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Abstract

Large Language Models (LLMs) are increas-
ingly treated as universal, general-purpose solu-
tions across NLP tasks, particularly in English.
But does this assumption hold for low-resource,
morphologically rich languages such as San-
skrit? We address this question by compar-
ing instruction-tuned and in-context-prompted
LLMs with smaller task-specific encoder–de-
coder models on the Sanskrit poetry-to-prose
conversion task. This task is intrinsically chal-
lenging: Sanskrit verse exhibits free word or-
der combined with rigid metrical constraints,
and its conversion to canonical prose (anvaya)
requires multi-step reasoning involving com-
pound segmentation, dependency resolution,
and syntactic linearisation. This makes it an
ideal testbed to evaluate whether LLMs can sur-
pass specialised models.
For LLMs, we apply instruction fine-tuning on
general-purpose models and design in-context
learning templates grounded in Pāṇinian gram-
mar and classical commentary heuristics. For
task-specific modelling, we fully fine-tune a
ByT5-Sanskrit Seq2Seq model. Our experi-
ments show that domain-specific fine-tuning
of ByT5-Sanskrit significantly outperforms all
instruction-driven LLM approaches. Human
evaluation strongly corroborates this result,
with scores exhibiting high correlation with
Kendall’s Tau scores. Additionally, our prompt-
ing strategies provide an alternative to fine-
tuning when domain-specific verse corpora
are unavailable, and the task-specific Seq2Seq
model demonstrates robust generalisation on
out-of-domain evaluations. Our code1 and
dataset2 are publicly available.

1 Introduction

LLMs have become the default solution across
NLP applications, often replacing specialised ar-

1https://github.com/manojbalaji1/anvaya
2https://huggingface.co/collections/

sanganaka/anvaya
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Figure 1: Illustration of the challenges in the poetry-to-
prose conversion task. The top panel shows the input
verse and the bottom panel shows the corresponding
prose output. The middle panels depict two intermediate
reasoning steps: segmenting compound/sandhi-merged
tokens and performing dependency parsing for the toy
example.The color-coded schema highlights sandhi phe-
nomena where word boundaries become merged.

chitectures in English (Zhao et al., 2025; Minaee
et al., 2025). In contrast, Sanskrit NLP has histor-
ically relied on carefully designed linguistic and
task-specific systems for segmentation, morphol-
ogy, compound processing and dependency parsing
(Sarkar et al., 2025; Ray et al., 2024; Sandhan et al.,
2023a). Given the recent dominance of LLMs in En-
glish, a natural question arises: are these specialised
Sanskrit NLP efforts still necessary, or should fu-
ture research increasingly rely on general-purpose
LLMs?

To investigate this question, we focus on the
Sanskrit Poetry-to-Prose Conversion task (Anvaya),
which serves as a natural stress test for evaluating
whether LLMs can surpass task-specific models.
Figure 1 illustrates that Sanskrit poetry-to-prose
conversion is far more challenging than standard
word-order linearisation (Kulkarni, 2010; Krishna
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<Task description> + <Custom canonical 
Rules for Prose Construction> + <Response 
Format> + <Examples with intermediate 

results>
# INPUT: ityeṣa sarvabhūtānāṃ mahatāṃ 

manujādhipa prabhavaḥ kīrtitaḥ 
samyaṅmayā matimatāṃ vara

LLM

<think> Applying Rule 1: iti eṣa 
sarvabhūtānāṃ …
Applying Rule 2: Clause 1: manujādhipa ….
Applying Rule 5: (manujādhipa ……</think>
<prose>manujādhipa matimatām vara iti 
eṣa mahatām sarvabhūtānām prabhavaḥ 
mayā samyak kīrtitaḥ </prose>

ByT5-Sanskrit
(Pretrained on Sanskrit 

NLP tasks)

P2P śakradattā varā mālā 
kāñcanī vajrabhūṣitādadhāra 

harimukhyasya prāṇāṃstejśiyaṃ 
ca sā

śakradattā kāñcanī vajrabhūṣitā 
varā mālā harimukhyasya prāṇān 

teja śriyaṃ ca dadhāra

< Inference/
Instruction 
Tuning>

< fine-tuning >

(b)(a)

Figure 2: Illustration of the two modeling paradigms using a toy example: (a) LLM (decoder-only): We apply instruc-
tion tuning with linguistically informed templates and also evaluate in-context learning. (b) Task-specific Seq2Seq
(encoder–decoder): We fine-tune the ByT5-Sanskrit model, already trained on segmentation and dependency-parsing
tasks, to endow it with additional poetry-to-prose conversion capability.

et al., 2019).3 The task requires coordinated multi-
step reasoning: segmenting densely fused com-
pounds into valid constituents, inferring syntactic
dependencies and linearising the resulting struc-
ture into coherent prose. These processes operate
jointly rather than sequentially, relying on linguistic
principles rooted in Pāṇinian grammar and classical
commentary heuristics.

