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Abstract
Limited data for low-resource languages typ-
ically yield weaker language models (LMs).
Since pre-training is compute-intensive, it is
more pragmatic to target improvements during
fine-tuning. In this work, we examine the use
of Active Learning (AL) methods augmented
by structured data selection strategies which we
term ’Active Learning schedulers,’ to boost the
fine-tuning process with a limited amount of
training data. We connect the AL to data clus-
tering and propose an integrated fine-tuning
pipeline that systematically combines AL, clus-
tering, and dynamic data selection schedulers to
enhance model’s performance. Experiments in
the Slovak, Maltese, Icelandic and Turkish lan-
guages show that the use of clustering during
the fine-tuning phase together with AL schedul-
ing can simultaneously produce annotation sav-
ings up to 30% and performance improvements
up to four F1 score points, while also providing
better fine-tuning stability.

1 Introduction

LMs such as BERT (Devlin, 2018) are consid-
ered breakthrough models in many areas. Al-
though nowadays most of the research is done using
prompting techniques on large foundational models
(Shin et al., 2023), BERT family models are still
used in lower-resource scenarios for a number of
reasons. They allow full control1 over fine-tuning,
and their size and hardware requirements make
them more easily feasible to use in the research and
real-world environments. In contrast, using com-
mercial models at scale can be expensive and often
relies on Internet connection, meaning their use is
not possible when the data in question cannot be
shared with third parties (e.g. for privacy reasons).

There is a huge performance gap between high-
resource languages, such as English, and lower-
resourced languages in both prompting models

1By full control we mean direct control over hyperparame-
ters, architectural extensions, and training regimes.

and BERT-like models. However, this gap can be
closed with clever modifications in both training
phases, with the BERT family models being easier
to train than GPT-like models (Achiam et al., 2023)
due to their size and data requirements.

BERT’s effectiveness often depends on large an-
notated datasets, highlighting the need for more
efficient data exploration under limited annota-
tion budgets. To address this, we propose a novel
fine-tuning pipeline for lower-resourced language
BERT models on the classification task. Our lan-
guages for the experiments representing lower-
resourced languages will be Maltese, Icelandic,
and Slovak, the last being the most popular of them
spoken by approximately 5 million people (Short,
2018). To show possible generalization on more
popular languages not considered low-resource but
rather medium- to high-resource, we also conduct
experiments on the Turkish language.

2 Related Work

The definition of low-resource can be interpreted in
different ways depending on the language or setting
(Nigatu et al., 2024). For the purpose of this study,
we define low-resource operationally as a setting
with severely limited annotated data.

Popular techniques in low-resource scenarios
include adapting smaller models trained in En-
glish to other languages by modifying parts of
the architecture (Al-Sallab et al., 2017) or transfer-
ring the knowledge of models pre-trained in high-
resource languages to other models fine-tunable in
low-resource languages (Heinzerling and Strube,
2017; Bojanowski et al., 2017). One of the alter-
native approaches, where the model itself helps
identify the data samples which will help it to
learn more efficiently, is called Active learning
(Settles, 2009). Popular AL methods for classifica-
tion tasks are pool-based methods using uncertainty
sampling (Lewis, 1995) such as entropy (Shannon,
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1948) sampling. Fine-tuning with Active learn-
ing can also be enhanced by using adapter modules
(Jukić and Šnajder, 2023), Reinforcement Learning
(Wertz et al., 2023), or Epistemic Neural networks
(ENNs) (Osband et al., 2022). Some methods (es-
pecially when fine-tuning with AL methods with-
out any other enhancements) may be less effective
when used with LMs due to their inconsistency cre-
ated by selecting harmful unlearnable outliers or
samples that create instability in the optimization
process 2 (D’Arcy and Downey, 2022).

One promising idea is to cluster data based on
the quality of their representation. For example,
compared to the TF-IDF method (Xie et al., 2016),
BERT showed better results in many metrics (Sub-
akti et al., 2022). Clustering can also be used for the
initialization of AL (Nguyen and Smeulders, 2004)
to propagate the classification decision of the clas-
sifier trained on representative samples. Cluster-
ing can also be performed during the training pro-
cess after each iteration as in Hassan and Alikhani
(2023), where the top ten most informative samples
of each cluster are used to train the model.

