

Still Not There: Can LLMs Outperform Smaller Task-Specific Seq2Seq Models on the Poetry-to-Prose Conversion Task?

Kunal Kingkar Das, Manoj Balaji Jagadeeshan, Nallani Chakravartula Sahith,
Jivnesh Sandhan[†] and Pawan Goyal

IIT Kharagpur, India and [†]Kyoto University, Japan

{kunalkingkar13, manojbalaji1, ncsahith, pawang.iitk}@gmail.com, jivnesh@i.kyoto-u.ac.jp

Abstract

Large Language Models (LLMs) are increasingly treated as universal, general-purpose solutions across NLP tasks, particularly in English. But does this assumption hold for low-resource, morphologically rich languages such as Sanskrit? We address this question by comparing instruction-tuned and in-context-prompted LLMs with smaller task-specific encoder-decoder models on the Sanskrit poetry-to-prose conversion task. This task is intrinsically challenging: Sanskrit verse exhibits free word order combined with rigid metrical constraints, and its conversion to canonical prose (anvaya) requires multi-step reasoning involving compound segmentation, dependency resolution, and syntactic linearisation. This makes it an ideal testbed to evaluate whether LLMs can surpass specialised models.

For LLMs, we apply instruction fine-tuning on general-purpose models and design in-context learning templates grounded in Pāṇinian grammar and classical commentary heuristics. For task-specific modelling, we fully fine-tune a ByT5-Sanskrit Seq2Seq model. Our experiments show that domain-specific fine-tuning of ByT5-Sanskrit significantly outperforms all instruction-driven LLM approaches. Human evaluation strongly corroborates this result, with scores exhibiting high correlation with Kendall’s Tau scores. Additionally, our prompting strategies provide an alternative to fine-tuning when domain-specific verse corpora are unavailable, and the task-specific Seq2Seq model demonstrates robust generalisation on out-of-domain evaluations. Our code¹ and dataset² are publicly available.

1 Introduction

LLMs have become the default solution across NLP applications, often replacing specialised ar-

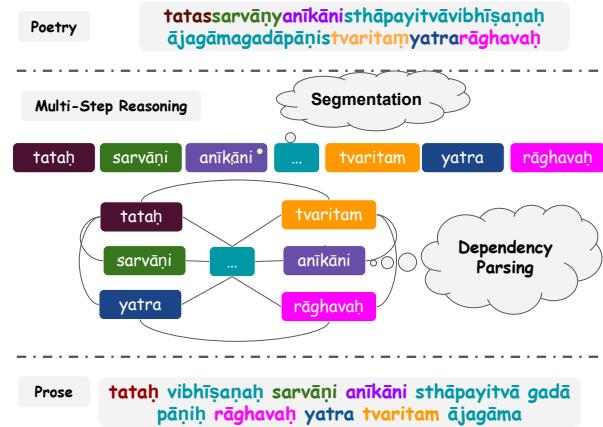


Figure 1: Illustration of the challenges in the poetry-to-prose conversion task. The top panel shows the input verse and the bottom panel shows the corresponding prose output. The middle panels depict two intermediate reasoning steps: segmenting compound/sandhi-merged tokens and performing dependency parsing for the toy example. The color-coded schema highlights sandhi phenomena where word boundaries become merged.

chitectures in English (Zhao et al., 2025; Minaee et al., 2025). In contrast, Sanskrit NLP has historically relied on carefully designed linguistic and task-specific systems for segmentation, morphology, compound processing and dependency parsing (Sarkar et al., 2025; Ray et al., 2024; Sandhan et al., 2023a). Given the recent dominance of LLMs in English, a natural question arises: are these specialised Sanskrit NLP efforts still necessary, or should future research increasingly rely on general-purpose LLMs?

To investigate this question, we focus on the Sanskrit Poetry-to-Prose Conversion task (*Anvaya*), which serves as a natural stress test for evaluating whether LLMs can surpass task-specific models. Figure 1 illustrates that Sanskrit poetry-to-prose conversion is far more challenging than standard word-order linearisation (Kulkarni, 2010; Krishna

¹<https://github.com/manojbalaji1/anvaya>

²<https://huggingface.co/collections/sangana/anvaya>

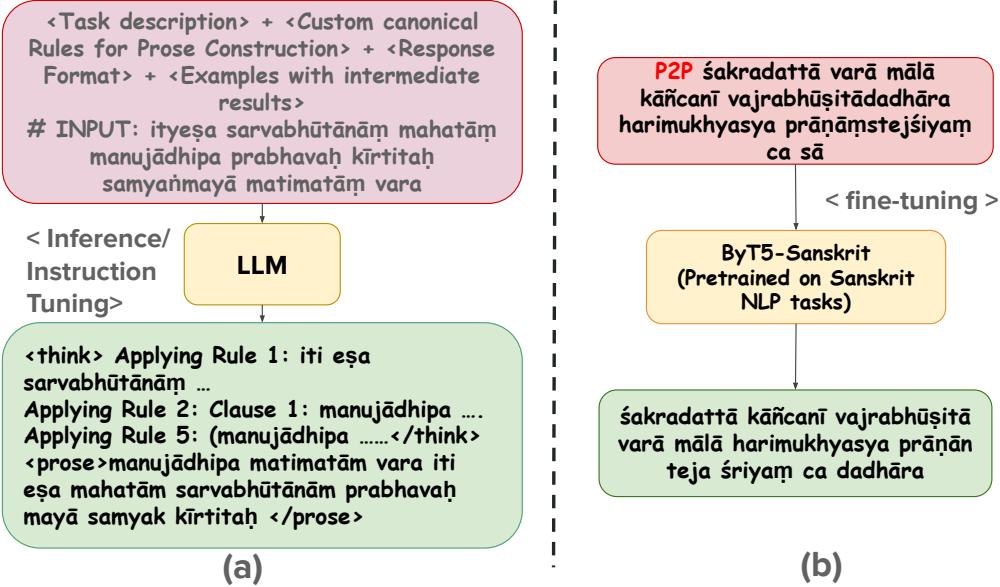


Figure 2: Illustration of the two modeling paradigms using a toy example: (a) LLM (decoder-only): We apply instruction tuning with linguistically informed templates and also evaluate in-context learning. (b) Task-specific Seq2Seq (encoder-decoder): We fine-tune the ByT5-Sanskrit model, already trained on segmentation and dependency-parsing tasks, to endow it with additional poetry-to-prose conversion capability.

et al., 2019).³ The task requires coordinated multi-step reasoning: segmenting densely fused compounds into valid constituents, inferring syntactic dependencies and linearising the resulting structure into coherent prose. These processes operate jointly rather than sequentially, relying on linguistic principles rooted in Pāṇinian grammar and classical commentary heuristics.

