating the true probability Pr
is unknown, MBR decoding estimates the expected
utility using sample translations drawn from the
model output probability, called pseudo-references
Ŷ := {ŷ1, . . . , ŷM} ⊂ T , and selects the transla-
tion from a candidate set Y := {y1, . . . , yN} ⊂ T .
The expected utility is typically estimated by the
Monte Carlo method (Eikema and Aziz, 2022)
with a score matrix O := [Oij = u(yi, ŷj)] ∈
RN×M , and then, the best candidate is selected,
i.e., yMBR := argmaxyi∈Y

1
M

∑M
j=1Oij .

MBR decoding generates high-quality transla-
tions, while its time complexity is O(NM). Re-
cent studies often employ N ≥ 1,000 (Freitag
et al., 2023), making it extremely slow.

PMBR decoding Probabilistic MBR (PMBR)
decoding accelerates MBR decoding by reducing
the number of utility function calls (Trabelsi et al.,
2024). It does not evaluate scores for all Oij ; in-
stead, it partially evaluates only sampled pairs of
hypotheses and pseudo-references. The other miss-
ing scores are completed using a low-rank matrix
factorization from a partially observed score ma-
trix Õ ∈ RN×M . Specifically, the incomplete ma-
trix Õ is approximated by the matrix multiplica-
tion of two d-dimensional low-rank matrices U ∈
Rd×N and V ∈ Rd×M , i.e., Õ ≈ U⊤V. Here,
ui,vj ∈ Rd are d-dimensional column vectors,
and U = [u1; . . . ;uN ] and V = [v1; . . . ;vM ]
stack the rank reduced vectors for the row and col-
umn directions of Õ, respectively. Let Obs(Õ) :=
{(i, j) | Õij is observed} be the set of observed
indices in Õ. We obtain U and V that minimize

the following objective:

LMF(U,V; Õ) =
∑

(i,j)∈Obs(Õ)
(Õij − u⊤

i vj)
2

+λ(
∑N

i=1
∥ui∥2 +

∑M

j=1
∥vj∥2), (1)

where λ ∈ R+ is a weight of the regularization
term. This optimization is solved by the alternat-
ing least-squares (ALS) algorithm (Zachariah et al.,
2012), and the complete score matrix is obtained
by U⊤V. PMBR decoding successfully reduces
the number of utility function calls. Nevertheless,
there is still a cost-quality trade-off, because fur-
ther reductions in utility function calls significantly
degrade approximation accuracy.

3 Agreement-Constrained PMBR
decoding

We propose agreement-constrained PMBR
(AC-PMBR) decoding, which alleviates the PMBR
decoding cost–quality trade-off without increasing
total cost by reallocating a fixed evaluation budget.
Instead of adding the distilled metric on top of
PMBR decoding, AC-PMBR decoding reduces
target metric calls and spends the saved budget
on many distilled metric calls. Thereby enabling
more total utility function calls at the same com-
putational cost as PMBR decoding and yielding
higher matrix-completion accuracy of the MBR’s
score matrix. AC-PMBR decoding proceeds in
two steps: (1) score matrix construction, and
(2) agreement-constrained matrix completion, as
illustrated in Figure 1.

Score matrix construction We compute the
score matrices, Õ ∈ RN×M and Õ′ ∈ RN×M ,
with the target and its distilled metrics, respectively.
Hereafter, we denote a prime ′ for the distilled met-
ric side. Let r and r′ denote the reduction rates; we
observe only a 1/r and 1/r′ fraction of the N ×M
entries in Õ and Õ′, respectively. The time com-
plexity of evaluating the partially observed samples
of hypotheses and pseudo-references is O(NM

r ).
As the reduction rate r or r′ increases, the number
of observed samples decreases. To alleviate the
cost–quality trade-off, we set r > r′, i.e., we call
a distilled metric more frequently than an expen-
sive target metric for denser guidance at almost the
same cost.