While prior work has explored architectural mod-
ifications, data efficiency techniques, and stability
enhancements individually, our work provides a
comprehensive empirical investigation into their
concurrent application and interaction to enhance
low-resource BERT fine-tuning, focusing on the
interplay between architectural modifications, data
selection efficiency, and fine-tuning stability.

3 Methodologies

3.1 Epistemic neural network

To improve the architecture, we use ENNs that are
particularly well-suited for low-resource sentiment
analysis because they explicitly model epistemic
uncertainty (and differentiate from aleatoric un-
certainty), allowing the active learning process to
focus on samples where the model is most unsure.
This leads to more efficient exploration of the data
space and reduces the risk of overfitting to noisy
labels. ENNs fθ consist of two parts: base model
(BERT) bς and Epinet network eη. The Epinet, as
described in Osband et al. (2023), consists of two
Multi-layer perceptrons with one hidden layer each
called prior and learnable. The prior network eP

2The definition of instability is taken from D’Arcy and
Downey (2022) to be the variance in test set accuracy observed
when training multiple different random-seeded models on the
same set of data.

has no trainable parameters and serves to induce
some prior knowledge about uncertainty as a vari-
ation of the ENN output (Osband et al., 2018). In
the learnable network eLη , weights are initialized
with Glorot initialization (Glorot and Bengio, 2010)
and trained to provide meaningful predictions for
all probable epistemic index values z. The men-
tioned process can be described by the equation
fθ(x, z) = bς(x) + eη(rς(x), z).

The output of the Epinet e is calculated as the
sum of the results of learnable eLη and prior network
eP : eη(r(x), z) = eP (r(x), z) + eLη (r(x), z).

The Epinet input is comprised of the features of
the base network rς(x) (in our case the final hidden
layer) on an input sample x and an epistemic index
z sampled from a standard Gaussian distribution.

3.2 Active learning
We focus on three AL methods: entropy, bald and
variance sampling (Osband et al., 2022). These
methods called acquisition functions prioritize sam-
ples whose labels are most uncertain to the model.
For entropy defined as H[p] =

∑
x p(x)logp(x),

the entropy acquisition function is defined as
gentropy(θ, x) = H[p(·|x, θ)]. The other two meth-
ods use an epistemic index to determine uncer-
tainty. Bald acquisition function gbald(θ, x) =
H[p(·|θ, x)] −

∫
z Pz(dz)H[p(·|θ, x, z)] is based

on mutual information gain. Variance function
gvariance(θ, x) =

∑
c

∫
z Pz(dz)(p(c|θ, x, z) −

p(c|θ, x))2 uses variation in probabilities.
The model is fine-tuned on a task it has not been

trained on. Therefore, a new classification random-
weighted layer could make the predictions random
at first. This phenomenon, known as cold start, can
create a situation where the model is assumed to
make non-sensical decisions, since it has not yet
been trained on any annotated data (Jin et al., 2022).
To examine this, we fine-tune the model in both
cold (classic fine-tuning) and "warm" manner (first
epoch uses half of the dataset at random).

3.3 Data sampling
Data sampling in AL can be performed after each
training epoch or after each training step (Settles,
2009), affecting both the frequency of data acqui-
sition and the computational cost (e.g., loading a
subset vs the entire dataset). In experiments, we
adopt training-step sampling. Departing from the
conventional AL framework, we introduce two dis-
tinct fine-tuning approaches: Accumulating and
Recalculating. In the Accumulating approach,

261



all data sampled in previous epochs are retained and
used for subsequent fine-tuning aligning with stan-
dard AL practices. The Recalculating approach
re-samples data in each epoch independently, as if
each were the initial training iteration. This design
gives the model greater flexibility to select informa-
tive data at each stage. While Accumulating fine-
tuning is widely used, Recalculating fine-tuning
represents a novel contribution. Further details on
these methods are provided in Appendix A.

3.4 Clustering
To support the findings of Hu et al. (2010), we apply
Agglomerative Hierarchical Clustering (Voorhees,
1986) using Ward’s linkage, shown effective in cap-
turing semantic relationships in text embeddings
(Sharma et al., 2019). Clustering starts with each
sample’s embedding as a separate cluster, sequen-
tially merging them bottom-up. We applied clus-
tering in two modes: (1) init clustering, performed
before fine-tuning to sample from each cluster, and
(2) dynamic clustering, repeated before each epoch
similarly to Hassan and Alikhani (2023).