We compare two modelling paradigms as shown in Figure 2. For LLMs, we perform instruction fine-tuning of general-purpose models and construct in-context learning templates explicitly grounded in Pāṇinian principles. For task-specific modelling, we fully fine-tune a ByT5-Sanskrit encoder-decoder model that directly operates on byte-level representations, which are well-suited for low-resource, morphologically rich languages. Our results show that the domain-specific fine-tuning of ByT5-Sanskrit substantially outperforms all instruction-driven LLM approaches. Human evaluation strongly supports this finding, with scores showing high correlation with Kendall’s τ and confirming the limitations of current LLMs on this linguistically intensive task. At the same time, our prompting strategies offer a practical alternative when domain-specific verse corpora are un-

available, while the specialised Seq2Seq model exhibits robust generalisation to out-of-domain inputs. These observations collectively demonstrate that, despite recent advances, LLMs are still not capable of surpassing task-specific models on the structurally demanding problem of Sanskrit poetry-to-prose conversion.

2 Methodology

We frame the poetry-to-prose conversion as a Seq2seq task that implicitly requires the model to handle the sub-tasks of segmentation, dependency resolution, and reordering. We compare two modeling paradigms: (1) LLMs (Decoder-only) (2) Task-Specific models (Encoder-Decoder)

Design of Instruction prompts: The poetry to prose task requires explicit grammatical rules. We use the canonical word-ordering rules of *Dandā-anvaya-janaka* (Kulkarni et al., 2019) (Appendix D) to provide a foundational framework, but they are not comprehensive; constructions involving multiple clauses, appositives, or embedded phrases fall outside their scope. Encoding every such edge case directly into a prompt is impractical, as it would inflate the prompt and exhaust the model’s context window. To balance coverage and efficiency, we design a logical, step-by-step prompt inspired by Wei et al. (2022). Our approach integrates custom-

³Translation: Then Vibhīṣaṇa, having stationed all the armies, swiftly came, mace in hand, to the place where Rāghava (Rāma) was.

modified rules with intermediate reasoning steps in a Chain-of-Thought (CoT) format (Appendix B). To evaluate the impact of these design choices, we conduct a prompt ablation study using the Phi-4 model (Appendix E). As shown in Table 6, incorporating linguistic rules (P_{full}) yields a substantial performance gain over a basic task description (P_{base}), nearly doubling the BLEU score. Moreover, structuring the reasoning explicitly in CoT format provides an additional 15.3% improvement over the full prompt. These results confirm that structured, domain-aware prompting is essential for effectively leveraging general-purpose LLMs on this linguistically demanding task.

2.1 LLMs (Decoder-only)

We treat the problem as a multi-step process, guiding these generalist models with explicit, linguistically-grounded instructions. This is reflected in our prompt design for IFT and ICL, which breaks down the task into continuous steps.

Instruction Fine-Tuning (IFT): We evaluate whether providing explicit linguistic rules can guide models with broad capabilities, such as LLMs, toward this specialized objective, (see Appendix G). We use models from the Llama-3.x-Instruct (1B, 3B, 8B) (Meta AI, 2024a,b) , Phi-4 (14B) (Abdin et al., 2024) and, Qwen-2.5 (7B) (Qwen et al., 2025) series. The finetuning prompt is curated based on the default instruction prompt of the official models and the Anvaya rules from the canonical word-ordering rules of *Danda-anvaya-janaka* (Kulkarni et al., 2019). The complete instruction template is provided in Appendix B.

In-context Learning (ICL): The In-context learning (Brown et al., 2020) is a paradigm that allows LLMs to learn novel tasks given a few examples in the form of prompt demonstrations. This paradigm has also been explored on multilingual models with language-specific task descriptions and examples Lin et al., 2022. We leverage this paradigm by prompting various open and closed source LLMs. The models include the above stated along with gemma3 (Team et al., 2025) , gpt4o (OpenAI et al., 2024) and gpt5-mini (Open AI, 2025). The different prompting results for various models is given in Appendix H.

2.2 Task-Specific Seq2Seq model

We use ByT5-Sanskrit model (Nehrdich et al., 2024a) as a task-specific Seq2seq model. We hy-

pothesie that its domain-specific pretraining on a large Sanskrit corpus provides it with the implicit capability to handle sub-tasks like segmentation and dependency parsing within a unified generation process. We, therefore finetune it directly in a sequence-to-sequence framework.

ByT5-Sanskrit: The model is pretrained on a large, multi-domain Sanskrit corpus. The model has achieved state-of-the-art performance on key tasks such as word segmentation, dependency parsing, lemmatization, and morpho-syntactic tagging. Its strong linguistic grounding makes it well-suited for downstream finetuning on poetry-to-prose conversion. We finetune this pretrained model with our two datasets, separately. The model architecture follows that of an encoder-decoder style of a ByT5 model (Xue et al., 2022). To preserve the multitask setup of the base model, we prepend a prefix P2P before each training data following the same setup as that of T0 (Sanh et al., 2022). The schema is shown in Figure 2. The model follows iast transliteration and thus all our data is converted to iast format.

3 Experiment

Datasets: To support the task of direct Sanskrit poetry-to-prose conversion, we employ two parallel corpora derived from classical Sanskrit epics: the *Rāmāyaṇa* and the *Mahābhārata*. For the *Rāmāyaṇa* corpus, we extract verse–prose pairs from the Valmiki Ramayana digital repository⁴. The *Mahābhārata* corpus is constructed using parallel data from the Ashramvasika and Ādi Parva sections, sourced from the MAHE Mahabharata portal⁵. Both corpora provide aligned verse–prose sequences, which we use as our supervised data for the conversion task. Table 1 summarises the statistics of the two datasets, comprising a total of 22,860 parallel poetry–prose pairs.

