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Abstract

Large language models can rephrase and re-
structure natural language effectively, but their
potential for reformulating graph encodings re-
mains underexplored despite the significant im-
pact of encoding choices on performance. In
this work, we introduce ReGraph, a reinforce-
ment learning-based approach that guides lan-
guage models to reformulate graph encodings
for improved task alignment. We demonstrate
that reformulating graph encodings enhances
reasoning and yields consistent performance
gains on graph question answering tasks. Our
results show that language models often pre-
fer specific graph encodings, even if they are
suboptimal for the task at hand.1

1 Introduction

Large language models (LLMs) have strong abili-
ties to reformulate queries or prompts to improve
alignment between input expressions and compu-
tational interpretation (Kong et al., 2024; Srivas-
tava et al., 2024). However, existing reformulation
techniques are largely limited to sentence-level or
keyword-level transformations (Srivastava et al.,
2024), falling short of leveraging the full poten-
tial of LLMs to handle more complex structural
representations, such as graphs. Graphs are typ-
ically encoded in textual formats, such as edge
list, adjacency list, or other notations, before being
processed by LLMs (Fatemi et al., 2023). Most
reformulation efforts focus on modifying the ques-
tions associated with the graphs rather than the
graph encodings themselves, leaving much of their
structural information untapped.

Instead, the concept of graph reformulation fo-
cuses on adapting graph encodings to facilitate
more effective reasoning. Extending reformulation
to the graph-level through conversions between dif-
ferent encodings can unlock new opportunities, as

1Code publicly available from: http:github.com/
hadifar/regraph

Figure 1: Three questions with three different graph
encodings. The language model’s response varies ac-
cording to the graph encoding linked to each question.

each encoding offers distinct advantages (see Fig-
ure 1), no single encoding is universally optimal
(Fatemi et al., 2023; Guo et al., 2023; Jiang et al.,
2025), and changing representations can serve as
a powerful tool for problem solving (Korf, 1980).
Yet, reformulating graphs using LLMs presents
a significant challenge, as it requires generating
tokens that strictly adhere to both syntactic and
semantic constraints. Furthermore, this capabil-
ity should be intrinsic to LLMs, as reliance on
external tools or heuristics requires manual inter-
vention. For instance, one should define that the
ASCII format is more suitable for traversal prob-
lems, whereas the edge list representation is better
aligned with tasks such as edge counting, thereby
underscoring the need for LLMs to natively discern
and adapt to appropriate graph representations.

In this study, we introduce ReGraph, a reinforce-
ment learning (RL) method that guides LLMs to re-
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formulate graph encodings. Our approach enables
models to accurately transform graph encodings,
resulting in consistent performance improvements.

2 Related Work

Graph reformulation has broad application (Heckel,
2006; Hong et al., 2022), but we focus our work on
LLMs that operate on graph encodings, intersecting
with research in query reformulation and graph
reasoning.
Query reformulation: Query and prompt rewriting
methods typically refine natural language inputs
through paraphrasing or iterative feedback (Lai
et al., 2024; Kong et al., 2024; Liu and Mozafari,
2024; Zhu et al., 2023; Ramnath et al., 2025; Ma
et al., 2023; Nogueira and Cho, 2017). However,
these conversions have remained largely at the sen-
tence level.
LLM-based graph reasoning: Traditional graph
processing methods, such as graph neural net-
works (Fang et al., 2023; Jiang et al., 2024) and
transformer-based models (Zhang et al., 2020; Kim
et al., 2022), typically operate on fixed graph repre-
sentations, limiting their ability to adapt to dynamic
domains where structure is not fixed (Zhu et al.,
2024; Wu et al., 2020). Researchers have explored
LLMs as an alternative framework for graph rea-
soning, demonstrating strong performance (Arora
et al., 2024; Fatemi et al., 2023; Wang et al., 2023).
The exploration is further accelerated by the emer-
gence of reasoning LLMs (Shao et al., 2024; Yang
et al., 2025), where LLMs generate intermediate
reasoning steps before producing a final answer
(Jin et al., 2024; Li et al., 2025). However, most
prior studies (Wang et al., 2024; Zhao et al., 2023)
have concentrated on converting graphs into tex-
tual formats, rather than on transforming between
different graph encodings, which is the focus of
our study.

