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Abstract

Multihop Question Answering (QA) requires
systems to identify and synthesize information
from multiple text passages. While most prior
retrieval methods assist in identifying relevant
passages for QA, further assessing the utility of
the passages can help in removing redundant
ones, which may otherwise add to noise and
inaccuracies in the generated answers. Exist-
ing utility prediction approaches model passage
utility independently, overlooking a critical as-
pect of multi-hop reasoning, that the utility of
a passage can be context-dependent, influenced
by its relation to other passages—whether it
provides complementary information, or forms
a crucial link in conjunction with others. In
this paper, we propose a light-weight approach
to model contextual passage utility, account-
ing for inter-passage dependencies. We fine-
tune a small transformer-based model to pre-
dict passage utility scores for multihop QA.
We leverage the reasoning traces from an ad-
vanced reasoning model to capture the order
in which passages are used to answer a ques-
tion, to obtain synthetic training data. Through
comprehensive experiments, we demonstrate
that our utility-based scoring of retrieved pas-
sages leads to better reranking and downstream
task performance compared to relevance-based
reranking methods.

1 Introduction

Effective multihop question answering (QA) hinges
on identifying not only relevant passages, but also
those that are truly useful to answering the given
question. While relevance merely signifies a topical
connection between context and the query, utility
reflects a passage’s actual contribution to construct-
ing the answer (Xu et al., 2025). Classic relevance
labels often fail to predict QA success, and exter-
nal relevance judgments tend to correlate poorly
with QA performance (Salemi and Zamani, 2024).
This insufficiency arises partly because retrieved

Figure 1: A multihop question from HotpotQA dataset
(Yang et al., 2018): Passage 2 if considered indepen-
dently does not seem useful to answer the question.
However, conditioned on Passage 1, it becomes useful.

passages may be individually relevant, yet only a
subset of them are actually used within the spe-
cific inferential path required to reach the correct
answer (Zhang et al., 2024). Consequently, utility
judgments, rather than relevance alone, offer more
valuable guidance for identifying ground-truth evi-
dence and enhancing answer generation.

The work on passage utility modeling has been
nascent. Perez-Beltrachini and Lapata (2025) pro-
posed to incorporate factors such as QA model’s ac-
curacy and entailment scores between the passages
and the answer, to predict the utility of a given
passage. Despite the growing recognition, existing
methods fall short in multihop QA. A main limita-
tion is the tendency to assess passages in isolation,
assuming their contribution is independent of other
contextual information. This is particularly prob-
lematic in multihop scenarios where a passage’s
utility is frequently conditional—it may only be-
come useful after another passage has established
necessary context, such as a supporting entity in
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one passage activating the usefulness of subsequent
information (Figure 1). Thus, compositionality and
order are paramount: a passage’s utility is to be
determined by its position within a reasoning chain
and its dependencies on preceding content.

Our work aims to address this gap by proposing a
novel approach to model passage utility by account-
ing for inter-passage dependencies. We syntheti-
cally generate utility ratings for passages, using
the reasoning traces from an advanced reasoning
model (o1) to capture the order in which the pas-
sages are used in addressing a question, which are
then used for point-wise passage utility ratings on
a scale of 1-5 annotated by GPT-4o. A RoBERTa-
based model (Liu et al., 2019) is trained on these
trace-level annotations to explicitly learn these con-
textual dependencies to predict utility scores.

Our contributions are threefold: (1) We address
utility-aware passage ranking in multihop QA,
which remains an underexplored topic in retrieval-
augmented QA efforts. (2) We propose a light-
weight scoring model that learns to predict utility,
sensitive to inter-passage dependencies. We ob-
tain path-dependent utility in multi-hop QA using
ordered reasoning traces and LLM-generated or-
dinal scores. (3) Through experiments on various
datasets, we illustrate that our approach signifi-
cantly improves the identification of useful passage
sets and enhances downstream QA performance
compared to baselines that do not account for util-
ity, or do so in a context independent manner.