We compare two modelling paradigms as shown
in Figure 2. For LLMs, we perform instruction fine-
tuning of general-purpose models and construct in-
context learning templates explicitly grounded in
Pāṇinian principles. For task-specific modelling,
we fully fine-tune a ByT5-Sanskrit encoder–de-
coder model that directly operates on byte-level
representations, which are well-suited for low-
resource, morphologically rich languages. Our
results show that the domain-specific fine-tuning
of ByT5-Sanskrit substantially outperforms all
instruction-driven LLM approaches. Human eval-
uation strongly supports this finding, with scores
showing high correlation with Kendall’s τ and con-
firming the limitations of current LLMs on this
linguistically intensive task. At the same time,
our prompting strategies offer a practical alterna-
tive when domain-specific verse corpora are un-

3Translation: Then Vibhīṣaṇa, having stationed all the
armies, swiftly came, mace in hand, to the place where
Rāghava (Rāma) was.

available, while the specialised Seq2Seq model ex-
hibits robust generalisation to out-of-domain in-
puts. These observations collectively demonstrate
that, despite recent advances, LLMs are still not
capable of surpassing task-specific models on the
structurally demanding problem of Sanskrit poetry-
to-prose conversion.

2 Methodology

We frame the poetry-to-prose conversion as a
Seq2seq task that implicitly requires the model to
handle the sub-tasks of segmentation, dependency
resolution, and reordering. We compare two mod-
eling paradigms: (1) LLMs (Decoder-only) (2)
Task-Specific models (Encoder-Decoder)

Design of Instruction prompts: The poetry to
prose task requires explicit grammatical rules. We
use the canonical word-ordering rules of Daṇḍa-
anvaya-janaka (Kulkarni et al., 2019) (Appendix D)
to provide a foundational framework, but they are
not comprehensive; constructions involving multi-
ple clauses, appositives, or embedded phrases fall
outside their scope. Encoding every such edge case
directly into a prompt is impractical, as it would
inflate the prompt and exhaust the model’s context
window. To balance coverage and efficiency, we
design a logical, step-by-step prompt inspired by
Wei et al. (2022). Our approach integrates custom-
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modified rules with intermediate reasoning steps
in a Chain-of-Thought (CoT) format (Appendix B).
To evaluate the impact of these design choices, we
conduct a prompt ablation study using the Phi-4
model (Appendix E). As shown in Table 6, incor-
porating linguistic rules (Pfull) yields a substan-
tial performance gain over a basic task description
(Pbase), nearly doubling the BLEU score. More-
over, structuring the reasoning explicitly in CoT
format provides an additional 15.3% improvement
over the full prompt. These results confirm that
structured, domain-aware prompting is essential for
effectively leveraging general-purpose LLMs on
this linguistically demanding task.

2.1 LLMs (Decoder-only)
We treat the problem as a multi-step process,
guiding these generalist models with explicit,
linguistically-grounded instructions. This is re-
flected in our prompt design for IFT and ICL, which
breaks down the task into continuous steps.

Instruction Fine-Tuning (IFT): We evaluate
whether providing explicit linguistic rules can guide
models with broad capabilities, such as LLMs, to-
ward this specialized objective, (see Appendix G).
We use models from the Llama-3.x-Instruct (1B,
3B, 8B) (Meta AI, 2024a,b) , Phi-4 (14B) (Abdin
et al., 2024) and, Qwen-2.5 (7B) (Qwen et al., 2025)
series. The finetuning prompt is curated based on
the default instruction prompt of the official mod-
els and the Anvaya rules from the canonical word-
ordering rules of Daṇḍa-anvaya-janaka (Kulkarni
et al., 2019). The complete instruction template is
provided in Appendix B.

In-context Learning (ICL): The In-context
learning (Brown et al., 2020) is a paradigm that
allows LLMs to learn novel tasks given a few ex-
amples in the form of prompt demonstrations. This
paradigm has also been explored on multilingual
models with language-specific task descriptions
and examples Lin et al., 2022. We leverage this
paradigm by prompting various open and closed
source LLMs. The models include the above stated
along with gemma3 (Team et al., 2025) , gpt4o
(OpenAI et al., 2024) and gpt5-mini (Open AI,
2025). The different prompting results for various
models is given in Appendix H.

2.2 Task-Specific Seq2Seq model
We use ByT5-Sanskrit model (Nehrdich et al.,
2024a) as a task-specific Seq2seq model. We hy-

pothesie that its domain-specific pretraining on a
large Sanskrit corpus provides it with the implicit
capability to handle sub-tasks like segmentation
and dependency parsing within a unified genera-
tion process. We, therefore finetune it directly in a
sequence-to-sequence framework.

ByT5-Sanskrit: The model is pretrained on a
large, multi-domain Sanskrit corpus. The model
has achieved state-of-the-art performance on key
tasks such as word segmentation, dependency pars-
ing, lemmatization, and morpho-syntactic tagging.
Its strong linguistic grounding makes it well-suited
for downstream finetuning on poetry-to-prose con-
version. We finetune this pretrained model with our
two datasets, separately. The model architecture
follows that of an encoder-decoder style of a ByT5
model (Xue et al., 2022). To preserve the multitask
setup of the base model, we prepend a prefix P2P be-
fore each training data following the same setup as
that of T0 (Sanh et al., 2022). The schema is shown
in Figure 2. The model follows iast transliteration
and thus all our data is converted to iast format.