3 Methodology

3.1 Prelimanary
A graph language model extends conventional lan-
guage modeling by conditioning token prediction
on both a query and a graph represented in textual
form. Given a query q and a graph encoding g
corresponding to a structured graph G = (V, E),
where V and E denote the sets of nodes and edges
respectively, we form the model input as x = [q; g].
This concatenated representation constitutes the
model’s prompt.

The model then generates an output y, modeling
the conditional distribution p(y | x), where y may
include intermediate reasoning steps and a final an-
swer. To evaluate the quality of a predicted output
y, we define a scoring function r(x, y) ∈ R that
measures its correctness or suitability with respect
to the inputs. The expected accuracy of a model p
is given by:

ACCURACY(p) = Ey∼p(·|x) [r(x, y)] . (1)

Given a dataset of examples, each consisting of a
query, a graph, and the correct answer, our goal
is to learn a model that maximizes expected per-
formance across examples. Due to the need to
optimize accuracy in discrete output spaces, recent
language models (Guo et al., 2025) often employ
RL methods (Sutton and Barto, 2018).

3.2 Graph Reformulation via LLM

In general, with graph reformulation, we seek to de-
rive a graph encoding g′ from the given input graph
encoding g, where the new encoding preserves the
properties of interest and facilitates more effective
reasoning by the language model when answering
the query q. In this context, g′ corresponds to the
reformulated encoding obtained from the model’s
output y. For example, given the query “Give the
path from the root to node 5” and an input
graph g encoded as an edge list, the model’s out-
put may include an alternative representation g′,
such as an ASCII format. This formulation adapts
the initial graph encoding to better align with the
requirements of the input query.

Ideally, g and g′ correspond to the same underly-
ing graph G; however, the model may occasionally
hallucinate and generate inaccurate or inconsistent
reformulation. Equation 1 enables us to encourage
not only the correctness of the final answer but also
to promote correct graph encoding reformulation.
To promote meaningful reformulation, we redefine
the expectation as:

Ey∼p(·|x)
[
r(x, y) δ(g, g′)

]
, (2)

where δ(g, g′) is a measure of distance between the
input graph encoding g and the inferred reformu-
lated graph encoding g′. Specifically, we define δ
as:

δ(g, g′) =

{
0 if g = g′

1− Jaccard(g, g′) if g ̸= g′,
(3)
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where δ incentivizes correct reformulation by eval-
uating the Jaccard graph distance (Kogge, 2016)
between the input and output graph encodings. It
assigns a score of zero when the graph encodings
are identical (g = g′), for example, when the LLM
simply copies the input, indicating that no refor-
mulation has occurred. The score is maximized
when the distance is zero, signifying that the model
has meaningfully altered the encoding while both
encodings represent the same graph G. Given that
g and g′ are textual representations of graphs, we
parse them to obtain the nodes and edges, and com-
pute their distance (see Appendix A for more de-
tails).

Finally, we employ Group-wise Reinforcement
Policy Optimization (GRPO; Shao et al., 2024), a
reinforcement learning algorithm used to finetune
the LLM. GRPO encourages the LLM to generate
a group of reformulations, enabling the exploration
of diverse yet relevant alternatives that are opti-
mized collectively.

4 Experiments and Analysis

4.1 Experimental Setup

With no gold standard for task selection and under
computational constraints, we follow prior stud-
ies (Fatemi et al., 2023; Wang et al., 2023; Tang
et al., 2025) by sampling 500 graphs across di-
verse graph question-answering tasks, including
node count, edge count, node degree, and traver-
sal orders (preorder, postorder, level-order), with
some tasks sharing similar evaluation goals (e.g.,
postorder traversal corresponds to the reverse of a
topological sort). Each graph is represented in three
formats (edge list, adjacency list, ASCII) and three
sizes: small (5–8 nodes), medium (9–16 nodes),
and large (17–32 nodes), yielding a total of 27,000
instances (see Appendix B for details).