2 Utility-Aware Contextual Passage
Ranking

We formulate passage utility scoring in multihop
question answering as a regression task. We main-
tain that the true utility of a passage pi is inherently
context-dependent, influenced by previously en-
countered passages P<i and the question q. Our
objective is to predict a utility score U(pi|P<i, q)
on a scale of 1 to 5. A high score signifies a greater
contribution of pi towards answering q, given the
contextual information derived from P<i. Here,
i indexes the position of pi in an ordered set of
retrieved passages.

Our passage utility predictor uses RoBERTa-
large (Liu et al., 2019) as a regression model. It
takes as input the question q and the current pas-
sage pi being evaluated, and predicts a utility score
indicating how useful pi is for answering q. Our
pipeline comprises of two stages: (1) synthetic data

generation with utility scores for a given passage,
conditioned on the other context, for a given ques-
tion; and (2) utility predictor training using the
RoBERTa-large model.

2.1 Training Data Generation

Our training data consists of (question, passage,
utility score) triplets, where the utility scores are
derived through a two-staged process designed to
capture contextual dependencies. With the growing
use of LLMs for generating high-quality synthetic
training data (Wagner et al., 2025; Li et al., 2023;
Ba et al., 2024), we adopt a similar strategy, allow-
ing the reasoning capabilities of powerful LLMs to
be distilled into smaller, more efficient models for
downstream tasks.
Reasoning Trace Generation. To capture the com-
positional nature of information in multi-hop rea-
soning, we first generate explicit reasoning traces
using a pre-trained reasoning model (OpenAI et al.,
2024). Each passage within the context for a given
question is tagged with a unique identifier (e.g.,
[Passage A], [Passage B]). The reasoning model is
then prompted to produce a detailed reasoning trace
that explicitly cites which passage(s) support each
inferential step required to answer the question.
These reasoning traces clarify how information is
progressively integrated across multiple passages
and illustrate the specific utility each passage con-
tributes toward constructing the final answer in a
multi-hop setting.
Utility Score Annotation. We employ another
LLM, GPT-4o, to assign utility scores (ranging
from 1 to 5) to each passage, conditioned on its
function within the complete reasoning trace gener-
ated in the previous step. For each passage pi, the
scoring LLM is provided with the question q, the
target passage pi, and the full reasoning trace T as-
sociated with q. The LLM is prompted to evaluate
pi’s utility by analyzing its usage in T . Specifically,
it assesses: (1) whether pi was explicitly cited as
evidence in T ; (2) the specific role pi played ac-
cording to T (e.g., providing initial facts, bridging
information, or supplying final evidence); and (3)
the criticality of this contribution to answering q as
per T . The utility is then quantified on a 5-point
scale, where 1 indicates a passage not being used to
address q, and 5 represents an essential passage pro-
viding critical evidence without which the answer
could not be derived according to the trace. This
approach is to ensure that the utility scores Ui re-
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flect not just the intrinsic relevance of a passage to
the question, but its actual contribution within the
specific reasoning context. These context-aware
utility scores serve as supervision signals for train-
ing our regression model and their reliability is sup-
ported by a high upper-bound performance when
used directly for passage ranking. We manually
verify 200 examples across our different datasets;
we note alignment between LLM-generated and
human-rated passage utilities in over 95% cases,
confirming their reliability as supervision signals
(further details on both in Appendix A.1).

2.2 Training Procedure

We fine-tune the RoBERTa-large model by adding a
sequence classification head configured for regres-
sion, which outputs a single scalar value represent-
ing the predicted utility score. While the RoBERTa
model itself only receives the local (q, pi) pair as
direct input, it is trained to predict the context-
dependent utility scores Ui (derived from the full
reasoning trace), by minimizing the mean squared
error (MSE) between its predicted utility scores
fRoBERTa(pi, q) and the LLM-annotated, context-
dependent scores Ui.

L =
1

N

N∑

j=1

(fRoBERTa(pi,j , qj)− Ui,j)
2 (1)

where N is the total number of training examples.
Here, j indexes individual training examples, each
consisting of a question qj , a passage pi,j , and a
utility score Ui,j .

