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Abstract

Table question answering (TQA) focuses on
answering questions based on tabular data. De-
veloping TQA systems targets effective inter-
action with tabular data for tasks such as cell
retrieval and data analysis. While recent work
has leveraged fine-tuning to improve TQA sys-
tems, existing approaches often under-utilize
available data and neglect the potential of post-
training for further gains. In this work, we
introduce p2-TQA, a process-based preference
learning framework for TQA post-training. p2-
TQA automatically constructs process-based
preference data via a table-specific pipeline,
eliminating the need for manual or costly data
collection. It then optimizes models through
contrastive learning on the collected data. Ex-
periments show that p2-TQA effectively im-
proves TQA models by up to 5% on in-domain
datasets and 2.4% on out-of-domain datasets
with only 8,000 training instances. Further-
more, models enhanced with p2-TQA achieve
competitive results against larger, more com-
plex state-of-the-art TQA systems, while main-
taining up to five times higher efficiency.

1 Introduction

Table question answering (TQA) aims to generate
accurate responses to queries over tables. Current
TQA systems fall into two categories: fine-tuned
models (Zhang et al., 2025a; Wu and Feng, 2024)
and training-free frameworks (Zhou et al., 2025b;
Nahid and Rafiei, 2024). The former fine-tune pre-
trained small-size (≤ 8B) large language models
(LLMs) while the latter rely on large LLMs and
involve complex designs. There is a growing in-
terest in understanding and developing fine-tuned
TQA models (Deng et al., 2025; Deng and Mihal-
cea, 2025) due to their promising performance and
inference efficiency.

Current fine-tuning methods for TQA often
augment only a subset of existing datasets with
Chain-of-Thought (CoT) reasoning (Wei et al.,
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Figure 1: An overview of p2-TQA: An existing model
generates reasoning chains for a given problem. The
chains are parsed into states, composed of cumulative
steps. Each state is scored by a value function. We then
create pairwise steps by rolling out parent states, select-
ing those with value differences exceeding a threshold.
Lastly, contrastive learning is performed over collected
data to improve the TQA model.

2023), constrained by the high cost of querying
large commercial models (Wu and Feng, 2024).
Models are then trained on these reasoning chains
and answers via supervised fine-tuning. This work-
flow has two key limitations: (1) only part of the
training data is used, i.e., data is under-utilized; and
(2) potential performance gains from post-training
are neglected. Based on the identified gaps, this
study aims to answer the research question: How
can we leverage existing datasets to post-train a
TQA model for further performance gains? Our
effective post-training method (shown in Figure 1)
enhances models without requiring additional man-
ual or costly data.

While post-training with self-generated data has
primarily been explored in mathematics and coding
(Singh et al., 2024; Zelikman et al., 2024; Xiong
et al., 2024; He et al., 2024), particularly through
step-wise preference learning (Tu et al., 2025; Xu
et al., 2024), its application in TQA remains under-
explored. Previous methods for obtaining step-wise
preference pairs typically rely on (1) closed-source
or large open-source models as judges to discern
correct and incorrect steps (Lai et al., 2024), (2)
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Monte Carlo Sampling (MCS) to estimate a step’s
quality (Wang et al., 2024; Xiong et al., 2024;
Hwang et al., 2024), or (3) a combination of both
(Zhang et al., 2025b). However, performing step-
wise preference learning to TQA presents unique
challenges. Compared to mathematics, it typically
involves longer inputs and intermediate reasoning
due to large tables. This necessitates a careful de-
sign of steps; simply using newline breaks to obtain
steps, as in math, could lead to excessive compu-
tation costs, because newline breaks also denote
new rows in tables. Furthermore, the structured na-
ture of input in TQA demands a reconsideration of
value functions, since LLM judges have a limited
understanding of table structures (Sui et al., 2024),
especially with larger tables (Zhou et al., 2024).