3 Experiment

Datasets: To support the task of direct Sanskrit
poetry-to-prose conversion, we employ two paral-
lel corpora derived from classical Sanskrit epics:
the Rāmāyaṇa and the Mahābhārata. For the
Rāmāyaṇa corpus, we extract verse–prose pairs
from the Valmiki Ramayana digital repository4.
The Mahābhārata corpus is constructed using par-
allel data from the Ashramvasika and Ādi Parva
sections, sourced from the MAHE Mahabharata
portal5. Both corpora provide aligned verse–prose
sequences, which we use as our supervised data
for the conversion task. Table 1 summarises the
statistics of the two datasets, comprising a total of
22,860 parallel poetry–prose pairs.

Dataset #Train
Samples

#Test
Samples

Rāmāyaṇa 16447 1829
Mahābhārata 3667 917

Table 1: Dataset Statistics for Rāmāyaṇa and Mahāb-
hārata datasets

Evaluation Metrics: We use sacreBLEU (Post,
2018) with standard tokenization provides a base-

4https://www.valmiki.iitk.ac.in/
5https://mahabharata.manipal.edu/
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line measure of lexical correctness through n-gram
overlap; higher scores reflect the presence of key
lexical units as well as partial structural alignment
captured via higher-order n-grams. Second, we em-
ploy Kendall’s Tau, which quantifies the number of
pairwise inversions needed to reorder the model’s
output into the reference sequence, thereby offering
a direct assessment of structural correctness and
word-order faithfulness.

Main Results We conduct IFT on various mul-
tilingual LLMs, and report the results in Table 2.
For each of the models, we apply PEFT via the Un-
sloth library with 4‑bit quantization to limit com-
pute. We use LoRA (Hu et al., 2022) with rank
r=16 and �=16, injecting low‑rank adapters into
each layer. Prompts follow the alpaca_prompt
(Taori et al., 2023) and the chat-template for-
mat augmented with canonical word‑ordering rules.
Training is performed with TRL’s SFTTrainer un-
der mixed‑precision (fp16 or bf16) to optimize
memory and speed.

Mahābhārata Rāmāyaṇa
Models BLEU KT BLEU KT

Instruction Fine Tuning with Rules prompt
Llama3.1-8B 28.521 0.6260 27.564 0.6703
Llama3.2-1B 18.937 0.5302 16.031 0.5362
Llama3.2-3B 23.308 0.5849 21.808 0.6208
Phi4-14B 33.123 0.6494 31.945 0.6960
qwen2.5-7B 25.487 0.6209 20.467 0.6187

Full-Finetuning
ByT5-Sanskrit 38.625 0.699 39.497 0.758

Table 2: Results for the IFT experiment on open-
sourced models compared with the full finetuning of
ByT5-Sanskrit model.

From Table 2, we observe that FT ByT5-Sanskrit
consistently and decisively outperforms all general-
ist models across both datasets, achieving superior
scores on both BLEU and Kendall’s Tau.

4 Analysis

4.1 Can Prompting Replace Task-Specific
Fine-Tuning?

In this section, we examine whether LLMs can
match the performance of task-specific Seq2Seq
models. We evaluate 3 paradigms - Finetuning
(FT), Chain-of-Thought prompting (CoT), and Few-
Shot prompting with rules (FS-R) and report their
BLEU scores in Table 3. Across all configurations,
including combinations of FT and CoT, LLMs fail

to reach the performance of ByT5-Sanskrit. Fine-
tuning yields the largest gains among LLM ap-
proaches, while CoT offers improvements only for
weaker models and has limited effect on stronger
systems such as GPT-4o. Overall, even with mul-
tiple prompting and tuning strategies, LLMs do
not match the effectiveness of smaller task-specific
Seq2Seq models for this highly structured task.

Methods FT CoT FS-R Mahābhārata Rāmāyaṇa
ByT5-Sanskrit 3 - - 38.625 39.497

Phi4-14B - - 3 11.065 7.763
Phi4-14B - 3 - 22.572 13.771
Phi4-14B 3 - - 33.123 31.945
Phi4-14B 3 3 - 30.995 24.940
gpt-4o - - 3 24.789 20.472
gpt-4o - 3 - 24.904 21.214

Table 3: Fine-tuned ByT5-Sanskrit consistently outper-
forms all LLM prompting and tuning approaches.

4.2 Do Task-Specific Models Generalize
Better Than LLMs?

We perform a cross-domain evaluation (Table 4) to
assess whether the models learn generalizable syn-
tactic principles or simply memorize training data.
We compare the fine-tuned ByT5-Sanskrit model
with the best-performing IFT model (Phi4-14B).
When trained on the Mahābhārata and tested on
the Rāmāyaṇa, ByT5’s BLEU score decreases from
38.63 to 20.34, a notable drop, yet still substantial,
indicating effective transfer of Anvaya principles
across epic styles. Overall, both models show re-
duced performance under domain shift, but the non-
trivial cross-domain scores demonstrate genuine
task learning rather than corpus memorization.