Agreement-constrained matrix completion We
factorize the matrices Õ and Õ′ with the alter-
nating least squares (ALS) algorithm (Zachariah
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Algorithm 1 Agreement-constrained ALS
Require: Regularization weight λ ∈ R+, agreement weight

γ ∈ R+, rank d ∈ N, and identity matrix I ∈
Rd×d

Ensure: U ∈ Rd×N and V ∈ Rd×M

1: repeat
2: Initialize U,U′ ∈ Rd×N and V,V′ ∈ Rd×M

3: for i = 1 . . . N do
4: M′ = diag(1Obs(Õ′)[(i, 1)], . . . ,1Obs(Õ′)[(i,M)])

5: M = diag(1Obs(Õ)[(i, 1)], . . . ,1Obs(Õ)[(i,M)])

6: u′
i = (V′M′V′⊤+(λ+γ)I)−1(V′M′Õ′

i∗+γui)

7: ui = (VMV⊤ + (λ+ γ)I)−1(VMÕi∗ + γu′
i)

8: end for
9: for j = 1 . . .M do

10: N′ = diag(1Obs(Õ′)[(1, j)], . . . ,1Obs(Õ′)[(N, j)])

11: N = diag(1Obs(Õ)[(1, j)], . . . ,1Obs(Õ)[(N, j)])

12: v′
j = (U′N′U′⊤ +(λ+ γ)I)−1(U′N′Õ′

∗j + γvj)

13: vj = (UNU⊤ + (λ+ γ)I)−1(UNÕ∗j + γv′
j)

14: end for
15: until convergence
16: return U,V

et al., 2012), i.e., we minimize LMF(U,V, Õ)
and LMF(U

′,V′, Õ′) with our proposed agree-
ment constraint. The constraint encourages the
rank reduced representation on the target metric to
be closer to that of its knowledge distilled metric:

LAC(U,V,U′,V′)

=
∑N

i=1
∥ui − u′

i∥2 +
∑M

j=1
∥vj − v′

j∥2. (2)

Formally, our AC-PMBR decoding minimizes the
following objective:

argminU,VLMF(U,V; Õ) + LMF(U
′,V′; Õ′)

+ γLAC(U,V,U′,V′), (3)

where γ ∈ R+ controls the strength of the agree-
ment constraint. This constrained optimization
problem can be solved by extending the ALS algo-
rithm, as shown in Algorithm 1; a detailed deriva-
tion is provided in Appendix C. The rank reduced
representations of the distilled metric side are first
updated, as shown in Line 6 and 12, so that those
of the target metric side are not affected by the
unupdated matrices that do not have meaningful
information. Now, we complete the incomplete
score matrix by multiplying matrices U and V,
calculated in Equation 3, i.e., we use U⊤V as the
completed score matrix and estimate the expected
utility in the same way as MBR decoding.

4 Experimental Settings

We provide the experimental settings below; further
details are available in Appendix A.

Evaluation We conduct experiments on the
WMT’23 En↔De translation tasks (Kocmi et al.,
2023). We evaluate translation quality using
BLEURT (Sellam et al., 2020), XCOMET (Guer-
reiro et al., 2024), BLEU (Papineni et al., 2002),
chrF (Popović, 2015), and MetricX (Juraska et al.,
2024). To assess the performance of each method
in completing the score matrix, we compute the
mean squared error (MSE) between the matrix com-
pleted by ALS or Agreement-constrained ALS and
the ground-truth matrix.

Methods We compare AC-PMBR decoding with
PMBR decoding, and also evaluate MAP and MBR
decoding. We also evaluate the upper bound of
translation quality in candidate sets by selecting
translations that maximize the target metric us-
ing references (Oracle). Following Deguchi et al.
(2024a), we sampled 1,024 translation candidates
via ε-sampling with ε = 0.02 (Freitag et al., 2023)
from M2M100 (Fan et al., 2020) and used the same
set as pseudo-references.

Utility function We employ BLEURT-20 as the
target metric, along with its three distilled versions,
BLEURT-20-{D3, D6, D12} (Pu et al., 2021), as
the distilled metrics. To ensure comparable com-
putational costs between PMBR and AC-PMBR
decoding, we choose the reduction rates r and r′

in two settings: a low-reduction (Low) setting,
where we use r = 16 for PMBR and r = 32
for AC-PMBR decoding, with r′ = {2, 4, 8} for
BLEURT-20-{D3, D6, D12}, respectively; and
a high-reduction (High) setting, where we use
r = 512 for PMBR and r = 1,024 for AC-PMBR
decoding, with r′ = {64, 128, 256}, respectively.

Hyperparameter The agreement weight γ and
regularization weight λ were tuned on the WMT’22
En→De translation task (Kocmi et al., 2022) by
minimizing the MSE of the score matrices. ALS
and agreement-constrained ALS were run for up to
30 iterations or until the loss difference fell below
10−4. For both PMBR and AC-PMBR decoding,
we fixed the rank d = 8 and λ = 0.1. In AC-PMBR
decoding, we also tuned γ ∈ {0.1, . . . , 1.0} for
each reduction rate r, and used the optimal values
γ = 0.1 for r = 32 and γ = 1.0 for r = 1,024.