To this end, we introduce p2-TQA, a process-
based preference learning pipeline for TQA post-
training: p2-TQA operates in three stages for data
collection (Figure 1): state generation, state value
estimation, and pair-wise step sampling. The first
stage collects and parses reasoning chains into
states, composed of cumulative reasoning steps that
are carefully designed for TQA. The last two stages
construct step-wise preference pairs via MCS for
state value estimation and a stringent filtering pro-
cess for quality control. We apply direct preference
optimization (DPO) (Rafailov et al., 2024) with the
collected data to self-improve a TQA model.

Experiments show that p2-TQA improves TQA
models by up to 5% on in-domain datasets and by
up to 2.4% on out-of-domain datasets with only
8k preference training pairs. It surpasses methods
that require additional LLMs as judges, yet it is ten
times more efficient. This underscores our contribu-
tion in establishing an effective and efficient frame-
work for self-improving TQA models. The self-
improved models outperform existing fine-tuned
TQA models and achieve comparable performance
to much larger and more complex frameworks on
three datasets, while maintaining five times higher
inference efficiency. Code is available. 1

2 Step-wise Preference Learning for TQA

Given a table t, a question q, and a fine-tuned TQA
model Mft that outputs a reasoning chain r con-
sisting of l steps: {k1, k2, ..., kl}, along with a pre-
dicted answer a, our goal is to collect high-quality
step-wise preference data (kgoodi , kbadi ) from Mft

and perform contrastive learning to improve Mft.
1https://github.com/boschresearch/p2-TQA
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Figure 2: Process-based preference data collection. We
estimate a state value by the probability of a state lead-
ing to a correct answer. In the first example, V (si) =

2
3 .

After obtaining state values, we do not consider inter-
mediate states that have a value of 0 (s21), together with
their child states. We sample pair-wise states for each
remaining state, e.g., s′22 is sampled by rolling out s12
and is regarded as a pair state for s22.

Step Design and State Generation. Designing
an effective step scope is crucial for both perfor-
mance and sampling efficiency. Inspired by SQL
query operations, we define a step as a basic oper-
ation, such as filtering or counting. To aid LLM
reasoning in TQA, each step includes a planning
component that outlines the required operation and
a reasoning component that provides its result, e.g.,
Count the number of gold medals received in 2004.
There are 6 gold medals received in 2004. For each
TQA problem, an initial state s0 is formed from t, q,
and an instruction u. We then sample m reasoning
chains, denoted as {r}mi=1 from Mft. Prompts can
be found in Appendix A.1. A new state si is defined
as the combination of previous state si−1 and a step
ki generated at the timestep i: si = (si−1, ki),
where si−1 = {s0, k1, k2, ....ki−1}. Problems
where all reasoning traces lead to correct answers
are discarded, as they are considered too easy.

State Value Estimation. A state value function
V takes in a state and returns its value. We approxi-
mate a state’s value by using Monte Carlo Sampling
similar to Wang et al. (2024): Mft takes in si and
completes the current reasoning chain until reach-
ing an answer. This is repeated n times. V (si) is
calculated as the probability of si leading to the
correct answer. An example is shown in Figure 2,
where V (si) =

2
3 . The continuous value allows a

flexible and controlled selection of pair-wise steps
described in the following paragraph.

Pair-wise Step Sampling. After obtaining state
values, we filter out intermediate states si, where
V (si) = 0, and also remove their child states
{si+1, ...sz}. This is exemplified by the red nodes
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in Figure 2. We assume a state of value 0 to
contain erroneous steps. Rolling out from it
is likely to create bad-quality child states. For
each remaining state si, we use the comple-
tion traces sampled when calculating V (si−1):
{(si,j , ..., szj ,j , aj)}nj=1 as rollouts, where aj is the
predicted answer and zj is the total number of steps
for the j-th finalized solution. Next, we calculate
state values for each sampled {si,j}nj=1. This re-
sults in a set of pair-wise states: (si, {si,j}nj=1)
that can be used to construct step-wise preference
dataset Dsdpo. As V (si) is a continuous value, a
pair comprising one good state sgood and one bad
state sbad is selected if V (sgood) − V (sbad) ≥ τ ,
where τ is a hyper-parameter. We prove later
in our experiments that for TQA, this filtering
mechanism greatly improves performance and ef-
ficiency on top of using MCS as the value func-
tion, while maintaining efficiency. The prefer-
ence data for step DPO can be represented as
Dsdpo = {(si−1, k