To test the dependence of acquisition func-
tions on the model itself, we also propose
Furthest-batch acquisition function that selects
samples furthest from the medoid (sample closest
to centroid) of cluster. This function is motivated
by the hypothesis that samples located far from the
medoid represent boundary cases or diverse view-
points within the cluster that are not necessarily
outliers. By prioritizing these samples, we aim to
improve the model’s ability to generalize to unseen
data. It also enables comparison with uncertainty-
based methods and may reveal the extent to which
fine-tuning depends on the model vs. dataset.

3.5 Active learning scheduling
Similarly to Gonsior et al. (2024) but more gen-
eralizing, we introduce several Active Learning
schedulers that modulate the number of samples
used. We hypothesize that this may reduce reliance
on harmful outliers, minimize annotation costs, and
help prevent issues like performance degradation.

The samples are passed through the model to ob-
tain feature vectors, which are evaluated by the AL
method to yield values (AL results) and the cor-
responding indices indicating sample ranking (AL
order). The base scheduler selects 75% of the data
according to AL order, functioning similarly to
standard AL. The prob scheduler also selects 75%,
but samples without replacement using normalized

AL results as probabilities.
Linear schedulers reduce annotation usage pro-

gressively after each epoch. They initially select
50% of the data for both warm and cold fine-tuning,
decreasing to 20%, 15%, 10%, and finally 5%. Like
the base scheduler, they either select deterministi-
cally by AL order (linear scheduler) or probabilis-
tically (linear prob scheduler).

Dif-build and dif-build-unique schedulers oper-
ate differently. They sort AL results, compute the
average pairwise difference, and locate the first in-
dex where the next difference exceeds this average.
This index sets the sampling threshold. Sampling
proceeds as in prob schedulers, either with or with-
out replacement, forming different variants.

4 Experiments

We trained the models for 5 epochs for the senti-
ment analysis task while using the Adam optimizer
(Kingma, 2014). All models are based on the BERT
architecture and pre-trained in the respective lower-
resourced language, namely SlovakBERT (Pikuliak
et al., 2021), IceBERT (Snæbjarnarson et al., 2022),
BERTu (Micallef et al., 2022) and BERTurk mod-
els (Schweter, 2020). All hyperparameters are de-
tailed in the Appendix A. As baselines, we employ
the classic BERT fine-tuning approach, wherein a
pre-trained BERT model is further trained on the
downstream task with task-specific labels.

The assumption of low-resource setting holds
true without modifications in experiments with lan-
guages spoken by small amounts of people, such
as Maltese. To simulate a low-resource scenario,
we intentionally down-sample the dataset for lan-
guages such as Turkish, as described in Appendix
A. This enables controlled comparison across lan-
guages and aligns with recent approaches.

Language Size Split #Classes
Slovak 30k 83-8.5-8.5 3
Maltese 851 70-10-20 2
Icelandic 25k 80-10-10 2
Turkish 25k 80-10-10 3

Table 1: Specifications of datasets and their splits.

For evaluation, we used monolingual sentiment
analysis datasets detailed in Table 1. In experi-
ments, we fine-tune each model three times and
report the average. More details are presented in
the Appendix A.
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5 Results

The key results of our study are summarized be-
low, with additional details provided in Appendix
A. Table 2 presents a comparison between the base
model and the best-performing AL model based on
F1 score. Models using Active Learning largely
outperform baseline models. We also performed a
Student’s paired t-test to evaluate the statistical sig-
nificance of our findings, with a significance level
of p < 0.05. All top-performing AL models incor-
porate both clustering and scheduling strategies.

Model Baseline F1 Best AL F1
SlovakBERT 70.98 71.83
BERTu 82.08 86.10†

IceBERT 77.89 80.06†

BERTurk 91.06 92.16†

Table 2: Results of the best AL models according to the
F1 score compared to their respective baselines, with
† indicating statistical significance.

Figure 1 shows the dataset fraction needed to
reach the F1 scores in Table 2, suggesting that
data usage often drops markedly even as perfor-
mance improves. Even more, to reach at least the
baseline performance with Active Learning mod-
els, amount of data samples needed reduce dras-
tically. We present this fact with Figure 2. It is
apparent that if the fine-tuning is more focused on
saving data annotations rather than enhancing per-
formance (but still keeping it at least comparable),
the AL is far superior to the classic fine-tuning
process. For more details see Appendix A.4.