Model Mahābhārata Rāmāyaṇa
ByT5 finetuned on Mahābhārata 38.625 20.336
ByT5 finetuned on Rāmāyaṇa 27.420 39.497

phi4-14B finetuned on Mahābhārata 33.123 16.072
phi4-14B finetuned on Rāmāyaṇa 23.001 31.945

Table 4: Evaluation of BLEU scores for cross-domain
analysis on the best performing models

4.3 Do Automatic Metrics Align with Human
Judgments?

To obtain a gold-standard evaluation, we enlisted
a Sanskrit poet to assess 50 outputs (25 from each
epic) generated by our best-performing model, the
fine-tuned ByT5-Sanskrit. Each output was rated
on a 1–10 scale using a weighted scoring scheme
described in Appendix F. These human scores were
then compared with BLEU and Kendall’s Tau, as
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reported in Table 5. Although the model achieved a
moderate BLEU score of 45.82 on theMahābhārata
subset, the expert assigned a markedly high aver-
age score of 7.74, indicating strong prose quality.
Notably, Kendall’s Tau exhibited a strong positive
correlation with human judgments (0.818), whereas
BLEU did not.

Dataset BLEU Kendall’s Tau Human Score (out of 10)
Mahābhārata 45.82 0.818 7.74
Rāmāyaṇa 32.34 0.781 7.78

Table 5: Comparison of human evaluation metric with
BLEU and Kendall Tau for a subset of samples from
both the datasets. All scores are average scores

5 Related Work

Early Sanskrit NLP primarily relied on linguisti-
cally grounded, rule-based systems (Huet, 2009;
Kulkarni, 2010). Although these approaches cap-
tured important grammatical regularities, they
faced scalability limitations in handling real-world
poetic and prose corpora. With the emergence of
annotated datasets (Sandhan et al., 2022a; Krishna
et al., 2017, 2020b; Sandhan et al., 2023c), research
gradually shifted toward neural, task-specific mod-
els. Thesemodels span a wide range of applications,
including Sanskrit-specific pretraining (Sandhan
et al., 2021), Sanskrit ASR (Kumar et al., 2025),
compound identification (Krishna et al., 2016; Kr-
ishnan et al., 2025; Sandhan et al., 2022b), depen-
dency parsing (Sandhan et al., 2023b; Krishna et al.,
2020a), segmentation (Nehrdich et al., 2024b; Sand-
han et al., 2022c) and word-order linearisation (Kr-
ishna et al., 2019, 2020b). Within poetic transforma-
tion tasks (Jagadeeshan et al., 2025), early progress
in verse-to-prose conversion was achieved using
feature-rich Seq2Seq models. These architectures
leverage the linguistic structure of Sanskrit, includ-
ing sandhi rules, compounding templates, depen-
dency relations, and metrical constraints.

Parallel to these developments, general-purpose
multilingual and universal LLMs (OpenAI, 2023;
Sanh et al., 2022; Abdin et al., 2024) have
demonstrated remarkable capabilities under natural-
language prompting, instruction tuning, and chain-
of-thought reasoning (Kojima et al., 2022; Wei
et al., 2022). Their success in English and high-
resource languages has motivated attempts to ex-
tend LLM-based workflows to low-resource clas-
sical languages as well. This contrast raises a cen-
tral question: with the recent dominance of LLMs,

should Sanskrit NLP continue investing in spe-
cialised linguistic and neural architectures, or can
general-purpose LLMs effectively replace them?
Our work directly examines this question for the
Sanskrit poetry-to-prose conversion task. We find
that despite their breadth, current LLMs still do not
match the performance of task-specific encoder–de-
coder models designed for the linguistic complexi-
ties of Sanskrit.

6 Conclusion

This work examined whether general-purpose
LLMs can replace task-specific models for the struc-
turally demanding task of Sanskrit poetry-to-prose
conversion. Our results show that they cannot. De-
spite advances in instruction-tuning and prompting,
LLMs consistently underperform compared to the
ByT5-Sanskrit model, which benefits from domain-
specific pre-training and full fine-tuning. These
findings underscore that, for low-resource and mor-
phologically rich languages, linguistic specializa-
tion remains crucial. While prompting strategies
grounded in Pāṇinian principles provide a practi-
cal alternative when annotated corpora are scarce,
they fall well short of the performance achieved
through task-specific fine-tuning. Cross-domain
evaluation further demonstrates that ByT5-Sanskrit
learns generalizable syntactic principles rather than
memorizing epic-specific patterns. Finally, strong
alignment between Kendall’s Tau and expert judg-
ments highlights the importance of structure-aware
metrics over surface-level measures like BLEU. Fu-
ture work should generalize these results to more
tasks.