good
i , kbadi )d}|Dsdpo|

d=1 .
After collecting the preference dataset, we fine-

tune Mft using pairs of good and bad steps given
previous steps. The loss function is defined as
follows, where β is a hyper-parameter controlling
the strength of incorporating the preference sig-
nal. πref and πθ denote the original reference and
updated model, respectively.

L = −E
(si−1,k

good
i ,kbadi )∼Dsdpo

[
log σ

(
β log

πθ(k
good
i |si−1)

πref (k
good
i |si−1)

)

−β log
πθ(k

bad
i |si−1)

πref (k
bad
i |si−1)

]

(1)

3 Experiments

We present details for TQA models, baselines,
datasets, and experimental settings in this section.

TQA Models. Existing fine-tuned TQA models
do not feature clear step separations. We therefore
obtain a TQA model Mft by fine-tuning an LLM
using the step definition introduced before. Fol-
lowing previous work (Wu and Feng, 2024; Zhang
et al., 2025a), we employ Deepseek-V3 (DeepSeek-
AI et al., 2025) to generate reasoning chains. We
sample 2.4k, 1.5k, and 2.3k examples from the
training sets of WTQ (Pasupat and Liang, 2015),
TabFact (Chen et al., 2020), and HiTab (Cheng
et al., 2022), respectively. We prompt Deepseek-
V3 to produce reasoning chains along with final an-
swers, retaining only those chains that yield correct

answers. This process results in 1,612 instances
from WTQ, 1,425 from TabFact, and 1,277 from
HiTab, for a total of 4,314 instances.

Baselines. We consider the following baselines
for self-improvement strategies: (1) RFT (Yuan
et al., 2023) trains a model with self-generated
reasoning traces that lead to correct answers using
supervised fine-tuning. (2) FDPO (Xu et al., 2024)
trains a model with pair-wise correct and incorrect
full reasoning chains using DPO.

Baselines for value functions include: (3) MC
with binary labels (MC-B) (Wang et al., 2024) re-
turns binary state values based on whether states de-
rive final correct answers. Mixed estimation (MIX)
(Zhang et al., 2025b) scores si 1 if both MC-B and
an external LLM judge Mj output 1. If both judges
return 0, si is 0. States receiving different scores
from the judges are not considered for building the
preference dataset. (4) SELF-EXPLORE (Hwang
et al., 2024) randomly selects a preferred reason-
ing trace and uses full completion of it instead of
a step. This results in longer preferred responses
over rejected ones.

Baselines for TQA models include both end-
to-end and training-free frameworks: (1) TableL-
laMA (Zhang et al., 2023a) is an end-to-end fine-
tuned model with LlaMA-2-7B (Touvron et al.,
2023) as the base model. (2) Protrix (Wu and Feng,
2024) is fine-tuned with around 4k instances with
reasoning chains generated from GPT-4, also us-
ing LlaMA-2-7B as the base model. (3) MACT
(Zhou et al., 2025b) is a training-free framework,
leveraging tools and agent collaboration. (4) Tab-
SQLify (Nahid and Rafiei, 2024) decomposes ta-
bles into relevant sub-tables with SQL query gener-
ation and execution. Then, sub-tables and questions
are passed to LLMs to obtain final answers.