3 Experimental Setup

We fine-tune the RoBERTa model for 3 epochs us-
ing the Adam optimizer (Kingma and Ba, 2017)
with a weight decay of 0.01, along with a lin-
ear learning rate scheduler and a warmup ratio of
0.1. Training is performed with a per-device batch
size of 8 and gradient accumulation steps set to 2.
Mixed-precision (FP16) training is enabled. All
experiments are conducted on a single NVIDIA
A100 GPU (40GB).

3.1 Datasets

We evaluate our contextual passage utility scorer
on three multihop QA benchmarks.
HotpotQA (Yang et al., 2018) features questions
requiring 2-hop reasoning. Each question is typi-
cally accompanied by 2 gold supporting passages

and 8 distractor passages.
MusiQue (Trivedi et al., 2022) is designed for com-
positional reasoning. The questions involve 2 to
4 reasoning hops. Each question includes 20 pas-
sages in total.
2WikiMultiHopQA (Ho et al., 2020) contains 2
or 4-hop questions constructed from Wikipedia, re-
quiring the model to combine information from
two different Wikipedia entities or facts to arrive at
the answer. The total number of passages are 10.
The datasets we evaluate on already provide a fixed
set of supporting and distractor passages for each
question. This setup can be viewed as the output of
a first-stage retriever, and hence, the number of can-
didate passages that our model scores is determined
by each dataset’s official construction.
We randomly select 5K question-passage pairs
(q; p1, p2, . . .) for training, each annotated with a
utility score from 1 to 5, based on the above setup.

3.2 Evaluation Metrics
Our evaluation targets three key aspects: identify-
ing the correct set of ground-truth passages (PG),
ranking them effectively, and their utility in answer-
ing the question using the model-selected passages
(PM ). For rank-based metrics, we consider the
top 5 selected passages (k = 5). To assess how
well PM covers PG, we use Precision@k (P@k),
the fraction of selected passages that are correct;
Recall@k (R@k), the fraction of ground-truth pas-
sages retrieved; and F1-Score@k (F1@k), the har-
monic mean of P@k and R@k. Next, to evaluate
the ranking quality of ground-truth passages within
the top 5, we employ Normalized Discounted Cu-
mulative Gain (NDCG@1, NDCG@5) (Järvelin
and Kekäläinen, 2017), which measures overall
ranking quality at the top 1 and top 5 positions.
For downstream task performance, we assess if the
top-k passages selected by our model are sufficient
to answer the question. We report Exact Match
(EM), which measures the percentage of predicted
answers (generated using PM ) that exactly match
a gold answer.

3.3 Baselines
We compare our model against several retrieval and
reranking approaches. All rerankers operate on the
same set of candidate passages per question. 1)
BM25: A classical sparse retriever (Robertson and
Zaragoza, 2009) that uses term-based scoring to
rank candidate passages. 2) Contriever: An unsu-
pervised dense retriever (Izacard et al., 2021). We
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Dataset Method Multi-hop P@2 R@2 F1@2 R@5 NDCG@1 NDCG@5 EM

HotpotQA

BM25* ✗ 52.32 52.32 52.32 73.22 70.27 56.39 54.41
Contriever* ✗ 47.31 47.31 47.31 74.38 59.03 64.89 49.80
MonoT5 ✗ 40.86 40.86 40.86 72.34 40.99 40.89 48.56
MDR* ✓ 62.04 62.04 62.04 85.62 80.05 79.24 73.57
PromptRank ✓ 50.79 50.79 50.79 71.01 70.28 66.31 61.05
LLM ✓ 70.20 70.20 70.20 86.10 85.22 73.49 84.86
Ours ✓ 88.09 88.09 88.09 98.33 94.61 89.57 87.12