Dataset	#Train Samples	#Test Samples
<i>Rāmāyaṇa</i>	16447	1829
<i>Mahābhārata</i>	3667	917

Table 1: Dataset Statistics for *Rāmāyaṇa* and *Mahābhārata* datasets

Evaluation Metrics: We use *sacreBLEU* (Post, 2018) with standard tokenization provides a base-

⁴<https://www.valmiki.iitk.ac.in/>

⁵<https://mahabharata.manipal.edu/>

line measure of lexical correctness through n-gram overlap; higher scores reflect the presence of key lexical units as well as partial structural alignment captured via higher-order n-grams. Second, we employ *Kendall’s Tau*, which quantifies the number of pairwise inversions needed to reorder the model’s output into the reference sequence, thereby offering a direct assessment of structural correctness and word-order faithfulness.

Main Results We conduct IFT on various multilingual LLMs, and report the results in Table 2. For each of the models, we apply PEFT via the Un-sloth library with 4-bit quantization to limit compute. We use LoRA (Hu et al., 2022) with rank $r=16$ and $=16$, injecting low-rank adapters into each layer. Prompts follow the `alpaca_prompt` (Taori et al., 2023) and the `chat-template` format augmented with canonical word-ordering rules. Training is performed with TRL’s SFTTrainer under mixed-precision (fp16 or bf16) to optimize memory and speed.

Models	<i>Mahābhārata</i>		<i>Rāmāyaṇa</i>	
	BLEU	KT	BLEU	KT
Instruction Fine Tuning with Rules prompt				
Llama3.1-8B	28.521	0.6260	27.564	0.6703
Llama3.2-1B	18.937	0.5302	16.031	0.5362
Llama3.2-3B	23.308	0.5849	21.808	0.6208
Phi4-14B	<u>33.123</u>	<u>0.6494</u>	<u>31.945</u>	<u>0.6960</u>
qwen2.5-7B	25.487	0.6209	20.467	0.6187
Full-Finetuning				
ByT5-Sanskrit	38.625	0.699	39.497	0.758

Table 2: Results for the IFT experiment on open-sourced models compared with the full finetuning of ByT5-Sanskrit model.

From Table 2, we observe that FT ByT5-Sanskrit consistently and decisively outperforms all generalist models across both datasets, achieving superior scores on both BLEU and Kendall’s Tau.

4 Analysis

4.1 Can Prompting Replace Task-Specific Fine-Tuning?

In this section, we examine whether LLMs can match the performance of task-specific Seq2Seq models. We evaluate 3 paradigms - Finetuning (FT), Chain-of-Thought prompting (CoT), and Few-Shot prompting with rules (FS-R) and report their BLEU scores in Table 3. Across all configurations, including combinations of FT and CoT, LLMs fail

to reach the performance of ByT5-Sanskrit. Finetuning yields the largest gains among LLM approaches, while CoT offers improvements only for weaker models and has limited effect on stronger systems such as GPT-4o. Overall, even with multiple prompting and tuning strategies, LLMs do not match the effectiveness of smaller task-specific Seq2Seq models for this highly structured task.

Methods	FT	CoT	FS-R	<i>Mahābhārata</i>	<i>Rāmāyaṇa</i>
ByT5-Sanskrit	✓	-	-	38.625	39.497
Phi4-14B	-	-	✓	11.065	7.763
Phi4-14B	-	✓	-	22.572	13.771
Phi4-14B	✓	-	-	33.123	31.945
Phi4-14B	✓	✓	-	30.995	24.940
gpt-4o	-	-	✓	24.789	20.472
gpt-4o	-	✓	-	24.904	21.214

Table 3: Fine-tuned ByT5-Sanskrit consistently outperforms all LLM prompting and tuning approaches.

4.2 Do Task-Specific Models Generalize Better Than LLMs?

We perform a cross-domain evaluation (Table 4) to assess whether the models learn generalizable syntactic principles or simply memorize training data. We compare the fine-tuned ByT5-Sanskrit model with the best-performing IFT model (Phi4-14B). When trained on the *Mahābhārata* and tested on the *Rāmāyaṇa*, ByT5’s BLEU score decreases from 38.63 to 20.34, a notable drop, yet still substantial, indicating effective transfer of Anvaya principles across epic styles. Overall, both models show reduced performance under domain shift, but the non-trivial cross-domain scores demonstrate genuine task learning rather than corpus memorization.

Model	<i>Mahābhārata</i>	<i>Rāmāyaṇa</i>
ByT5 finetuned on <i>Mahābhārata</i>	38.625	20.336
ByT5 finetuned on <i>Rāmāyaṇa</i>	27.420	39.497
phi4-14B finetuned on <i>Mahābhārata</i>	33.123	16.072
phi4-14B finetuned on <i>Rāmāyaṇa</i>	23.001	31.945

Table 4: Evaluation of BLEU scores for cross-domain analysis on the best performing models

4.3 Do Automatic Metrics Align with Human Judgments?

To obtain a gold-standard evaluation, we enlisted a Sanskrit poet to assess 50 outputs (25 from each epic) generated by our best-performing model, the fine-tuned ByT5-Sanskrit. Each output was rated on a 1–10 scale using a weighted scoring scheme described in Appendix F. These human scores were then compared with BLEU and Kendall’s Tau, as

reported in Table 5. Although the model achieved a moderate BLEU score of 45.82 on the *Mahābhārata* subset, the expert assigned a markedly high average score of 7.74, indicating strong prose quality. Notably, Kendall’s Tau exhibited a strong positive correlation with human judgments (0.818), whereas BLEU did not.

Dataset	BLEU	Kendall’s Tau	Human Score (out of 10)
Mahābhārata	45.82	0.818	7.74
Rāmāyaṇa	32.34	0.781	7.78

Table 5: Comparison of human evaluation metric with BLEU and Kendall Tau for a subset of samples from both the datasets. All scores are average scores

5 Related Work

Early Sanskrit NLP primarily relied on linguistically grounded, rule-based systems (Huet, 2009; Kulkarni, 2010). Although these approaches captured important grammatical regularities, they faced scalability limitations in handling real-world poetic and prose corpora. With the emergence of annotated datasets (Sandhan et al., 2022a; Krishna et al., 2017, 2020b; Sandhan et al., 2023c), research gradually shifted toward neural, task-specific models. These models span a wide range of applications, including Sanskrit-specific pretraining (Sandhan et al., 2021), Sanskrit ASR (Kumar et al., 2025), compound identification (Krishna et al., 2016; Krishnan et al., 2025; Sandhan et al., 2022b), dependency parsing (Sandhan et al., 2023b; Krishna et al., 2020a), segmentation (Nehrdich et al., 2024b; Sandhan et al., 2022c) and word-order linearisation (Krishna et al., 2019, 2020b). Within poetic transformation tasks (Jagadeeshan et al., 2025), early progress in verse-to-prose conversion was achieved using feature-rich Seq2Seq models. These architectures leverage the linguistic structure of Sanskrit, including sandhi rules, compounding templates, dependency relations, and metrical constraints.