Datasets. We train Mft using the training sets
of WTQ, TabFact, and HiTab. To obtain prefer-
ence data, we sample from their validation sets.
We use the test sets of these three datasets as
in-domain evaluation data and incorporate three
out-of-domain datasets: WikiSQL (Zhong et al.,
2017), SCITAB (Lu et al., 2023), and CRT (Zhang
et al., 2023b) to test models’ generalisability. These
datasets test our method in various degrees of com-
plexity. Thus, we make sure our method is gener-
ally effective. Details about the datasets are pre-
sented in Appendix A.2.
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Figure 3: Comparing p2-TQA with baselines using Ex-
act Match. Results are averaged across models. RFT
and FDPO stand for rejected sampling fine-tuning and
full-chain DPO, respectively. We experiment with sev-
eral value functions: SELF-EXP (Self-Exploration), MC-
B (Monte Carlo with binary values), and MIX (a com-
bination of LLM-as-a-judge and MC-B). Dashed lines
show performances of fine-tuned TQA models Mft be-
fore applying self-improvement methods.

Experimental Settings. We choose Qwen-2.5-
7B (Qwen et al., 2025) and LlaMA-3.1-8B
(Grattafiori et al., 2024) as base models. During
preference learning, we fix the fine-tuning dataset
size to 8k for Qwen-2.5-7B and 6.7k for LlaMA-
3.1-8B, as different baselines result in different
sample sizes (statistics are shown in Appendix A.3).
For fair comparison, we use the smallest sample
size collected as the fine-tuning data size. Hyper-
parameters are shown in Appendix A.4. We use
Qwen-2.5-72B as Mj (Prompt in Appendix A.1).
The number of reasoning chains m is set to 4, and
the roll-out number n is set to 8. The threshold
τ is set to 0.9, and the temperature is set to 0.7
and 0 during dataset construction and inference,
respectively. We use Exact Match (EM) as the
evaluation metric. All experiments are conducted
using 4 A100 GPUs. Training is performed with
LlaMA-Factory (Zheng et al., 2024) and inference
is performed with VLLM (Kwon et al., 2023).

4 Results and Discussions

Figure 3 shows the Exact Match of different meth-
ods on in-domain datasets, averaged across models.
Per-model results can be found in Appendix A.5.

p2-TQA effectively improves the performance
of TQA models. As Figure 3 shows, applying
p2-TQA enhances the performance of Mft by 3.5%
on average on in-domain datasets. The gains are
more obvious on WTQ (5%) compared to TabFact
(2%). This might be attributed to dataset features:
TabFact is a binary classification dataset, thus it
is easier for models to achieve high performance
and harder to further reach improvements. When

Models WTQ TabFact HiTab WikiSQL SCITAB CRT

Protrix 56.2 71.6 - 67.4 45.0 40.2
T-LlaMA 35.0 82.6 64.7 50.5 38.6 26.9
Msi-Qwen 63.1 84.9 67.6 72.0 56.9 51.4
Msi-LlaMA 65.8 85.5 70.3 70.8 54.4 50.3

MACT 70.4 - - - 55.8 57.4
T-SQLify 64.7 80.2 - 76.7 50.9 42.0

Table 1: Exact Match of TQA models. Msi refers to
self-improved models. T-LlaMA and T-SQLify refer to
TableLlaMA and TabSQLify, respectively. Framework
results (the last two rows) are obtained using GPT-3.5 as
the backbone. State-of-the-art TQA results are obtained
from previous work (Zhou et al., 2024; Zhang et al.,
2023a; Wu and Feng, 2024; Nahid and Rafiei, 2024).

evaluating on out-of-domain datasets, we witness
an average of 2.2% performance gain after apply-
ing our framework (↑ 2.2% for WikiSQL, ↑ 2.4%
for SCITAB, and ↑ 2.1% for CRT). These findings
demonstrate the generalisability of our method on
out-of-domain data. The performance gains on
both in-domain and out-of-domain datasets are sig-
nificant and can be observed with inference sam-
pling over multiple runs. Detailed results are shown
in Appendix A.5.

p2-TQA delivers competitive results against
baselines, highlighting the effectiveness of pair-
ing a lightweight value function with stringent
filtering for self-improving models. Comparing
p2-TQA with RFT and FDPO, we find that our
framework leads to higher improvements. The ef-
fect is more obvious on in-domain datasets than
out-of-domain datasets, as results in Appendix A.5
show. Though FDPO is generally computation-
ally cheaper than p2-TQA, i.e., under the same
token budgets, it generates more training instances.
We find that the performance of p2-TQA improves
when training example sizes increase. In contrast,
more examples do not necessarily lead to better per-
formance using FDPO, suggesting early saturation.
More analysis is presented in Appendix A.6.