Experiments also indicate that AL contributes
to more stable fine-tuning, with fewer instances
of performance degradation. This is presented in
Figure3, where for the sake of clarity we show the
comparison of SlovakBERT base model and best
AL model performance comparison.

Our results show that the proposed methods are
most effective when combined. To assess indi-
vidual component contributions in Active Learn-
ing, we conducted controlled experiments with the
BERTurk model, keeping all settings constant (ac-
cumulating sampling, cold start, vanilla BERT ar-
chitecture, no clustering, no scheduling, and en-
tropy acquisition) while modifying one component
at a time. Table 3 presents the best performing
configurations based on the F1 score.

Finally, we also present a comparison of the ac-
quisitions functions. In Figure 4, we show a com-

Figure 1: Data used in the fine-tuning of the models.

Figure 2: Data used in the fine-tuning of the models
reaching baseline performance while using fewest data
samples possible.

parison of the best IceBERT models using different
acquisition functions. Results indicate that using
any acquisition function apart from Furthest-batch
is beneficial to the fine-tuning while differences
among them are very small. Furthest-batch seems
to have similar performance as the baseline model
but with much less data used (see Appendix A.4 for
more information). Interestingly, while fine-tuning
for more epochs seems to be crucial for most of
the acquistion function to enhance the performance
to the maximum, baseline model started to slightly
decline after just 2 epochs.

To evaluate parameter-efficient strategies, we
conducted controlled experiments using LoRA
adapters (Hu et al., 2022), keeping data splits and
training sizes identical to the full fine-tuning base-
line. We explored multiple configurations by vary-
ing LoRA rank, learning rate, and dropout. Across
all languages and setups, LoRA consistently un-
derperformed full fine-tuning, and performance de-
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Figure 3: Learning curves of SlovakBERT models.

Characteristic F1 score % of data
Dynamic clustering 91.85 96.81%
Recalculating sampling 91.70 81.86%
Prob scheduler 91.31 97.54%
Bald acquisition 91.15 96.4%
ENN architecture 91.14 97.54%
Linear scheduler 91.10 61.49%

Table 3: Comparison of the best BERTurk results of
different fine-tuning settings.

graded substantially on the low-resource Maltese
condition. These results contrast with prior work
reporting strong LoRA performance on large-scale
English benchmarks, indicating that the parameter-
efficient updates were not expressive enough to
model the language-specific sentiment patterns re-
quired in our experiments.

6 Conclusions

Our findings demonstrate that integrating Active
Learning with clustering and scheduling yields sig-
nificant improvements for low-resource language
models. This systematic approach reduced annota-
tion requirements by up to 27.6% for IceBERT and
18.1% for BERTurk while simultaneously improv-
ing performance, with statistically significant gains
in the F1 score of up to 4.02 points for BERTu and
2.17 points for IceBERT. Furthermore, combined
methodology notably improved fine-tuning stabil-
ity, reducing performance fluctuations across train-
ing epochs. While effectiveness varies by language
and dataset characteristics, empirical evidence con-
sistently supports the value of our approach, possi-
bly generalizing to medium and high-resource lan-
guages such as Turkish, where particularly the re-
calculating sampling strategy and linear scheduler

Figure 4: Learning curves of IceBERT models with
different acquistion functions.

Language Best AL Best LoRA
Slovak +1.20% -5.11%
Maltese +4.90% -51.00%
Icelandic +2.79% -0.60%
Turkish +1.21% -0.96%

Table 4: Relative performance changes in F1 score us-
ing Active Learning or LoRA when compared to the
respective baseline models.

achieved a strong result with 81.9% and 61.49% of
training data, respectively. Moreover, the proposed
fine-tuning pipeline can be easily extended to other
classification tasks, such as Named Entity Recogni-
tion, where only slight changes to architecture and
acquisition functions are needed.

7 Limitations

7.1 Datasets

The datasets used in this work were expected to
be reasonably small, either by choice (e.g., using a
portion of a large dataset) or by necessity. It is un-
derstandable that the size of the dataset influences
expected savings on annotations. In this work, 2 of
the datasets can already be considered small. From
two of the datasets with a reasonable amount of
data, only a smart portion was used to show the
possible enhancements presented in this work.

7.2 Models

In comparison to state-of-the-art architectures, the
BERT and similar models used in our experiments
are only a fraction of their size. Nevertheless, for
fine-tuning, low-resource languages do not have
many other choices. As BERT models are still
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relatively popular, the decision to use them in our
work was made, although we acknowledge that for
some (or most) use cases, using bigger decoder-
style models can obtain better performance.