MuSiQue

BM25* ✗ 34.05 25.70 29.29 44.06 44.19 36.34 39.47
Contriever* ✗ 31.53 23.80 27.12 42.66 38.39 38.83 32.89
MonoT5 ✗ 51.70 39.02 44.47 63.11 60.74 53.74 55.11
MDR* ✓ 51.11 41.19 45.62 66.65 63.01 61.75 61.30
PromptRank ✓ 42.20 32.90 36.99 48.84 57.84 48.23 32.77
LLM ✓ 45.51 37.04 40.17 50.06 64.36 50.06 68.97
Ours ✓ 62.37 47.08 53.66 73.23 78.94 66.12 68.51

2WikiMultiHopQA

BM25* ✗ 49.75 40.82 44.85 67.68 61.84 52.49 32.26
Contriever* ✗ 26.86 22.04 24.21 41.48 33.97 36.21 18.38
MonoT5 ✗ 61.70 50.63 55.62 80.79 65.60 62.59 50.85
MDR* ✓ 70.45 61.29 65.55 66.65 63.01 61.75 70.26
PromptRank ✓ 48.35 43.05 45.54 62.20 65.31 59.32 40.55
LLM ✓ 62.50 54.51 57.18 75.10 75.93 65.57 61.75
Ours ✓ 94.51 83.66 88.75 99.02 97.70 95.23 79.44

Table 1: Evaluation of contextual passage utility scoring on multi-hop QA datasets. EM = Exact Match; P@2 =
Precision@2; R@2 = Recall@2; R@5 = Recall@5. Green highlights best performance; Red highlights second-best.
* indicates retriever-based methods.

use its raw similarity scores for ranking, represent-
ing a strong dense retrieval baseline. 3) MonoT5:
A T5-based neural reranker (Nogueira et al., 2020).
We use a pre-trained model (castorini/monot5-base-
msmarco) for pointwise passage relevance scoring.
4) LLM-based Reranker (Zero-Shot): GPT-4o
prompted in a zero-shot manner to score the rele-
vance of each candidate passage to the question. 3)
Cross-Attention Reranking is a post-retrieval step
integrated with the Multi-Hop Dense Retrieval
(MDR) (Xiong et al., 2021) system. It takes the top-
k passage sequences retrieved by MDR, prepends
the original question to each, and uses a pre-trained
Transformer encoder (like ELECTRA-large) to pre-
dict relevance scores. 5) PROMPTRANK (Kong
et al., 2023) is an LLM-based reranker designed
for few-shot multi-hop QA. It scores candidate doc-
ument paths (sequences of documents) by measur-
ing the large language model’s conditional likeli-
hood of generating the question given a prompt
constructed from that path.

4 Results & Discussion

Table 1 shows the results across the three datasets.
Our approach consistently outperforms all the base-
lines in both identifying the full set of useful
passages (coverage - high R@k) and correctly
ordering them (ranking - high NDCG scores).
We observe significant improvements over even

strong multi-hop–aware rerankers like MDR and
PromptRank. On HotpotQA, for instance, our
model achieves R@5 of 98.33, substantially higher
than the strongest baseline (LLM scorer at 86.10),
and NDCG@5 of 89.57 compared to the MDR
Reranker 79.24. Similar gains are observed on
MuSiQue and 2WikiMultiHopQA datasets as well.
Auxiliary Experiment. To further validate our ap-
proach, we conduct an auxiliary experiment with
two key findings (detailed in Appendix A.2). In this
setup, we fine-tune decoder-only models (LLaMA
3.2 1B and LLaMA 3.1 8B) to predict passage
utility scores in two settings: (i) listwise scoring,
where all candidate passages for a question are pro-
vided jointly, and (ii) pointwise scoring, where each
passage is scored independently. Providing the
full joint context in the listwise setup yields only
marginal improvements over pointwise scoring. In
contrast, our RoBERTa-based model, despite scor-
ing one passage at a time, consistently outperforms
these larger LLaMA models even when they have
access to all candidate passages simultaneously.
This indicates that the essential cross-passage de-
pendencies are effectively distilled into the learned
utility scores themselves. Encoder-based models,
being lightweight and inherently suited for regres-
sion, are thus better positioned to leverage this dis-
tilled signal, explaining their strong performance
in state-of-the-art reranking systems. Further re-
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search on leveraging this utility regression capa-
bilities demonstrated by encoders while simulta-
neously benefiting from the comprehensive con-
textual understanding offered by large-context de-
coders would be beneficial in more complex open-
domain query-based generation tasks.