When comparing against methods using dif-
ferent value functions, we observe that p2-TQA
greatly outperforms SELF-EXPLORE. It also shows
advantages over methods that simply use a binary
value function (MC-B), or combining it with an
LLM judge (MIX). Notably, p2-TQA takes 10 times
less time than using MIX when sampling the same
amount of data. This demonstrates that our method
delivers strong performance while being efficient.
Interestingly, the efficiency is not compromised for
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Model Retrieval Reasoning Total
# instances 1133 451 1584

Qwen (Mft) 71.32 36.36 61.36
Qwen (Mft) +p2-TQA 78.02 41.24 67.55

LlaMA (Mft) 79.44 45.23 69.70
LlaMA (Mft) +p2-TQA 81.38 42.57 70.32

Table 2: Exact Match of models with and without p2-
TQA, evaluated across different question types on the
HiTab test set.

reasoning correctness. We evaluate models fine-
tuned using data generated by p2-TQA and MIX

with regard to step correctness and find that the
two methods achieve similar accuracy (95.7% vs.
94.6%). Detailed analysis can be found in Ap-
pendix A.7. We provide an analysis of threshold
impact in Appendix A.8, showing the necessity of
picking a relatively high threshold for data filtering.

Self-improved TQA models achieve competitive
results compared to complicated state-of-the-art
approaches, with five times less inference time.
Table 1 shows results for current TQA models. first
four rows of Table 1 compare small-size fine-tuned
TQA models, and the last two rows show state-
of-the-art training-free frameworks back-boned by
GPT-3.5. We find that both the Qwen and LlaMA
models, enhanced using p2-TQA, outperform ex-
isting TQA models. More importantly, both self-
improved models achieve competitive performance
compared to larger and more complex frameworks
where tools and agentic collaboration are involved.
On SCITAB, Msi with the Qwen even achieves
the best performance. Apart from the competitive
task performance, we emphasize the inference effi-
ciency of self-improved models: they require eight
times less inference time than MACT and five times
less than TabSQLify.

Applying p2-TQA generally improves accuracy
across question types, table sizes, and step cor-
rectness. We compare models fine-tuned with
p2-TQA against those without, from two perspec-
tives: We take a closer look at question type and
table size, inspired by Zhou et al. (2025a). For
question type analysis, we categorize questions
into those requiring only retrieval and those requir-
ing reasoning in addition. We evaluate models on
the HiTab dataset, which provides explicit ques-
tion type annotations. As shown in Table 2, the
enhanced Qwen-2.5-7B model outperforms its pre-
trained counterpart in both categories, whereas the
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Figure 4: Exact Match of models with and without p2-
TQA, evaluated across different table sizes and averaged
over in-domain datasets. Qw and LM show the perfor-
mance of Qwen Mft and LlaMA Mft respectively.
Instances are grouped into three bins by table token
count: < 500, 500–1000, and ≥ 1000.

LLaMA-3.1-8B model shows notable gains primar-
ily in retrieval questions. For table size analysis, we
partition tables into three bins based on token count
and compute EM accuracy for each bin. Figure 4
reports results averaged over in-domain datasets,
revealing that self-improved models consistently
achieve higher accuracy across all table sizes.

Finally, we examine step correctness by compar-
ing models with (Msi) and without (Mft) p2-TQA.
We randomly sample 50 instances from HiTab and
manually examine the correctness of reasoning
steps for both Qwen and LLaMA, yielding a total
of 200 reasoning chains (50 instances × 2 models ×
2 variants) and 245 steps for Mft versus 239 steps
for Msi. Models enhanced with p2-TQA demon-
strate higher step accuracy than those without (83%
vs. 75%), with most improvements arising from re-
duced errors in planning and numerical reasoning.