Limitations

Our study is limited by computational constraints,
which restricted closed-API model evaluations to
only few advanced reasoning-capable models. The
dataset focuses solely on epic poetry from the
Rāmāyaṇa and Mahābhārata, limiting generalizabil-
ity to other Sanskrit genres and meters. We rely
on sacreBLEU for evaluation without human judg-
ments, whichmay not fully capture semantic fidelity
or prose fluency. Additionally, our use of transliter-
ated text instead of native Devanāgarī script simpli-
fies processing but overlooks script-specific chal-
lenges. We could not release the Mahābhārata data
publicly due to copy-right regulations.
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A Error Analysis for CoT outputs by GPT-4o

Our analysis of GPT-4o’s Chain-of-Thought outputs shows that although the model consistently follows
the requested step-by-step structure, it often falls short when precise linguistic reasoning is required. The
most frequent errors occur in syntactic organization: the relative ordering of cases such as locative and
ablative is sometimes incorrect, adjectives in samanādhikaraṇa are misplaced, and clause sequences are
occasionally wrongly arranged. Vocatives, which are expected to appear at the beginning of a sentence in
standard Sanskrit prose, are sometimes positioned elsewhere. These deviations indicate that the model
does not consistently internalize or generalize from the rules and examples provided.

In some cases, the errors originate even earlier, during sandhi resolution. The model occasionally
hallucinates morphological forms, such as replacing an ātmanepada verb with its parasmaipada counterpart.
Since later CoT steps depend on earlier ones, such initial inaccuracies propagate throughout the reasoning
chain and ultimately influence the final prose output. Overall, these patterns suggest that while GPT-4o
can reproduce the outward structure of a stepwise explanation, its underlying understanding of Sanskrit
grammar and syntax remains uneven, and the explicit CoT format makes these limitations easier to observe.

CoT Examples

Example 1
Input sloka:
evamuktaḥ sa rājarṣistapovīryasamāśrayāt sañcārayāmāsa jarāṃ tadā putre mahātmani
Ground-truth Prose:
tadā evam uktaḥ saḥ rājarṣiḥ mahātmani putre tapovīryasamāśrayāt jarām sañcārayāmāsa
Model’s CoT Output:
〈reasoning〉
-Applying Rule 1:
evam uktaḥ sa rājarṣiḥ tapovīryasamāśrayāt sañcārayāmāsa jarām tadā putre mahātmani
-Applying Rule 2:
Clause 1: sa rājarṣiḥ evam uktaḥ
Clause 2: tapovīryasamāśrayāt
Clause 3: tadā sañcārayāmāsa jarām putre mahātmani
-Applying Rule 3:
(evam uktaḥ sa rājarṣiḥ), (tapovīryasamāśrayāt) tadā (putre mahātmani jarām)
sañcārayāmāsa
-Applying Rule 4:
(evam uktaḥ sa rājarṣiḥ), (tapovīryasamāśrayāt) tadā (mahātmani putre jarām)
sañcārayāmāsa
-Applying Rule 5:
(evam uktaḥ sa rājarṣiḥ), (tapovīryasamāśrayāt) tadā (mahātmani putre jarām)
sañcārayāmāsa
〈/reasoning〉
〈answer〉evam uktaḥ sa rājarṣiḥ tapovīryasamāśrayāt tadā mahātmani putre jarām
sañcārayāmāsa〈/answer〉
Issue: Locative phrase (mahātmani putre) incorrectly placed after the ablative (tapovīryasamāśrayāt), violating
Rule 4.3. The temporal adverb tadā placed mid-sentence, violating clause-order Rule 2.

Example 2
Input sloka:
kālaḥ pacati bhūtāni kālaḥ saṃharati prajāḥ nirdahantaṃ prajāḥ kālaṃ kālaḥ śamayate
punaḥ
Ground-truth Prose:
kālaḥ bhūtāni pacati kālaḥ prajāḥ saṃharati kālaḥ punaḥ prajāḥ nirdahantam kālam
śamayate
Model’s CoT Output:
〈reasoning〉
-Applying Rule 1:
kālaḥ pacati bhūtāni kālaḥ saṃharati prajāḥ nirdahantam prajāḥ kālam kālaḥ śamayati
punaḥ
-Applying Rule 2:

Clause 1: kālaḥ pacati bhūtāni
Clause 2: kālaḥ saṃharati prajāḥ
Clause 3: kālaḥ śamayati punaḥ kālam nirdahantam prajāḥ
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-Applying Rule 3:
kālaḥ bhūtāni pacati, kālaḥ prajāḥ saṃharati, punaḥ kālam nirdahantam prajāḥ kālaḥ
śamayati
-Applying Rule 4:
kālaḥ bhūtāni pacati, kālaḥ prajāḥ saṃharati, kālaḥ punaḥ prajāḥ nirdahantam kālam
śamayati
-Applying Rule 5:
kālaḥ bhūtāni pacati, kālaḥ prajāḥ saṃharati, kālaḥ punaḥ prajāḥ nirdahantam kālam
śamayati
〈/reasoning〉
〈answer〉kālaḥ bhūtāni pacati kālaḥ prajāḥ saṃharati kālaḥ punaḥ prajāḥ nirdahantam kālam
śamayati〈/answer〉
Issue: The model hallucinates the parasmaipada form śamayati instead of the correct ātmanepada śamayate, demon-
strating morphological instability.