5 Experimental Results and Discussions

Table 1 shows the main results.
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En→De De→En

Decoding Dist. BLRT↑ XCT↑ BLEU↑ chrF↑ MX↓ MSE↓ BLRT↑ XCT↑ BLEU↑ chrF↑ MX↓ MSE↓
MAP – 45.27 59.61 10.74 30.38 12.94 – 56.27 65.79 16.56 37.39 11.68 –
MBR – 57.42 67.83 18.97 46.19 8.87 – 65.19 77.49 23.86 50.99 8.46 –

D3 46.68 57.20 18.12 46.69 10.79 10.38 60.65 70.67 23.37 51.89 9.66 8.53
D6 48.89 59.54 18.31 46.49 10.33 9.43 61.80 73.42 24.28 51.37 9.38 6.97

D12 51.33 63.54 17.73 44.53 9.79 9.58 62.21 74.28 23.92 50.55 9.45 6.53

Reduction rate: Low PMBR: r = 16, AC-PMBR: r = 32
PMBR – 57.19 67.79 19.05 46.21 8.81 3.04 64.87 77.27 23.47 50.72 8.46 2.54
AC-PMBR D3 57.01 67.57 19.19 46.60 8.80 3.23 64.87 77.01 23.82 51.08 8.51 2.80

D6 57.26 68.00 19.14 46.27 8.74 3.12 64.87 77.26 23.69 50.95 8.51 2.68
D12 57.29 67.94 19.09 46.23 8.77 3.10 64.95 77.47 24.05 51.10 8.46 2.65

Reduction rate: High PMBR: r = 512, AC-PMBR: r = 1,024
PMBR – 50.42 60.92 16.76 44.05 10.80 26.06 60.02 70.74 21.34 48.69 10.37 33.80
AC-PMBR D3 50.49 60.56 18.15 46.17 10.42 10.29 61.08 71.98 22.96 50.50 9.71 11.89

D6 51.21 61.92 18.23 45.75 10.12 11.16 61.02 72.10 22.83 49.94 9.90 12.57
D12 51.81 63.41 17.54 44.48 10.12 15.78 61.26 72.66 22.31 49.12 9.97 16.80

Oracle – 57.43 69.10 18.60 44.54 8.52 – 70.93 79.28 26.14 52.51 7.21 –

Table 1: Results of WMT’23 En↔De. BLEURT is abbreviated as BLRT, XCOMET as XCT, and MetricX as MX.
“Dist.” indicates distilled metrics. The best scores within each reduction rate setting are highlighted in bold.

Figure 2: MSE of score matrices when varying compu-
tational costs in WMT’23 En→De. #parameters refers
to the number of parameters in the evaluation metric
model, serving as an indicator of model scale, while the
computational cost is described by Equation 4 and 5.

5.1 Translation quality

Under the low-reduction setting, AC-PMBR de-
coding retains an advantage over baseline PMBR
in both translation directions. It delivers gains
of up to 0.6% BLEU and 0.4% chrF on surface-
form metrics, and up to 0.2% on the semantic met-
ric XCOMET. Under the high-reduction setting,
PMBR’s quality fell sharply, whereas AC-PMBR
decoding curbed that decline in both directions and
stayed ahead on every metric. Across the two di-
rections, AC-PMBR decoding delivered roughly
2.5% higher XCOMET and up to 2% higher chrF,
clearly outperforming baseline PMBR decoding in
the most demanding scenario. The results of the
significance tests are reported in Appendix B.

Figure 3: Agreement weight tuning in the low reduction
rate setting on WMT’22 En→De.

5.2 Matrix completion accuracy
In the low-reduction setting, AC-PMBR decoding
achieved performance comparable to PMBR de-
coding in MSE evaluation. In addition, the MSE
was significantly improved in the high-reduction
setting, with up to a 3 times improvement. This
setting has the highest number of utility function
calls, and therefore, it is more effective for MSE
to evaluate a large number of pairs with low ac-
curacy than to calculate a small number of pairs
with a high accuracy model at low computational
cost. Figure 2 also shows that AC-PMBR decoding
suppresses MSE, which worsens as computational
cost decreases. Moreover, AC-PMBR decoding
achieved higher accuracy at a lower cost than MBR
decoding with distilled metrics. This suggests that
distilled metrics are effective when used to assist
matrix completion via our agreement constraint,
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Figure 4: Agreement weight tuning in the high-
reduction setting on WMT’22 En→De.

rather than being used for the utility function.