7.3 Experiments

For each combination of model’s important fine-
tuning characteristic (AL method, AL scheduling,
clustering, ...), we conducted three runs and cal-
culated the average that represents the final result.
While this aims to eliminate model bias, a larger
number of runs might help reduce it much more.

For Turkish and Icelandic, we simulate low-
resource conditions via controlled downsampling,
which, while enabling fair comparison, may not
fully capture the challenges of genuine low-
resource environments.

Due to computational constraints, we were un-
able to explore all possible combinations of AL
methods, clustering techniques, and scheduling
strategies. Future work should investigate a wider
range of configurations, particularly those excluded
from this study as mentioned in Appendix A.3.

7.4 Results

We argue that the presented results show that using
Active Learning with clustering and scheduling en-
hances the fine-tuning process of lower-resourced
language BERT models while also enhancing F1
scores. Further experiments on more languages
could strenghten this claim; nevertheless, our re-
sults on bigger and more used language (Turk-
ish) can serve as a form of generalization on also
medium-resource languages.

The differences observed across experimental
setups are likely attributable to the specific char-
acteristics of each language model and dataset.
While our results demonstrate that Active Learning
and clustering generally lead to improved perfor-
mance, we acknowledge that tailoring acquisition
functions and scheduling strategies to individual
model–dataset combinations can yield even greater
gains. Therefore, it is highly plausible that con-
ducting targeted experiments with varied acquisi-
tion functions and scheduling approaches is always
beneficial for identifying the most effective config-
uration in each specific context.
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A Appendix

A.1 Datasets
The largest dataset used was the Slovak ČSFD dataset (Štefánik et al., 2023) with 30k annotated samples
containing movie reviews. Although the original dataset includes six sentiment labels, we simplify the
classification task to three classes by applying the following mapping: [0, 1 → 0], [2, 3 → 1], and [4, 5 →
2].

While Turkish is not a low-resource language, we intentionally downsampled the dataset comprising
tweets and other sentiment-related text samples to 5% to investigate the performance of active learning
methods in extremely data-scarce scenarios. This allowed us to evaluate the robustness of our approach
when annotation budgets are severely limited.

For the Maltese language, we use the joint datasets of (Cortis and Davis, 2019) and (Dingli and Sant,
2016) containing data originating from comments on news articles and social media posts. Similarly
as in Turkish dataset, in Icelandic dataset, which was created by translating IMDB movie reviews, we
down-sample to 25k annotated data samples to mimic low-resource scenario 3. Selection of the relatively
small and specialized datasets stems from the setup of our research task, which tries to mimic many
real-life scenarios (particularly in the context of lower-resourced languages), in which only a small
task-specific dataset is available and/or where expert annotation is very costly. This in turn creates the
need to make maximal use of the available data. Additional details about datasets are presented in Table 5.

Dataset Class 1 Class 2 Class 3 Avg token number
Slovak 33.2% 33.4% 33.4% 368
Maltese 60% 40% - 123
Icelandic 50% 50% - 1367
Turkish 53.5% 34.9% 11.6% 140

Table 5: Specifications of datasets’ class distribition and average token length.

A.2 Models
Some of the most important specifications of the models used can be seen in Table 6:

Characteristic\Model SlovakBERT IceBERT BERTurk BERTu
Architecture RoBERTa RoBERTa BERT BERT

#Layers 12 12 12 12
#Heads 12 12 12 12

Hidden size 768 768 768 768
#Parameters 125M 125M 109M 560M

#Training tokens 4.6B 2.7B 44.04B 500M
#Training steps 300K 225K 2M 1M
Vocabulary size 50K 50K 32K 52K

Pretraining data size 19.35GB 15.8GB 35GB 2.52GB

Table 6: Important specifications of models used in experiments.

There are two main reasons why we use BERT-based models:

• For many lower-resourced languages, BERT-based models are the best (and often the only) available
Pre-trained Language Model option.

• The model family is fairly easy to use, as well as resource-efficient, and as such has a higher chance
to reach a wider research audience.

3All datasets are available on Huggingface website, namely Slovak sk_csfd-movie-reviews, Turkish turkish-sentiment-
analysis-dataset, Maltese maltese_sa and and Icelandic imdb-isl-mideind-translate.
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A.3 Experiments
Table 7 presents important parameters for our low-setting environment:

Parameter Value
Epochs 5
Max text length 64
Batch size 32
Learning rate 5 ∗ 10−5

Table 7: Specifications of parameters used in experiments.