B Appendix: Chain-of-Thought prompt using Anvaya Rules in Alpaca Format

Chain-of-Thought prompt using Anvaya Rules

TASK: You are a precise prose generator for Sanskrit verses. Given the input Sanskrit sloka, convert it into their
canonical Sanskrit prose sentence using the following rules, preserving meaning. Important: The input and output is in
IAST transliteration format.

Canonical Rules for Anvaya Construction:
1. Sandhi Analysis: First, resolve all external sandhi to isolate individual words. Do not break down integrated

compounds (samāsa) like ’Ramālayam’.

2. Clause Structuring:

• Identify all clauses (main, subordinate, direct speech).
• Arrange clauses chronologically based on the events they describe.
• Relative clauses must precede the main clause they qualify.
• The finite verb of the main clause concludes the entire sentence.

3. Modifier Chunking: Group modifiers with their headwords. These chunks move as a single unit. Place the
following directly before the word they describe:

• Adjectives (viśeṣaṇa)
• Genitives (ṣaṣṭhī vibhakti)
• Adverbs (kriyāviśeṣaṇa)
• Negations (na)
• Appositives (samānādhikaraṇa)

4. Intra-Clause Word Order: Within each clause, arrange all words and chunks in this precise sequence:

(a) Vocative (sambodhana)
(b) Subject (kartṛ)
(c) Kārakas (in order): Locative → Ablative → Dative → Instrumental → Accusative
(d) Non-finite verbs (and their arguments)
(e) Finite verb (kriyāpada) at the very end.

5. Particle Placement: Place indeclinable particles (ca, api, tu, eva, hi) immediately after the word they modify.

RESPONSE FORMAT:
Your response should have two different opening and closing tags - 〈think〉 〈/think〉 and 〈prose〉 〈/prose〉
〈think〉A string containing your step-by-step reasoning (the Chain-of-Thought)〈/think〉
〈prose〉A string containing ONLY the final, Sanskrit prose sentence obtained at the end
of the above thinking process.〈/prose〉
Do NOT reveal your internal reasoning beyond the 〈think〉 tab or add any commentary - output. Only generate the
reasoning explicitly inside 〈think〉 and the final prose under 〈prose〉.
Given are some examples of sloka and its corresponding prose with its step-by-step reasoning:

Example 1:
INPUT:
sloka: kathaṃ nu rājā vṛddhaḥ sanputraśokasamāhataḥ śokamasmatkṛtaṃ prāpya na mriyeteti cintyate
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RESPONSE:
〈think〉
-Applying Rule 1:
kathaṃ nu rājā vṛddhaḥ san putraśoka-samāhataḥ śokam asmat-kṛtam prāpya na mriyeta iti
cintyate
-Applying Rule 2:
Clause 1: rājā vṛddhaḥ san putraśoka-samāhataḥ
Clause 2: śokam asmat-kṛtam prāpya
Clause 3: kathaṃ nu na mriyeta iti cintyate
rājā vṛddhaḥ san putraśoka-samāhataḥ, śokam asmat-kṛtam prāpya, kathaṃ nu na mriyeta iti
cintyate
-Applying Rule 3:
(putraśoka-samāhataḥ rājā vṛddhaḥ san), śokam asmat-kṛtam prāpya, kathaṃ nu na mriyeta
iti cintyate
-Applying Rule 4:
(putraśoka-samāhataḥ rājā vṛddhaḥ san), asmat-kṛtam śokam prāpya, kathaṃ nu na mriyeta
iti cintyate
-Applying Rule 5:
(putraśoka-samāhataḥ rājā vṛddhaḥ san), asmat-kṛtam śokam prāpya, kathaṃ nu na mriyeta
iti cintyate
〈/think〉
〈prose〉putraśokasamāhataḥ rājā vṛddhaḥ san asmat kṛtam śokam prāpya kathaṃ nu na mriyeta
iti cintyate〈/prose〉

Example 2:
INPUT:
sloka: ityeṣa sarvabhūtānāṃ mahatāṃ manujādhipa prabhavaḥ kīrtitaḥ samyaṅmayā matimatāṃ vara

RESPONSE:
〈think〉
-Applying Rule 1:
iti eṣa sarvabhūtānāṃ mahatāṃ manujādhipa prabhavaḥ kīrtitaḥ samyak mayā matimatāṃ vara
-Applying Rule 2:
Clause 1: manujādhipa matimatām vara iti
Clause 2: eṣa sarvabhūtānāṃ mahatāṃ prabhavaḥ kīrtitaḥ samyak mayā
manujādhipa matimatām vara iti eṣa sarvabhūtānāṃ mahatāṃ prabhavaḥ kīrtitaḥ samyak mayā
-Applying Rule 3:
(manujādhipa matimatām vara) iti eṣa (sarvabhūtānāṃ mahatāṃ prabhavaḥ) kīrtitaḥ samyak
mayā
-Applying Rule 4:
(manujādhipa matimatām vara) iti eṣa (sarvabhūtānāṃ mahatāṃ prabhavaḥ) mayā samyak
kīrtitaḥ
-Applying Rule 5:
(manujādhipa matimatām vara) iti eṣa (sarvabhūtānāṃ mahatāṃ prabhavaḥ) mayā samyak
kīrtitaḥ
〈/think〉
〈prose〉manujādhipa matimatām vara iti eṣa mahatām sarvabhūtānām prabhavaḥ mayā samyak
kīrtitaḥ〈/prose〉