Parallel to these developments, general-purpose multilingual and universal LLMs (OpenAI, 2023; Sanh et al., 2022; Abdin et al., 2024) have demonstrated remarkable capabilities under natural-language prompting, instruction tuning, and chain-of-thought reasoning (Kojima et al., 2022; Wei et al., 2022). Their success in English and high-resource languages has motivated attempts to extend LLM-based workflows to low-resource classical languages as well. This contrast raises a central question: with the recent dominance of LLMs,

should Sanskrit NLP continue investing in specialised linguistic and neural architectures, or can general-purpose LLMs effectively replace them? Our work directly examines this question for the Sanskrit poetry-to-prose conversion task. We find that despite their breadth, current LLMs still do not match the performance of task-specific encoder–decoder models designed for the linguistic complexities of Sanskrit.

6 Conclusion

This work examined whether general-purpose LLMs can replace task-specific models for the structurally demanding task of Sanskrit poetry-to-prose conversion. Our results show that they cannot. Despite advances in instruction-tuning and prompting, LLMs consistently underperform compared to the ByT5-Sanskrit model, which benefits from domain-specific pre-training and full fine-tuning. These findings underscore that, for low-resource and morphologically rich languages, linguistic specialization remains crucial. While prompting strategies grounded in Pāṇinian principles provide a practical alternative when annotated corpora are scarce, they fall well short of the performance achieved through task-specific fine-tuning. Cross-domain evaluation further demonstrates that ByT5-Sanskrit learns generalizable syntactic principles rather than memorizing epic-specific patterns. Finally, strong alignment between Kendall’s Tau and expert judgments highlights the importance of structure-aware metrics over surface-level measures like BLEU. Future work should generalize these results to more tasks.

Limitations

Our study is limited by computational constraints, which restricted closed-API model evaluations to only few advanced reasoning-capable models. The dataset focuses solely on epic poetry from the Rāmāyaṇa and Mahābhārata, limiting generalizability to other Sanskrit genres and meters. We rely on sacreBLEU for evaluation without human judgments, which may not fully capture semantic fidelity or prose fluency. Additionally, our use of transliterated text instead of native Devanāgarī script simplifies processing but overlooks script-specific challenges. We could not release the *Mahābhārata* data publicly due to copy-right regulations.

Acknowledgements

We would like to express our gratitude to Swarup Padhi, Pretam Ray (both from IIT Kharagpur), Harshul Surana (AI Institute, University of South Carolina), and Sriram Krishnan (Central Sanskrit University, Prayagraj) for their help in the initial phases of this work. We are also deeply grateful to Dr. Arjuna S R (Assistant Professor - Senior Scale, Manipal Academy of Higher Education, Bengaluru) for the discussions and guidance on the Mahābhārata data, which was invaluable to this study. We also thank Svarupa⁶, a 501(c)(3) non-profit initiative based in California, USA for providing us 2 x L40 GPUs for this research work. Finally, we sincerely thank the anonymous reviewers for their insightful feedback and constructive criticism, which significantly improved the quality of this paper.

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison, Russell J. Hewett, Moján Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli Saarikivi, and 8 others. 2024. *Phi-4 technical report*. *Preprint*, arXiv:2412.08905.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, and 1 others. 2020. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, and 1 others. 2022. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3.

Gérard Huet. 2009. The sanskrit heritage platform. In *Proceedings of the First International Sanskrit Computational Linguistics Symposium*, pages 3–14.

Manoj Balaji Jagadeeshan, Samarth Bhatia, Pretam Ray, Harshul Raj Surana, Priya Mishra, Annarao Kulkarni, Ganesh Ramakrishnan, Prathosh AP, Pawan Goyal, and 1 others. 2025. From plain text to poetic form: Generating metrically-constrained sanskrit verses. *arXiv preprint arXiv:2506.00815*.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language models are zero-shot reasoners. *arXiv preprint arXiv:2205.11916*.

Amrith Krishna, Ashim Gupta, Deepak Garasangi, Jivnesh Sandhan, Pavankumar Satuluri, and Pawan Goyal. 2020a. *Neural approaches for data driven dependency parsing in sanskrit*. *Preprint*, arXiv:2004.08076.

Amrith Krishna, Pavankumar Satuluri, Shubham Sharma, Apurv Kumar, and Pawan Goyal. 2016. *Compound type identification in Sanskrit: What roles do the corpus and grammar play?* In *Proceedings of the 6th Workshop on South and Southeast Asian Natural Language Processing (WSSANLP2016)*, pages 1–10, Osaka, Japan. The COLING 2016 Organizing Committee.

Anoop Kunchukuttan Krishna, Monojit Choudhury, and Pushpak Bhattacharyya. 2017. A dataset for sanskrit word segmentation. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 1058–1066.

Anoop Kunchukuttan Krishna, Abhijit Mishra, Monojit Choudhury, and Pushpak Bhattacharyya. 2019. Poetry to prose conversion in sanskrit as a machine translation problem. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 1239–1248.

Anoop Kunchukuttan Krishna, Abhijit Mishra, Monojit Choudhury, and Pushpak Bhattacharyya. 2020b. Graph-based structured models for joint morphological tagging and syntactic parsing of sanskrit. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7431–7442.

Sriram Krishnan, Pavankumar Satuluri, Amruta Barbadikar, T S Prasanna Venkatesh, and Amba Kulkarni. 2025. *Compound type identification in Sanskrit*. In *Computational Sanskrit and Digital Humanities - World Sanskrit Conference 2025*, pages 90–108, Kathmandu, Nepal. Association for Computational Linguistics.

Amba Kulkarni. 2010. Parsing indian languages using the paninian framework. *Computational Linguistics and Intelligent Text Processing*, pages 145–155.