Limitations

Current multi-hop datasets are predominantly fact-
based. Consequently, a model trained on such data
may not generalize effectively to tasks requiring
high-level inferential reasoning. For example: an-
swering questions like, "Why was the publication
of The Catcher in the Rye considered provocative
when it was released?". In these scenarios, the
utility of a passage might be tied to more abstract
semantic properties.

Ethics Statement

There are no ethical concerns to the best of our
knowledge.
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A Appendix

A.1 GPT-Annotated Utility Scores and
Verification

As part of our analysis, we also evaluate the upper
bound performance achievable using GPT-4o an-
notated utility scores to rank passages. The results,
summarized in Table 2, serve as a strong validation
of our training data quality and support the effec-
tiveness of reasoning-trace-based utility scoring.

As an additional check, we manually verified
approximately 150–200 examples across the Hot-
potQA, MuSiQue, and 2WikiMultihopQA datasets.
In over 95% of cases, the LLM-generated utility
scores aligned with human judgments of passage
usefulness, confirming their reliability as supervi-
sion signals.

A.2 Evaluating Decoder-only Models for
Utility Scoring

We conduct an auxiliary experiment by fine-tuning
two decoder-only models, LLaMA 3.2 1B and
LLaMA 3.1 8B (Meta, 2024), to compare their
performance on this regression task against our pri-
mary encoder-only model. These models were fine-
tuned using the same LLM-generated utility scores
under two distinct settings: (1) Pointwise Scoring:
The model predicts a utility score for each pas-
sage individually, using a (question, passage,̨
utility_score_k) triplet as input. (2) Listwise
Scoring: The model is presented with the question
and the entire set of candidate passages simulta-
neously, aiming to predict individual scores with
full context. Figures 2 and 4 show that providing
the decoder models with full context (listwise) of-
fers only marginal benefits over the pointwise scor-
ing for HotpotQA and 2WikiMultiHopQA. How-
ever, for the MuSiQue dataset (Fig 3), which has
a larger candidate set (20 passages), the pointwise
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Dataset P@2 R@2 F1@2 R@5 NDCG@1 NDCG@5 EM

HotpotQA 93.29 93.29 93.29 98.39 96.99 95.85 89.77
MuSiQue 87.90 79.38 83.43 84.32 93.40 86.88 82.80
2WikiMultihopQA 98.20 86.32 91.87 98.85 99.80 98.92 78.96

Table 2: Upper bound performance using GPT-annotated utility scores for ranking.

Figure 2: Performance comparison of decoder-only models (LLaMA 3.2 1B and LLaMA 3.1 8B) on the HotpotQA dataset,
fine-tuned using two different methods: Pointwise and Listwise scoring

approach is significantly more effective. We hy-
pothesize this performance degradation in the list-
wise setting is due to the well-documented Lost-
in-the-middle (Baker et al., 2024; Liu et al., 2023)
problem, where decoder models struggle to attend
to all items in a long input sequence. It is also
noteworthy that the absolute performance of these
fine-tuned LLaMA models is mostly lower than our
lightweight RoBERTa-based model (as reported in
Table 1). Despite having a more constrained input
during inference (scoring each passage individu-
ally), our model is better at identifying the useful
passages and correctly ordering them, further un-
derscoring the quality of our training data.
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Figure 3: Performance comparison of decoder-only models (LLaMA 3.2 1B and LLaMA 3.1 8B) on the MuSiQue dataset,
fine-tuned using two different methods: Pointwise and Listwise scoring

Figure 4: Performance comparison of decoder-only models (LLaMA 3.2 1B and LLaMA 3.1 8B) on the 2WikiMultiHopQA
dataset, fine-tuned using two different methods: Pointwise and Listwise scoring
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