The base language models used for the evalua-
tion include Qwen3-8B, Qwen3-32B (Yang et al.,
2025), Gemma3-12B (Team et al., 2025), and
Ministral-8B (Mistral AI team, 2024). We used
10% of the dataset for reinforcement learning fine-
tuning (RLF) and the remaining 90% for evalua-
tion. Specifically, we applied RLF to Qwen3-8B
variants: ReGraph (Qwen3-8B-RLF) with both re-
formulation and accuracy objectives, and Qwen3-
8B-RLF with the accuracy objective.

For evaluation, we investigate three aspects:
i) Graph reformulation evaluates the models’ abil-
ity to perform reformulation across various types

Figure 2: Reformulation capabilities of different LLMs.

of reformulation. In this setting, we provide the
LLMs with graphs represented in a specific encod-
ing and instruct them to reformulate these represen-
tations into a designated target encoding. ii) Graph
question answering assesses the effectiveness of
graph reformulation in solving graph question an-
swering tasks defined above. We compare model
performance before and after finetuning to quantify
the benefits introduced by reformulation. iii) En-
coding preferences evaluate the models’ choices
when instructed to select an encoding from a prede-
fined set. LLMs are given graph data in GraphML
format (Brandes et al., 2001) and asked to con-
vert it into one of several alternative encodings:
ASCII, adjacency list, or edge list. Details on
prompt formatting for each setting are provided
in Appendix C. Accuracy is used as an evaluation
metric for all experiments.

4.2 Result and Disucssion

Graph reformulation: Figure 2 shows the perfor-
mance of various models in reformulating graph
encodings. ReGraph demonstrates consistently
strong results, successfully transforming represen-
tations in most cases and even outperforming larger
models like Qwen3-32B. The results also reveal
a trend where reformulation capability improves
with model size, as seen in the performance gap
between Qwen3-8B and Qwen3-32B. ASCII-based
representations remain challenging for most mod-
els, likely due to limited exposure during pre-
training or finetuning. Conversely, nearly all mod-
els achieve near-perfect accuracy when converting
between edge list and adjacency list (e.g., Edge list
→ Adjacency list).
Graph question answering: Figure 3 illustrates
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Figure 3: Performance comparison of different models across varying graph problem and graph sizes.

our results on graph question answering. Differ-
ent graph encodings offer distinct advantages de-
pending on the task. For instance, edge list en-
codings are particularly effective for edge count-
ing, whereas adjacency list encodings yield bet-
ter performance on node degree tasks. These re-
sults underscore the importance of selecting task-
appropriate graph representations and highlight
the potential of graph reformulation to enhance
model performance. ReGraph improves accuracy
across nearly all tasks, regardless of the input en-
coding, when compared to baseline models. How-
ever, the benefit of reformulation varies by task.
For edge-encoded inputs, traversal tasks (e.g., pos-
torder, level-order) show consistent gains, while
improvements on node degree tasks are minimal.
Notably, when edge list encodings are used for
traversal tasks, performance often improves as the
model frequently reformulates the input into more
structured formats such as ASCII or adjacency list.
Qwen3-8B-RFT exhibits performance comparable
to ReGraph, albeit slightly lower, with both results
obtained via direct RLF, and additional data or ini-
tial supervised fine-tuning likely to further improve
performance (Yeo et al., 2025).

Encoding Preferences: As illustrated in Figure 4,
most LLMs exhibit a strong preference for either
edge list or adjacency list formats. For instance,
Llama3.1-70B and Gemma3-12B predominantly
favor adjacency list, whereas Qwen models typi-
cally prefer edge list. This tendency likely reflects
the graph encoding most commonly encountered
during pretraining or finetuning. However, these fa-
vored encodings are not always the most effective

Figure 4: Comparison of biases exhibited by differ-
ent LLMs when tasked with converting graph data in
GraphML (Brandes et al., 2001) into one of the alterna-
tive graph encodings.

for every task. For example, our earlier experi-
ments demonstrated that ASCII encodings yield
superior performance for preorder traversal, yet
they remain underutilized by LLMs. Addressing
these biases presents an opportunity to enhance
downstream task performance.