5.3 Effect of Reduction Rate on Translation

Table 1 shows that with the proposed AC-PMBR
decoding, the decline in the approximation accu-
racy of the score matrix is more gradual compared
to conventional PMBR decoding, especially as the
reduction rate r increases. This suggests that AC-
PMBR decoding can perform matrix completion
more accurately than PMBR decoding at a compa-
rable computational cost. Furthermore, as shown in
Figures 3 and 4, when the reduction rate r is small,
a low agreement weight is sufficient because the in-
formation from the target model alone is adequate
for matrix completion. Conversely, at high reduc-
tion rates where the target model’s information is
insufficient, the information from the knowledge
distilled model effectively contributes to the com-
pletion process. The fact that its translation quality
surpasses that of MBR decoding using only the
knowledge distilled model also indicates that our
method effectively incorporates information from
the target model, even under high reduction rates.

5.4 Approximation Accuracy of the Score
Matrix

As shown in Figure 2, the MSE evaluation of the
score-matrix approximation clearly demonstrates
the robustness of the proposed AC-PMBR de-
coding, especially at high reduction rates, where
conventional PMBR decoding collapses. Under
high reduction, the number of observed scores be-
comes critically small, turning matrix completion
in PMBR decoding into an ill-posed problem and
causing a sharp drop in approximation accuracy.
This is reflected in a dramatic increase in MSE and
a notable decline in translation quality. In contrast,
AC-PMBR decoding maintains significantly lower

MSE under the same conditions. This robustness is
attributed to the information from the dense score
matrix provided by the knowledge-distilled model.
We presume that this matrix, which captures the
general distribution of the true score matrix, acts as
a guide that prevents the approximation from fail-
ing. Given that the performance of both methods
is comparable at low reduction rates, where ob-
served scores are relatively abundant, AC-PMBR
decoding is expected to perform effectively in more
difficult, information-scarce situations.

6 Conclusion

In this study, we proposed AC-PMBR decoding,
which assists score-matrix completion by aligning
a target metric with its distilled metrics. We evalu-
ated it on the WMT’23 En↔De translation tasks.
AC-PMBR decoding mitigated the quality degra-
dation observed in PMBR decoding, particularly
under high-reduction settings, improved evaluation
scores across metrics, and reduced approximation
error by up to three times. Our study focused on
distilled metrics to achieve a better cost–quality
trade-off, but the framework inherently supports
multi-metric ensembles, suggesting potential for
multi-aspect decoding in future work.

Limitations

Evaluation This study primarily uses BLEURT
as the target metric. While applying AC-PMBR de-
coding to other neural metrics, such as XCOMET,
would be ideal for exploring broader robustness,
this short paper emphasizes the proposal of AC-
PMBR decoding and its metric aggregation frame-
work, using BLEURT as a case study. Prior work
on PMBR decoding reports consistent trends and
strong scores across multiple language pairs, sug-
gesting that the underlying phenomenon is largely
language-independent (Trabelsi et al., 2024). Ac-
cordingly, we report results on the representative
WMT’23 En↔De directions. We believe this al-
ready provides sufficient evidence to support our
motivation. Similarly, although evaluating other
tasks or language pairs would offer more compre-
hensive validation, the primary goal of this paper is
to demonstrate the effectiveness of AC-PMBR de-
coding. Thus, we consider the current experimental
scope sufficient and reserve broader extensions for
future work.

Hardware-level Optimization In our experi-
ments, we used a single GPU, but it is also possible
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to use two GPUs to compute the score matrices for
the target metric and the distilled metric in parallel.
While further hardware-level optimizations could
improve efficiency, we did not pursue them as they
fall outside the core focus of this study.

Distillation Metric This study assumes the avail-
ability of a distilled metric and focuses on improv-
ing the trade-off between computational cost and
translation quality under that assumption. Further-
more, the performance of AC-PMBR may vary
depending on the quality of the distilled metric, as
we have already demonstrated experimentally in
this paper. While we use BLEURT and its existing
distilled metrics as a case study, the results consis-
tently show the effectiveness of AC-PMBR across
multiple settings. Since the main focus lies in the
methodological contribution, we do not explore
the availability or development of better distilled
metrics. Nonetheless, we expect that as research
in metric distillation advances, the benefits of AC-
PMBR will become even more pronounced.