If we assume that at the start of the training (in our case fine-tuning) we have an unlabeled pool U0

with all data samples from the dataset and an empty annotated data pool D0, the difference in one training
epoch between Accumulating and Recalculating fine-tuning can be summarized as:

Accumulating (building) fine-tuning

1. Load data samples from previous epoch unlabeled data pool Ue−1 and used annotated data pool
De−1.

2. Sample up to 75% new data samples from Ue−1, annotate them and add them to De−1, thus creating
new data pools Ue (without newly sampled data) and De (with newly sampled data).

3. Fine-tune the model with all the accumulated data in the dataset De.

Recalculating fine-tuning

1. Sample up to 75% of the data samples from U0, annotate them and add them to empty D0, while
retaining the same data pool U0 and creating the data pool De (with sampled data).

2. Fine-tune the model with all the data in the dataset De.

3. Delete the whole De.

As the model’s weights are changing and the model is learning, it can decide that some of the data
samples used previously can be no longer helpful or even misleading (e.g. outliers). This fact is not
relevant in Accumulating fine-tuning, which uses these samples nevertheless, but serves as a motivation
for Recalculating fine-tuning. One important fact of the Recalculating fine-tuning: since this happens in
multiple epochs, some data can be chosen multiple times (and some will not be chosen at all); still, most
of the dataset or the whole dataset may be used (more precisely: the data sample can be chosen multiple
times, but it will be used at most once during each training epoch since the annotated dataset is built from
fresh every epoch.).

Some of the combinations of acquisition function, architecture, clustering, and scheduling are not
possible or helpful due to different circumstances. To save on computational resources, their exploration
was not conducted. In Tables 8, 9 and 10, we show which of the combinations were not present in our
experimental setups:

Option No clustering Init clustering Dynamic clustering
Base / prob scheduler ✓ ✓ ✓

Linear schedulers ✓ ✥ ✓

Dif-build schedulers ✗ ✓ ✓

Table 8: Setups of different clusterings and schedulers used in the experiments.

Due to the design of dif-build schedulers, it is appropriate to evaluate their performance only on
data drawn from the same clusters, rather than from random samples across the entire dataset. Init
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Option Classic AF Epistemic AF Furthest-batch AF
Accumulating base BERT ✓ ✗ ✓

Accumulating ENN ✓ ✓ ✓

Recalculating base BERT ✓ ✗ ✓

Recalculating ENN ✓ ✓ ✓

Table 9: Setups of different acquisition functions and architecture types used in the experiments.

Option Classic AF Epistemic AF Furthest-batch AF
Base scheduler ✓ ✓ ✓

Prob scheduler ✓ ✓ ✗

Linear scheduler ✓ ✓ ✓

Linear prob scheduler ✓ ✓ ✗

Dif-build schedulers ✓ ✓ ✗

Table 10: Setups of different acquisition functions and schedulers used in the experiments.

clustering plays a role solely during the first epoch of fine-tuning. Consequently, combining it with linear
schedulers—which adjust the volume of sampled data across epochs—offers no advantage over dynamic
clustering (marked as ✥).

Epistemic acquisition functions inherently rely on the epistemic index and the broader Epistemic neural
network architecture. In contrast, the furthest-batch acquisition function is based exclusively on data
sample characteristics. As a result, model-dependent schedulers such as prob, linear prob and dif-build
are not applicable when using furthest-batch. Additionally, because furthest-batch determines acquisition
based on distances from medoids, it requires clustering and cannot operate without it.

Although combining furthest-batch with dynamic clustering is feasible, it does not offer any benefit
over using it with init clustering. This is because the selected samples remain unchanged across epochs,
rendering dynamic updates unnecessary in this case.

A.4 Results
This section presents supplementary results not included in the main text. In Section 5, we compared the
best-performing models against their respective baselines and analyzed the individual contributions of key
components of Active Learning (AL). Here, we extend this analysis by evaluating how different aspects
of AL, when combined, influence fine-tuning performance—reflecting more realistic usage scenarios.

Specifically, we report the average F1 score gains or losses of models incorporating particular AL
characteristics (in combination with others), relative to their corresponding baselines. These comparisons
are aggregated across all models and languages, along with the percentage of labeled data utilized. After
that, we report individual statistics as in Table 3 for other languages (Slovak, Icelandic, Maltese).