Amba Kulkarni, Sanal Vikram, and 1 others. 2019. Dependency parser for sanskrit verses. In *Proceedings of the 6th International Sanskrit Computational Linguistics Symposium*, pages 14–27.

Sujeet Kumar, Pretam Ray, Abhinay Beerukuri, Shrey Kamoji, Manoj Balaji Jagadeeshan, and Pawan Goyal. 2025. Vedavani: A benchmark corpus for asr on vedic sanskrit poetry. *arXiv preprint arXiv:2506.00145*.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuhui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, and 1 others. 2022. Few-shot learning with multilingual generative language models. In *Proceedings of the 2022 conference on empirical methods in natural language processing*, pages 9019–9052.

⁶<https://svarupa.org/>

Meta AI. 2024a. [Llama 3.2: The next generation of open models, with vision, on-device capabilities, and more.](#)

Meta AI. 2024b. [Meta llama 3.1: New models, more languages, and a new recipe for responsible innovation at scale.](#)

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Amatriain, and Jianfeng Gao. 2025. [Large language models: A survey](#). *Preprint*, arXiv:2402.06196.

Sebastian Nehrdich, Oliver Hellwig, and Kurt Keutzer. 2024a. One model is all you need: Byt5-sanskrit, a unified model for sanskrit nlp tasks. *arXiv preprint arXiv:2409.13920*.

Sebastian Nehrdich, Oliver Hellwig, and Kurt Keutzer. 2024b. One model is all you need: Byt5-sanskrit, a unified model for sanskrit NLP tasks. In *Findings of the 2024 Conference on Empirical Methods in Natural Language Processing*.

Open AI. 2025. Introducing GPT-5 — openai.com. <https://openai.com/index/introducing-gpt-5/>. [Accessed 11-11-2025].

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, and 401 others. 2024. [Gpt-4o system card](#). *Preprint*, arXiv:2410.21276.

OpenAI. 2023. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*.

Matt Post. 2018. A call for clarity in reporting bleu scores. *arXiv preprint arXiv:1804.08771*.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, and 25 others. 2025. [Qwen2.5 technical report](#). *Preprint*, arXiv:2412.15115.

Pretam Ray, Jivnesh Sandhan, Amrith Krishna, and Pawan Goyal. 2024. [CSSL: Contrastive self-supervised learning for dependency parsing on relatively free word ordered and morphologically rich low resource languages](#). In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 8458–8466, Miami, Florida, USA. Association for Computational Linguistics.

Jivnesh Sandhan, Anshul Agarwal, Laxmidhar Behera, Tushar Sandhan, and Pawan Goyal. 2023a. [Sanskrit-Shala: A neural Sanskrit NLP toolkit with web-based interface for pedagogical and annotation purposes](#). In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, pages 103–112, Toronto, Canada. Association for Computational Linguistics.

Jivnesh Sandhan, Laxmidhar Behera, and Pawan Goyal. 2023b. [Systematic investigation of strategies tailored for low-resource settings for low-resource dependency parsing](#). In *Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics*, pages 2164–2171, Dubrovnik, Croatia. Association for Computational Linguistics.

Jivnesh Sandhan, Ayush Daksh, Om Adideva Paranjay, Laxmidhar Behera, and Pawan Goyal. 2022a. [Prabhupadavani: A code-mixed speech translation data for 25 languages](#). In *Proceedings of the 6th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature*, pages 24–29, Gyeongju, Republic of Korea. International Conference on Computational Linguistics.

Jivnesh Sandhan, Ashish Gupta, Hrishikesh Terdalkar, Tushar Sandhan, Suvendu Samanta, Laxmidhar Behera, and Pawan Goyal. 2022b. [A novel multi-task learning approach for context-sensitive compound type identification in Sanskrit](#). In *Proceedings of the 29th International Conference on Computational Linguistics*, pages 4071–4083, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.

Jivnesh Sandhan, Amrith Krishna, Ashim Gupta, Laxmidhar Behera, and Pawan Goyal. 2021. [A little pretraining goes a long way: A case study on dependency parsing task for low-resource morphologically rich languages](#). In *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop*, pages 111–120, Online. Association for Computational Linguistics.

Jivnesh Sandhan, Yaswanth Narsupalli, Sreevatsa Muppirala, Sriram Krishnan, Pavankumar Satuluri, Amba Kulkarni, and Pawan Goyal. 2023c. [DepNeCTI: Dependency-based nested compound type identification for Sanskrit](#). In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 13679–13692, Singapore. Association for Computational Linguistics.

Jivnesh Sandhan, Rathin Singha, Narein Rao, Suvendu Samanta, Laxmidhar Behera, and Pawan Goyal. 2022c. [TransLIST: A transformer-based linguistically informed Sanskrit tokenizer](#). In *Findings of the Association for Computational Linguistics: EMNLP 2022*, pages 6902–6912, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, and 21 others. 2022. [Multitask prompted training enables zero-shot task generalization](#). In *International Conference on Learning Representations*.

Sujoy Sarkar, Gourav Sarkar, Manoj Balaji Jagadeeshan, Jivnesh Sandhan, Amrit Krishna, and Pawan Goyal. 2025. [Mahānāma: A unique testbed for literary entity discovery and linking](#). In *Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing*, pages 24981–24995, Suzhou, China. Association for Computational Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B Hashimoto. 2023. Alpaca: a strong, replicable instruction-following model; 2023. *URL* <https://cfrm.stanford.edu/2023/03/13/alpaca.html>.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev, and 197 others. 2025. [Gemma 3 technical report](#). *Preprint*, arXiv:2503.19786.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V Le, and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large language models. In *Advances in Neural Information Processing Systems*.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, and Colin Raffel. 2022. Byt5: Towards a token-free future with pre-trained byte-to-byte models. *Transactions of the Association for Computational Linguistics*, 10:291–306.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, and 3 others. 2025. [A survey of large language models](#). *Preprint*, arXiv:2303.18223.

A Error Analysis for CoT outputs by GPT-4o

Our analysis of GPT-4o’s Chain-of-Thought outputs shows that although the model consistently follows the requested step-by-step structure, it often falls short when precise linguistic reasoning is required. The most frequent errors occur in syntactic organization: the relative ordering of cases such as locative and ablative is sometimes incorrect, adjectives in *samanādhikarāṇa* are misplaced, and clause sequences are occasionally wrongly arranged. Vocatives, which are expected to appear at the beginning of a sentence in standard Sanskrit prose, are sometimes positioned elsewhere. These deviations indicate that the model does not consistently internalize or generalize from the rules and examples provided.