Ethical Considerations

This study fully complies with the ACL Ethics Pol-
icy and addresses all required items in the Respon-
sible Research Checklist. All resources used in
this work are publicly available and appropriately
licensed, with no license-related issues. The study
does not involve or generate any harmful content.
While AI assistants were used for minor writing
support, such as rephrasing and spell-checking, all
original content was manually created by the au-
thors. Based on the above, we confirm that this
work raises no ethical concerns.
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A Detailed Experimental Settings

Metrics #parameters

BLEURT-20 579M
BLEURT-20-D12 167M
BLEURT-20-D6 45M
BLEURT-20-D3 30M

Table 2: Number of parameters of BLEURT-20 (Sellam
et al., 2020) and its distilled metrics (Pu et al., 2021).

Datasets The datasets we used in our experi-
ments and the number of sentences they contain
are listed in Table 3, and we tuned hyperparam-
eters only on WMT’22 En→De, using WMT’23
En→De and WMT’23 De→En exclusively as test
sets.

Dataset En→De De→En

WMT’22 2,037 1,984
WMT’23 557 549

Table 3: Number of sentences for each dataset.

Computational costs The major bottleneck of
AC-PMBR decoding is utility score calculation
using target and distilled metrics. In the low-
reduction setting of AC-PMBR decoding, utility
calculation took more than 1,000 times longer than
the agreement-constrained ALS algorithm. There-
fore, Algorithm 1 can be ignored from the overall
cost, and the utility score calculation is dominant
in the computational costs of both PMBR and AC-
PMBR decoding.

We used BLEURT-20 (Sellam et al., 2020) as
the utility metric, alongside its distilled metrics
BLEURT-20-D3,6,12 (Pu et al., 2021), which
shrink the parameter count from 579M to 30M,
45M, and 167M, respectively, as listed in Table 2.
Since the wall-clock computation time highly de-
pends on the hardware environment, we evaluated
the computation cost based on the time complex-
ity. In the PMBR decoding, the time complexity is
formally defined as O(NMC

r ), where C is the cost
of utility function calls. We fixed the number of
candidates and pseudo-references, i.e., N and M
are constant; thus, the computational costs in our
settings now depend on O(Cr ). Here, the cost of the
utility function call C is sublinearly proportional

to the number of parameters in a metric model1.
Therefore, we defined the total computational cost
of PMBR decoding CostPMBR as follows:

CostPMBR :=
#parameters

r
. (4)

Similarly, the cost of AC-PMBR decoding
CostAC-PMBR is defined as follows:

CostAC-PMBR :=

#parameters of
target metric

r
+

#parameters of
distilled metric

r′
. (5)

In all experiments, to compare the performance
of PMBR and AC-PMBR decoding at a comparable
cost, we set roughly the same costs for CostPMBR
and CostAC-PMBR, i.e., we set CostPMBR ≈
CostAC-PMBR in both high and low reduction rate
settings.

Hyperparameter tuning In our AC-PMBR de-
coding, we tuned γ ∈ R+, which is a weight of
the agreement term in Equation (3), with a fixed
random seed. As shown in Figures 3 and 4, we
varied γ ∈ {0.1, 0.2, . . . 1.0} in each reduction set-
ting, i.e., low-reduction setting and high-reduction
setting, and selected γ = 0.1 and γ = 1.0, re-
spectively. These tuning experiments revealed that
the optimal agreement weight tends to increase
with the reduction rate. This is because, under
high-reduction settings, utility scores are sparsely
observed, and the information from the distilled
metric becomes more beneficial for completing the
score matrix.

Computational environment All experiments
were conducted on a single NVIDIA RTX A6000
GPU with an Intel® Xeon® Gold 6426Y pro-
cessor, and our method was implemented with
MBRS (Deguchi et al., 2024a).