C Few shot Prompt: Canonical Anvaya Generation for Sanskrit Verses

Few shot prompt using Anvaya Rules

Task: You are a precise prose generator for Sanskrit verses. Given the input Sanskrit śloka, convert it into their
canonical Sanskrit prose sentence using the following rules, preserving meaning.
Important: The input and output is in IAST transliteration format.

Canonical Rules for Anvaya Construction
1. Sandhi Analysis: First, resolve all external sandhi to isolate individual words. Do not break down integrated

compounds (samāsa) like ‘Ramālayam‘.

2. Clause Structuring:

• Identify all clauses (main, subordinate, direct speech).
• Arrange clauses chronologically based on the events they describe.
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• Relative clauses must precede the main clause they qualify.
• The finite verb of the main clause concludes the entire sentence.

3. Modifier Chunking: Group modifiers with their headwords. These chunks move as a single unit. Place the
following directly before the word they describe:

• Adjectives (viśeṣaṇa)
• Genitives (ṣaṣṭhī vibhakti)
• Adverbs (kriyāviśeṣaṇa)
• Negations (na)
• Appositives (samānādhikaraṇa)

4. Intra-Clause Word Order: Within each clause, arrange all words and chunks in this precise sequence:

(a) Vocative (sambodhana)
(b) Subject (kartṛ)
(c) Kārakas (in order): Locative → Ablative → Dative → Instrumental → Accusative
(d) Non-finite verbs (and their arguments)
(e) Finite verb (kriyāpada) at the very end.

5. Particle Placement: Place indeclinable particles (ca, api, tu, eva, hi) immediately after the word they modify.

Response Format
Your ENTIRE response MUST be ONLY the final Sanskrit prose sentence, enclosed within <prose> and </prose>
tags as shown:
<prose>This is the final prose sentence</prose>

Examples for the Task
Example 1:

• INPUT:
sloka: kathaṃ nu rājā vṛddhaḥ sanputraśokasamāhataḥ śokamasmatkṛtaṃ prāpya na
mriyeteti cintyate

• RESPONSE:
<prose>putraśokasamāhataḥ rājā vṛddhaḥ san asmat kṛtam śokam prāpya kathaṃ nu na
mriyeta iti cintyate</prose>

Example 2:

• INPUT:
sloka: ityeṣa sarvabhūtānāṃ mahatāṃ manujādhipa prabhavaḥ kīrtitaḥ samyaṅmayā
matimatāṃ vara

• RESPONSE:
<prose>manujādhipa matimatām vara iti eṣa mahatām sarvabhūtānām prabhavaḥ mayā
samyak kīrtitaḥ</prose>

Example 3:

• INPUT:
sloka: tatastāpasarūpeṇa prāhiṇotsa bhujaṅgamān phalapatrodakaṃ gṛhya rājñe
nāgo'tha takṣakaḥ

• RESPONSE:
<prose>tataḥ saḥ takṣakaḥ nāgaḥ rājñe phalapatrodakam gṛhya atha bhujaṅgamān
tāpasarūpeṇa prāhiṇot</prose>
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D Daṇḍa-anvaya-janaka rules

Canonical Prose ordering rules from earlier research

1. Sambodhya (vocative) comes at the initial position in the canonical order.

2. Kartṛ comes after vocative.

3. Kāraka relations follow in reverse order: adhikaraṇa, apādāna, sampradāna, karaṇa, and karman.

4. Viśeṣanas, modifiers with genitive case markers, etc. are placed before their viśeṣya.

5. Kriyāviśeṣana, pratiṣedha, etc. are placed immediately before their corresponding verb.

6. Mukhyakriyā is positioned at the end of the sentence.

7. Avyaya particles such as tu and api are placed immediately after their parent word.

8. The non-finite verbal forms are placed before the karman. All the arguments of a non-finite verb appear to their
left.

9. The kartṛ-samānādhikaraṇa and karma-samānādhikaraṇa are placed after the kartṛ and karman respec-
tively.

E Prompt Ablation Study

We systematically remove each key linguistic instruction (e.g., rules for Sandhi splitting, clause structure,
and identifying case endings) from our prompt one by one. We then measured the impact on the model
performance for each ablation using BLEU scores on the Mahābhārata dataset. The results are shown in
Table 6.

Prompt ablations BLEU Scores
P_base: Zero-shot prompt with only task-description 9.955

P_full: The complete 5-rules prompt 19.584
P_NoSandhi: Full prompt minus Rule 1 20.005
P_NoClause: Full prompt minus Rule 2 20.862

P_NoChunking: Full prompt minus Rule 3 19.633
P_NoOrder: Full prompt minus Rule 4 20.116

P_NoParticles: Full prompt minus Rule 5 19.811
CoT prompt: Full prompt with intermediate reasoning 22.572

Table 6: Result for the prompt ablation study on different prompts using the Phi4-14B model on the Mahābhārata
dataset.