5 Conclusion

We propose ReGraph, an RL-based method that
guides language models to reformulate graph en-
codings into more effective representations. Our
model is finetuned using reinforcement learning to
jointly optimize question answering and encoding
reformulation. Experiments on graph question an-
swering demonstrate consistent improvements in
both reasoning and reformulation quality.
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Limitations

Although ReGraph delivers promising results, sev-
eral important limitations remain. Our current work
focuses on labeled graphs, which limits its applica-
bility to other types such as unlabeled, weighted,
or dynamic graphs. Extending reformulation tech-
niques to these graph classes is a valuable direction
for future research. Additionally, our experiments
are conducted solely with the Qwen3 model and
three graph encodings due to resource constraints.
While we expect the findings to generalize, broader
evaluation across diverse LLMs and graph encod-
ings is necessary to fully validate this assumption.
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A Graph distance

We initially used graph edit distance (Abu-Aisheh
et al., 2015) to measure similarity between different
graph encodings. However, due to the high com-
putational cost of existing implementations, taking
over 300 seconds for certain graph pairs, this ap-
proach quickly became a bottleneck in our pipeline.
To address this, we switched to the Jaccard distance,
which offers significantly better computational effi-
ciency (Kogge, 2016). Our implementation of the
Jaccard distance is as follows:
Jaccard(G1, G2):
N1 <- NodeSet(G1)
N2 <- NodeSet(G2)
E1 <- EdgeSet(G1)
E2 <- EdgeSet(G2)
J_edges <- |E1 intersect E2| / |E1 union E2|
J_nodes <- |N1 intersect N2| / |N1 union N2|
return (J_nodes + J_edges) / 2

B Dataset and Training Details

We adopt the methodology of (Fatemi et al., 2023;
Wang et al., 2023; Tang et al., 2025) to generate ran-
dom graphs using the NetworkX library (Hagberg
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et al., 2008) and to compute the ground truth for var-
ious graph-based tasks. While there is no gold stan-
dard for task selection, we focused on well-known
tasks with rich real-world applications that assess
multi-dimensional reasoning skills. The tasks con-
sidered include: (1) Node count: determining the
total number of nodes in the graph, (2) Edge count:
determining the total number of edges in the graph,
(3) Node degree: computing the degree of a speci-
fied node, (4) Preorder: performing a traversal in
root-left-right order, (5) Postorder: performing a
traversal in left-right-root order, (6) Level-order:
breadth-first traversal that visits nodes sequentially
by levels starting from the root.

For training models, we used four NVIDIA
H100 GPUs to run our experiments. Our model
was finetuned using the official hyperparameter rec-
ommendations provided by Qwen2. We used the
AdamW-8bit optimizer with a learning rate of 1e-
6. Training was conducted for one epoch with a
batch size of 2 and a gradient accumulation factor
of 2. The maximum input length was set to 1024
tokens, and the maximum output generation length
was 6144 tokens. All experiments were conducted
using Hugging Face TRL3, and training took ap-
proximately 18 hours in total.

C Prompts

This appendix provides representative prompt ex-
amples used in each of our evaluation settings:
i) graph reformulation (Figure 5), ii) downstream
task performance (Figure 6), and iii) encoding pref-
erence (Figure 7).

2https://qwen.readthedocs.io/en/latest
3https://huggingface.co/docs/trl/en/index
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Figure 5: An example prompt and its corresponding output for the node degree task.

Figure 6: Sample prompt and corresponding output for graph reformulation.
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Figure 7: Example prompt with GraphML input and a sampled edge list output, illustrating the model’s tendency to
favor specific formats such as edge list when reconstructing graph structures.
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