1https://github.com/google-research/bleurt/
blob/master/checkpoints.md
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B Statistical Significance Tests

En→De De→En

Decoding BLEU chrF2 BLEU chrF2

Reduction rate: Low PMBR: r = 16, AC-PMBR: r = 32
PMBR (baseline) 19.1 ± 1.5 46.2 ± 1.8 23.5 ± 1.7 50.7 ± 2.2
AC-PMBR 19.2 ± 1.5 46.6 ± 1.7 23.8 ± 1.7 51.1 ± 2.1

Reduction rate: High PMBR: r = 512, AC-PMBR: r = 1,024
PMBR (baseline) 16.8 ± 1.4 44.1 ± 1.8 21.3 ± 1.6 48.7 ± 2.1
AC-PMBR 18.1 ± 1.4 46.2 ± 1.6 23.0 ± 1.6 50.5 ± 2.0

Table 4: Results of statistical significance tests on the WMT’23 En↔De translation tasks comparing AC-PMBR and
PMBR decoding. All scores are reported as mean ± 95% confidence intervals. Entries with p < 0.05 and higher
scores are highlighted in bold.

We conduct statistical significance tests using sacreBLEU (Post, 2018) for BLEU and chrF metrics, with
each result based on 1,000 bootstrap resampling iterations drawn from the WMT’23 translation tasks.
As shown in Table 4, the tests confirmed that the improvements achieved by AC-PMBR decoding over
PMBR decoding were statistically significant (p < 0.05) in all high-reduction settings and for chrF under
the low-reduction setting, supporting the robustness of the observed gains.

C Detailed Derivation

In our AC-PMBR decoding, we minimize the following loss function L:

L := LMF(U,V; Õ) + LMF(U
′,V′; Õ′) + γLAC(U,V,U′,V′). (6)

Thus, the rank reduced representations in the target utility, ui and vj , are updated as follows:

∂L
∂ui

= −2
∑

(n,j)∈Obs(Õ)
n=i

(
Oij − u⊤

i vj

)
vj + 2λui + 2γ

(
ui − u′

i

)
(7)




∑

(n,j)∈Obs(Õ)
n=i

vjv
⊤
j + (λ+ γ)I


ui =

∑

(n,j)∈Obs(Õ)
n=i

Oijvj + γu′
i (8)

ui =




∑

(n,j)∈Obs(Õ)
n=i

vjv
⊤
j + (λ+ γ)I




−1


∑

(n,j)∈Obs(Õ)
n=i

Oijvj + γu′
i


 . (9)

∂L
∂vj

= −2
∑

(i,m)∈Obs(Õ)
m=j

(
Oij − u⊤

i vj

)
ui + 2λvj + 2γ

(
vj − v′

j

)
(10)




∑

(i,m)∈Obs(Õ)
m=j

uiu
⊤
i + (λ+ γ)I


vj =

∑

(i,m)∈Obs(Õ)
m=j

Oijui + γv′
j (11)

vj =




∑

(i,m)∈Obs(Õ)
m=j

uiu
⊤
i + (λ+ γ)I




−1


∑

(i,m)∈Obs(Õ)
m=j

Oijui + γv′
j


 . (12)
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Likewise, the rank reduced representations in the distilled utility, u′
i and v′

j , are updated as follows:

∂L
∂u′

i

= −2
∑

(n,j)∈Obs(Õ′)
n=i

(
O′

ij − u′
i
⊤
v′
j

)
v′
j + 2λu′

i + 2γ
(
u′
i − ui

)
(13)




∑

(n,j)∈Obs(Õ′)
n=i

v′
jv

′
j
⊤
+ (λ+ γ)I


u′

i =
∑

(n,j)∈Obs(Õ′)
n=i

O′
ijv

′
j + γ ui, (14)

u′
i =




∑

(n,j)∈Obs(Õ′)
n=i

v′
jv

′
j
⊤
+ (λ+ γ)I




−1


∑

(n,j)∈Obs(Õ′)
n=i

O′
ijv

′
j + γui


 . (15)

∂L
∂v′

j

= −2
∑

(i,m)∈Obs(Õ′)
m=j

(
O′

ij − u′
i
⊤
v′
j

)
u′
i + 2λv′

j + 2γ
(
v′
j − vj

)
, (16)




∑

(i,m)∈Obs(Õ′)
m=j

u′
iu

′
i
⊤
+ (λ+ γ)I


v′

j =
∑

(i,m)∈Obs(Õ′)
m=j

O′
iju

′
i + γvj , (17)

v′
j =




∑

(i,m)∈Obs(Õ′)
m=j

u′
iu

′
i
⊤
+ (λ+ γ)I




−1


∑

(i,m)∈Obs(Õ′)
m=j

O′
iju

′
i + γvj


 . (18)

We obtained U and V for the matrix completion using Algorithm 1 with these derived update rules.
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