While the linguistic rules outperform the zero-shot baseline (by nearly 100%), the model’s performance
was highest when not all rules were provided simultaneously. This suggests that there is an optimal balance
of instruction, and over-constraining an LLM can be marginally counterproductive. This investigation
explores not just the content of the prompt, but its format. The CoT version of our prompt proved to be
unequivocally superior, achieving a score of 22.572 - a substantial 15.3% improvement over our original
P_full prompt.

F Human Evaluation

In this section, we introduce the weighted function used by the Sanskrit poet to score the model predictions
from the finetuned ByT5-model. Following are the weighted coefficient for each rule, if being followed.
The values are given based on how important that particular rule is with respect to the anvaya generation.

1. Rule 1 = 3

2. Rule 2 = 2
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3. Rule 3 = 2

4. Rule 4 = 2

5. Rule 5 = 1

We asked the annotator, who is the co-author of the paper, pursuing his Masters, an expert in Avadhanam7

with great knowledge on Sanskrit poetry construction and prose understanding.

We report three examples of how the scores are being computed using the outputs of the finetuned
Byt5-Sanskrit model in Table 7 .

Ground truth prose Model generated BLEU Rules followed Human-scores

saḥ sugrīvam mahābalau
rāghavau ca praṇamya śūraiḥ
vānaraiḥ sahitaḥ divameva
utpapāta

saḥ sugrīvam mahābalau
rāghavau ca praṇamya śūraiḥ
vānaraiḥ sahitaḥ divameva
utpapāta ha

90.360 1, 2, 3, 4, 5 (3+2+2+2+1) = 10

saḥ kurūdvahaḥ brahmadeyā
agrahārān ca pradadau tat ca
kuntīsutaḥ rājā sarvam eva an-
vamodata

saḥ kurūdvahaḥ kurūdvahaḥ
brahmadeyāgrahārān ca
pradadau tat ca rājā kuntīsutaḥ
sarvam eva anvamodata

32.774 2, 5 (2+1) = 3

janādhipa tvām anuprāptam
manye tat bhavitavyam diṣṭyā
śuśrūṣamāṇaḥ tvām manasaḥ
jvaram mokṣyāmi

tat janādhipa tvām anuprāp-
tam bhavitavyam manye diṣṭyā
śuśrūṣamāṇaḥ tvām manasaḥ
jvaram mokṣyāmi

57.067 1, 3, 5 (3+2+1) = 6

Table 7: Scoring methodology for human evaluation

G IFT on opensource multilingual LLMs

In this study, we demonstrate how the use of Daṇḍa-anvaya-janaka (Kulkarni et al., 2019) rules impact
the Instruction Following capability of LLMs. We finetune the Phi4-14B model with and without using
the Anvaya rules. We report the BLEU scores for both the datasets.

Method Mahābhārata Rāmāyaṇa
IFT without rules 11.234 18.905
IFT with rules 33.123 31.945

Table 8: Evaluation of Anvaya rules on IFT using Phi4-14B model.

Based on the results of Table 8, we observe that providing explicit linguistic rules during Instruction
Fine-Tuning (IFT) with the phi4 model leads to a substantial improvement in performance.

H Prompting Strategies on LLMs

We conduct experiments on the following prompting strategies and compare various open and closed
source LLMs to evaluate how the models are performing on the test set of the Mahābhārata dataset and
compare the BLEU scores.

1. Zero-shot without rules (ZS w/o rules): In this prompt, we only provide the task descrip-
tion without any Anvaya rules and examples.

2. Few-shot without rules (FS w/o rules): The prompt consists of only the task description
and three poetry-prose pairs. It doesn’t contain the Anvaya rules.

7https://en.wikipedia.org/wiki/Avadhanam
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3. Few-shot with rules (FS with rules): The prompt consists of task description, custom An-
vaya rules and along with that three poetry-prose pairs as examples.

4. Chain-of-Thougt (CoT): This prompt consists of our custom step-by-step intermediate reasoning
for each Anvaya rule with two examples.

Models ZS w/o rules FS w/o rules FS with rules CoT
Open-sourced models

llama3.1-8B 6.458 - - -
gemma3-12B 4.342 8.276 9.767 10.596
phi4-14B 8.983 10.587 11.065 22.572

phi4-14B IFT 3.1855 - 11.460 30.995
Closed-sourced models

gpt4o 15.224 23.821 24.789 24.904
gpt5-mini 11.210 - 13.778 14.071

Table 9: BLEU scores for different prompting strategies on both open and closed sourced models on the Mahābhārata
dataset

We observe that the BLEU scores increases when we provide the linguistic rules as compared to giving
only task description with and without examples. The Chain-of-Thought prompting is highly beneficial
for the open-sourced models, specially on finetuned models which scored even higher than the frontier
models such as gpt4o and gpt5-mini.

357