In some cases, the errors originate even earlier, during sandhi resolution. The model occasionally hallucinates morphological forms, such as replacing an ātmanepada verb with its parasmaipada counterpart. Since later CoT steps depend on earlier ones, such initial inaccuracies propagate throughout the reasoning chain and ultimately influence the final prose output. Overall, these patterns suggest that while GPT-4o can reproduce the outward structure of a stepwise explanation, its underlying understanding of Sanskrit grammar and syntax remains uneven, and the explicit CoT format makes these limitations easier to observe.

CoT Examples

Example 1

Input sloka:

evamuktah sa rājarsistapovīryasamāśrayāt sañcārayāmāsa jarām tadā putre mahātmani

Ground-truth Prose:

tadā evam uktah sah rājarsiḥ mahātmani putre tapovīryasamāśrayāt jarām sañcārayāmāsa

Model’s CoT Output:

`<reasoning>`

-Applying Rule 1:

evam uktah sa rājarsiḥ tapovīryasamāśrayāt sañcārayāmāsa jarām tadā putre mahātmani

-Applying Rule 2:

Clause 1: sa rājarsiḥ evam uktah

Clause 2: tapovīryasamāśrayāt

Clause 3: tadā sañcārayāmāsa jarām putre mahātmani

-Applying Rule 3:

(evam uktah sa rājarsiḥ), (tapovīryasamāśrayāt) tadā (putre mahātmani jarām)
sañcārayāmāsa

-Applying Rule 4:

(evam uktah sa rājarsiḥ), (tapovīryasamāśrayāt) tadā (mahātmani putre jarām)
sañcārayāmāsa

-Applying Rule 5:

(evam uktah sa rājarsiḥ), (tapovīryasamāśrayāt) tadā (mahātmani putre jarām)
sañcārayāmāsa

`</reasoning>`

`<answer>`evam uktah sa rājarsiḥ tapovīryasamāśrayāt tadā mahātmani putre jarām
sañcārayāmāsa`</answer>`

Issue: Locative phrase (*mahātmani putre*) incorrectly placed after the ablative (*tapovīryasamāśrayāt*), violating Rule 4.3. The temporal adverb *tadā* placed mid-sentence, violating clause-order Rule 2.

Example 2

Input sloka:

kālah pacati bhūtāni kālah samharati prajāḥ nirdahantam prajāḥ kālam kālah śamayate
punah

Ground-truth Prose:

kālah bhūtāni pacati kālah prajāḥ samharati kālah punah prajāḥ nirdahantam kālam
śamayate

Model’s CoT Output:

`<reasoning>`

-Applying Rule 1:

kālah pacati bhūtāni kālah samharati prajāḥ nirdahantam prajāḥ kālam kālah śamayati
punah

-Applying Rule 2:

Clause 1: kālah pacati bhūtāni

Clause 2: kālah samharati prajāḥ

Clause 3: kālah śamayati punah kālam nirdahantam prajāḥ

-Applying Rule 3:
 kālah bhūtāni pacati, kālah prajāḥ samharati, punah kālam nirdahantam prajāḥ kālah
 śamayati

-Applying Rule 4:
 kālah bhūtāni pacati, kālah prajāḥ samharati, kālah punah prajāḥ nirdahantam kālam
 śamayati

-Applying Rule 5:
 kālah bhūtāni pacati, kālah prajāḥ samharati, kālah punah prajāḥ nirdahantam kālam
 śamayati

</reasoning>
 <answer>kālah bhūtāni pacati kālah prajāḥ samharati kālah punah prajāḥ nirdahantam kālam
 śamayati</answer>

Issue: The model hallucinates the parasmaipada form *śamayati* instead of the correct ātmanepada *śamayate*, demonstrating morphological instability.

B Appendix: Chain-of-Thought prompt using Anvaya Rules in Alpaca Format

Chain-of-Thought prompt using Anvaya Rules

TASK: You are a precise prose generator for Sanskrit verses. Given the input Sanskrit sloka, convert it into their canonical Sanskrit prose sentence using the following rules, preserving meaning. Important: The input and output is in IAST transliteration format.

Canonical Rules for Anvaya Construction:

- Sandhi Analysis:** First, resolve all external *sandhi* to isolate individual words. Do not break down integrated compounds (*saṃasa*) like 'Ramālayam'.
- Clause Structuring:**
 - Identify all clauses (main, subordinate, direct speech).
 - Arrange clauses chronologically based on the events they describe.
 - Relative clauses must precede the main clause they qualify.
 - The finite verb of the main clause concludes the entire sentence.
- Modifier Chunking:** Group modifiers with their headwords. These chunks move as a single unit. Place the following directly before the word they describe:
 - Adjectives (*viśeṣaṇa*)
 - Genitives (*saṃsthī vibhakti*)
 - Adverbs (*kriyāviśeṣaṇa*)
 - Negations (*na*)
 - Appositives (*saṃānādhikarāṇa*)
- Intra-Clause Word Order:** Within each clause, arrange all words and chunks in this precise sequence:
 - Vocative (*sambodhana*)
 - Subject (*kartṛ*)
 - Kārakas (in order): Locative → Ablative → Dative → Instrumental → Accusative
 - Non-finite verbs (and their arguments)
 - Finite verb (*kriyāpada*) at the very end.
- Particle Placement:** Place indeclinable particles (*ca, api, tu, eva, hi*) immediately after the word they modify.

RESPONSE FORMAT:

Your response should have two different opening and closing tags - <think> </think> and <prose> </prose>
 <think>A string containing your step-by-step reasoning (the Chain-of-Thought)</think>
 <prose>A string containing ONLY the final, Sanskrit prose sentence obtained at the end
 of the above thinking process.</prose>

Do NOT reveal your internal reasoning beyond the <think> tab or add any commentary - output. Only generate the reasoning explicitly inside <think> and the final prose under <prose>.