Subsequently, we present the learning curves for BERTu, IceBERT, and BERTurk models to illustrate
performance trends throughout the fine-tuning process. Finally, to facilitate direct comparisons of various
fine-tuning configurations, we include a series of tables showing the best results per language for the
following model variants: (i) the vanilla base model, (ii) the model with only Active Learning, (iii) Active
Learning with clustering, and (iv) Active Learning with both clustering and scheduling.

In Table 11 we present the results of an ablation study designed to compare the impact of various fine-
tuning strategies, including different schedulers, clustering methods, and other design choices. Notably, the
results highlight the significant role of Active Learning. All tested acquisition functions outperformed the
baseline condition without AL, underscoring its overall effectiveness. Among them, the Bald acquisition
function achieved the highest F1 scores, while the furthest-batch strategy led to substantial reductions in
the number of required annotations.

Fine-tuning BERT models as Epistemic neural networks contributed to both improved performance
and reduced data requirements. Similarly, cold fine-tuning yielded beneficial effects, challenging the
assumption that possible random fine-tuning during the initial epoch degrades performance. Additionally,
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Characteristic +- % of F1 score % of data
Architecture

Vanilla +1.89% 90.72%
ENN +2.39% 87.59%

Start
Warm +1.74% 93.06%
Cold +2.44% 89.12%

Sampling
Recalculating +2.26% 86.43%
Accumulating +2.39% 92.54%

Acquisition function
None -2.67% 99.48%
Entropy +2.28% 92.07%
Bald +2.32% 87.89%
Variance +2.26% 89.72%
Furthest-batch +1.68% 79.81%

Clustering
No clustering +1.76% 95.51%
Init clustering +2.26% 78.66%
Dynamic clustering +2.21% 97.12%

Schedulers
Base +2.02% 85.67%
Prob scheduler +2.24% 92.76%
Linear scheduler +2.08% 80.68%
Linear prob scheduler +1.66% 81.68%
Dif-build +1.59% 90.25%
Dif-build-unique +1.95% 90.10%

Table 11: Comparison of the average results of different fine-tuning settings.

recalculating sampling showed comparable performance to traditional accumulation-based sampling,
while offering further annotation savings.

Finally, the use of linear schedulers—particularly the standard linear scheduler—proved effective in
balancing annotation efficiency with strong model performance.

Characteristic F1 score % of data
ENN architecture 71.43 99.52%
Dynamic clustering 71.24 99.62%
Recalculating sampling 71.17 94.2%

Table 12: Comparison of the best SlovakBERT results of different fine-tuning settings.
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Characteristic F1 score % of data
Dynamic clustering 85.38 98.9%
Init clustering 84.52 77.98%
Entropy acquisition 84.35 96.02%

Table 13: Comparison of the best BERTu results of different fine-tuning settings.

Characteristic F1 score % of data
Bald acquisition 79.77 93.37%
ENN architecture 79.22 93.37%
Prob scheduler 78.23 99.5%

Table 14: Comparison of the best ICEBert results of different fine-tuning settings.

Figure 5: Learning curves of baseline model and the best performing AL models while fine-tuning BERTu.

Figure 6: Learning curves of baseline model and the best performing AL models while fine-tuning IceBERT.
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Figure 7: Learning curves of baseline model and the best performing AL models while fine-tuning BERTurk.

Model F1 score % of data
Vanilla 71.17 100%
Entropy 71.23 99.92%
Bald + dynamic 71.64 99.6%
Entropy + dynamic + linear prob 71.83 99.1%

Table 15: Comparison of the best SlovakBERT models.

Model F1 score % of data
Vanilla 82.76 100%
Entropy 84.35 96.7%
Bald + base 85.5 78%
Bald + init + linear 86.1 72.4%

Table 16: Comparison of the best BERTu models.

Model F1 score % of data
Vanilla 78.07 100%
Bald 79.77 93.4%
Bald + init 78.89 85.3%
Entropy + dynamic + prob 80.06 93.4%

Table 17: Comparison of the best IceBERT models.

Model F1 score % of data
Vanilla 91.06 100%
Entropy 91.3 81.9%
Bald + init 91.94 70.13%
Bald + dynamic + prob 92.16 81.9%

Table 18: Comparison of the best BERTurk models.
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