Given are some examples of sloka and its corresponding prose with its step-by-step reasoning:

Example 1:

INPUT:

sloka: *katham nu rājā vriddhah sanputraśokasamāhataḥ śokamasmatkṛtam prāpya na mriyeteti cintyate*

RESPONSE:

<think>

-Applying Rule 1:
katham nu rājā vrddhaḥ san putraśoka-samāhataḥ śokam asmat-kṛtam prāpya na mriyeta iti cintyate

-Applying Rule 2:
Clause 1: rājā vrddhaḥ san putraśoka-samāhataḥ
Clause 2: śokam asmat-kṛtam prāpya
Clause 3: katham nu na mriyeta iti cintyate
rājā vrddhaḥ san putraśoka-samāhataḥ, śokam asmat-kṛtam prāpya, katham nu na mriyeta iti cintyate

-Applying Rule 3:
(putraśoka-samāhataḥ rājā vrddhaḥ san), śokam asmat-kṛtam prāpya, katham nu na mriyeta iti cintyate

-Applying Rule 4:
(putraśoka-samāhataḥ rājā vrddhaḥ san), asmat-kṛtam śokam prāpya, katham nu na mriyeta iti cintyate

-Applying Rule 5:
(putraśoka-samāhataḥ rājā vrddhaḥ san), asmat-kṛtam śokam prāpya, katham nu na mriyeta iti cintyate

</think>

<prose>putraśoka-samāhataḥ rājā vrddhaḥ san asmat kṛtam śokam prāpya katham nu na mriyeta iti cintyate</prose>

Example 2:**INPUT:**

sloka: ityeśa sarvabhūtānāṁ mahatāṁ manujādhīpa prabhavaḥ kīrtitāḥ samyātmayā matimatāṁ vara

RESPONSE:

<think>

-Applying Rule 1:
iti eśa sarvabhūtānāṁ mahatāṁ manujādhīpa prabhavaḥ kīrtitāḥ samyak mayā matimatāṁ vara

-Applying Rule 2:
Clause 1: manujādhīpa matimatāṁ vara iti
Clause 2: eśa sarvabhūtānāṁ mahatāṁ prabhavaḥ kīrtitāḥ samyak mayā
manujādhīpa matimatāṁ vara iti eśa sarvabhūtānāṁ mahatāṁ prabhavaḥ kīrtitāḥ samyak mayā

-Applying Rule 3:
(manujādhīpa matimatāṁ vara) iti eśa (sarvabhūtānāṁ mahatāṁ prabhavaḥ) kīrtitāḥ samyak mayā

-Applying Rule 4:
(manujādhīpa matimatāṁ vara) iti eśa (sarvabhūtānāṁ mahatāṁ prabhavaḥ) mayā samyak kīrtitāḥ

-Applying Rule 5:
(manujādhīpa matimatāṁ vara) iti eśa (sarvabhūtānāṁ mahatāṁ prabhavaḥ) mayā samyak kīrtitāḥ

</think>

<prose>manujādhīpa matimatāṁ vara iti eśa mahatāṁ sarvabhūtānāṁ prabhavaḥ mayā samyak kīrtitāḥ</prose>

C Few shot Prompt: Canonical Anvaya Generation for Sanskrit Verses

Few shot prompt using Anvaya Rules

Task: You are a precise prose generator for Sanskrit verses. Given the input Sanskrit *śloka*, convert it into their canonical Sanskrit prose sentence using the following rules, preserving meaning.

Important: The input and output is in IAST transliteration format.

Canonical Rules for Anvaya Construction

1. **Sandhi Analysis:** First, resolve all external *sandhi* to isolate individual words. Do not break down integrated compounds (*samāsa*) like 'Ramālayam'.
2. **Clause Structuring:**
 - Identify all clauses (main, subordinate, direct speech).
 - Arrange clauses chronologically based on the events they describe.

- Relative clauses must precede the main clause they qualify.
- The finite verb of the main clause concludes the entire sentence.

3. **Modifier Chunking:** Group modifiers with their headwords. These chunks move as a single unit. Place the following directly before the word they describe:

- Adjectives (*viśeṣaṇa*)
- Genitives (*saṁsthī vibhakti*)
- Adverbs (*kriyāviśeṣaṇa*)
- Negations (*na*)
- Appositives (*saṁnādhi karanya*)

4. **Intra-Clause Word Order:** Within each clause, arrange all words and chunks in this precise sequence:

- (a) Vocative (*sambodhana*)
- (b) Subject (*kartṛ*)
- (c) *Kārakas* (in order): Locative → Ablative → Dative → Instrumental → Accusative
- (d) Non-finite verbs (and their arguments)
- (e) Finite verb (*kriyāpada*) at the very end.

5. **Particle Placement:** Place indeclinable particles (*ca, api, tu, eva, hi*) immediately after the word they modify.

Response Format

Your **ENTIRE** response **MUST** be **ONLY** the final Sanskrit prose sentence, enclosed within `<prose>` and `</prose>` tags as shown:

`<prose>This is the final prose sentence</prose>`

Examples for the Task

Example 1:

- **INPUT:**
sloka: katham nu rājā vr̥ddhah sanputraśokasamāhataḥ śokamasmatkṛtam prāpya na mriyeteti cintyate
- **RESPONSE:**
`<prose>putraśokasamāhataḥ rājā vr̥ddhah san asmat kṛtam śokam prāpya katham nu na mriyeta iti cintyate</prose>`

Example 2:

- **INPUT:**
sloka: ityeśa sarvabhūtānāṁ mahatāṁ manujādhipa prabhavaḥ kīrtitāḥ samyañmayā matimatāṁ vara
- **RESPONSE:**
`<prose>manujādhipa matimatāṁ vara iti eśa mahatāṁ sarvabhūtānāṁ prabhavaḥ mayā samyak kīrtitāḥ</prose>`

Example 3:

- **INPUT:**
sloka: tatastāpasarūpeṇa prāhiṇotsa bhujāṅgamān phalapatrodakam gr̥hya rājñe nāgo'tha takṣakah
- **RESPONSE:**
`<prose>tataḥ sah takṣakah nāgah rājñe phalapatrodakam gr̥hya atha bhujāṅgamān tāpasarūpeṇa prāhiṇot</prose>`

D Dāṇḍa-anvaya-janaka rules

Canonical Prose ordering rules from earlier research

1. **Sambodhya** (vocative) comes at the initial position in the canonical order.
2. **Kartr̥** comes after vocative.
3. **Kāraka** relations follow in reverse order: *adhikarāṇa, apādāna, sampradāna, karaṇa, and karman*.
4. **Viśeṣanas**, modifiers with genitive case markers, etc. are placed before their **viśeṣya**.
5. **Kriyāviśeṣana, pratiṣedha**, etc. are placed immediately before their corresponding verb.
6. **Mukhyakriyā** is positioned at the end of the sentence.
7. **Avyaya** particles such as *tu* and *api* are placed immediately after their parent word.
8. The non-finite verbal forms are placed before the **karman**. All the arguments of a non-finite verb appear to their left.
9. The **kartr̥-samānādhikarāṇa** and **karma-samānādhikarāṇa** are placed after the **kartr̥** and **karman** respectively.

E Prompt Ablation Study

We systematically remove each key linguistic instruction (e.g., rules for Sandhi splitting, clause structure, and identifying case endings) from our prompt one by one. We then measured the impact on the model performance for each ablation using BLEU scores on the *Mahābhārata* dataset. The results are shown in Table 6.

Prompt ablations	BLEU Scores
P_base: Zero-shot prompt with only task-description	9.955
P_full: The complete 5-rules prompt	19.584
P_NoSandhi: Full prompt minus Rule 1	20.005
P_NoClause: Full prompt minus Rule 2	20.862
P_NoChunking: Full prompt minus Rule 3	19.633
P_NoOrder: Full prompt minus Rule 4	20.116
P_NoParticles: Full prompt minus Rule 5	19.811
CoT prompt: Full prompt with intermediate reasoning	22.572

Table 6: Result for the prompt ablation study on different prompts using the Phi4-14B model on the *Mahābhārata* dataset.

While the linguistic rules outperform the zero-shot baseline (by nearly 100%), the model’s performance was highest when not all rules were provided simultaneously. This suggests that there is an optimal balance of instruction, and over-constraining an LLM can be marginally counterproductive. This investigation explores not just the content of the prompt, but its format. The CoT version of our prompt proved to be unequivocally superior, achieving a score of 22.572 - a substantial 15.3% improvement over our original P_full prompt.

F Human Evaluation

In this section, we introduce the weighted function used by the Sanskrit poet to score the model predictions from the finetuned ByT5-model. Following are the weighted coefficient for each rule, if being followed. The values are given based on how important that particular rule is with respect to the *anvaya* generation.

1. Rule 1 = 3
2. Rule 2 = 2

3. Rule 3 = 2
4. Rule 4 = 2
5. Rule 5 = 1

We asked the annotator, who is the co-author of the paper, pursuing his Masters, an expert in Avadhanam⁷ with great knowledge on Sanskrit poetry construction and prose understanding.

We report three examples of how the scores are being computed using the outputs of the finetuned Byt5-Sanskrit model in Table 7.

Ground truth prose	Model generated	BLEU	Rules followed	Human-scores
sah sugrīvam mahābalau rāghavau ca prāṇamya śūraiḥ vānaraiḥ sahitāḥ divameva utpapāta	sah sugrīvam mahābalau rāghavau ca prāṇamya śūraiḥ vānaraiḥ sahitāḥ divameva utpapāta ha	90.360	1, 2, 3, 4, 5	(3+2+2+2+1) = 10
sah kurūdvahāḥ brahmadeyā agrahārān ca pradādau tat ca kuntīsutaḥ rājā sarvam eva an- vamodata	sah kurūdvahāḥ kurūdvahāḥ brahmadeyāgraḥārān ca pradādau tat ca rājā kuntīsutaḥ sarvam eva anvamodata	32.774	2, 5	(2+1) = 3
janādhipa tvām anuprāptam manye tat bhavitavyam diṣṭyā śuśrūṣamāṇaḥ tvām manasāḥ jvaram mokṣyāmi	tat janādhipa tvām anuprāp- tam bhavitavyam manye diṣṭyā śuśrūṣamāṇaḥ tvām manasāḥ jvaram mokṣyāmi	57.067	1, 3, 5	(3+2+1) = 6

Table 7: Scoring methodology for human evaluation

G IFT on opensource multilingual LLMs

In this study, we demonstrate how the use of *Danḍa-anvaya-janaka* (Kulkarni et al., 2019) rules impact the Instruction Following capability of LLMs. We finetune the Phi4-14B model with and without using the *Anvaya* rules. We report the BLEU scores for both the datasets.

Method	Mahābhārata	Rāmāyaṇa
IFT without rules	11.234	18.905
IFT with rules	33.123	31.945

Table 8: Evaluation of *Anvaya* rules on IFT using Phi4-14B model.

Based on the results of Table 8, we observe that providing explicit linguistic rules during Instruction Fine-Tuning (IFT) with the phi4 model leads to a substantial improvement in performance.

H Prompting Strategies on LLMs

We conduct experiments on the following prompting strategies and compare various open and closed source LLMs to evaluate how the models are performing on the test set of the Mahābhārata dataset and compare the BLEU scores.

1. Zero-shot without rules (ZS w/o rules): In this prompt, we only provide the task description without any *Anvaya* rules and examples.
2. Few-shot without rules (FS w/o rules): The prompt consists of only the task description and three poetry-prose pairs. It doesn't contain the *Anvaya* rules.

⁷<https://en.wikipedia.org/wiki/Avadhanam>

3. **Few-shot with rules (FS with rules):** The prompt consists of task description, custom *Anvaya rules* and along with that three poetry-prose pairs as examples.
4. **Chain-of-Thought (CoT):** This prompt consists of our custom step-by-step intermediate reasoning for each *Anvaya* rule with two examples.

Models	ZS w/o rules	FS w/o rules	FS with rules	CoT
Open-sourced models				
llama3.1-8B	6.458	-	-	-
gemma3-12B	4.342	8.276	9.767	10.596
phi4-14B	8.983	10.587	11.065	22.572
phi4-14B IFT	3.1855	-	11.460	30.995
Closed-sourced models				
gpt4o	15.224	23.821	24.789	24.904
gpt5-mini	11.210	-	13.778	14.071

Table 9: BLEU scores for different prompting strategies on both open and closed sourced models on the Mahābhārata dataset

We observe that the BLEU scores increases when we provide the linguistic rules as compared to giving only task description with and without examples. The Chain-of-Thought prompting is highly beneficial for the open-sourced models, specially on finetuned models which scored even higher than the frontier models such as gpt4o and gpt5-mini.