5 Conclusions

We have introduced a self-improvement framework
p2-TQA that uses process-based preference learn-
ing. Our framework effectively improves the per-
formance of TQA models by up to 5%. The result-
ing models demonstrate competitive performance
compared to state-of-the-art TQA systems, which
depend on huge LLMs and tool usage. Yet, mod-
els enhanced with p2-TQA require five times less
inference time.
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Limitations

First, While our method effectively enhances the
performance of small-sized TQA models, its im-
pact on large TQA models remains unexplored. To
the best of our knowledge, current fine-tuned TQA
models only focus on small-sized LLMs. Future
work can explore an efficient training strategy for
large fine-tuned TQA models. Second, we limit
the task in our study to only TQA, while there
exist other table-related tasks, such as table sum-
marization. Third, although our framework sup-
ports iterative self-learning, the present work only
demonstrates the effectiveness of the first iteration,
leaving multi-iteration evaluations for future study.
As the datasets we used in this study are originally
sourced from Wikipedia, scientific papers, and sta-
tistical reports, we do not observe any potential
risks from the datasets.
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A Appendix

A.1 Prompts

Figure 6, 7, and 8 show prompts for generating a
full reasoning trace, completing a reasoning trace,
and LLM judge evaluation for a reasoning trace.

A.2 Datasets

Table 3 shows the number of instances and do-
mains for the test data we used. WTQ (Pasupat and
Liang, 2015), HiTab (Cheng et al., 2022) and Wik-
iSQL (Zhong et al., 2017) are under the license of
CC-BY-SA-4.02, BSD-3 CLAUSE3 and C-UDA4

respectively. TabFact (Chen et al., 2020), CRT
(Zhang et al., 2023b) and SCITAB (Lu et al., 2023)
are under the MIT5 license.

Datasets #instances Domain

WTQ 4344 Wikipedia
TabFact 12779 Wikipedia
HiTab 1584 statistical reports

WikiSQL 15878 Wikipedia
SCITAB 1224 scientific paper

CRT 728 Wikipedia

Table 3: Test data statistics. The second column shows
the number of test instances in each dataset.

A.3 Sampled Dataset Statistics

Table 4 shows the sampling size for each method.
We find MC-B results in the most data while RFT
the least.

A.4 Hyper-parameters

Table 5 shows the hyper-parameters used for model
fine-tuning.

A.5 Additional Results

Table 6 shows different models’ performance on
the six investigated datasets under greedy decoding.
To validate the effectiveness of applying p2-TQA,

2https://creativecommons.org/licenses/by-sa/4.
0/

3https://opensource.org/license/bsd-3-clause
4https://github.com/microsoft/HiTab?tab=

License-1-ov-file
5https://opensource.org/license/mit

Methods HiTab WTQ TabFact Total

Original 1.6k 2.8k 5k 9.4k

RFT 2.2k/1.6k 2.7k/2.4k 3k/2.7k 8k/6.7k
FDPO 3.6k/2k 4.7k/4k 4.6k/3.6K 12.9k/9.6k
SDPO

+MC-B 25k/20.8k 46k/47.1k 37k/38.4k 109k/106k
+MIX 5.4k/3.5k 9.6k/9.7k 5k/4.9k 20k/18.1k
+MC-0.9 6.8k/1.6k 16k/4.4k 11k/2.4k 33.8k/8.4k

Table 4: Sampled dataset sizes for different methods.
Results for Qwen-2.5-7B and LlaMA-3.1-8B are sepa-
rated by “/”. MC-B refers to using Monte Carlo sampling
with binary values as the value function. MIX stands for
using both MC-B and an LLM judge (Qwen-2.5-72B)
as the value function. MC-0.9 stands for using Monte
Carlo sampling with continuous values and setting the
selection threshold as 0.9. RFT refers to rejected sam-
pling fine-tuning. FDPO and SDPO stand for full-trace
DPO and step-wise DPO.

we set the temperature to 0.8 during inference. We
report the mean and standard deviation over five
runs in Table 7.

A.6 Cost Effectiveness Analysis

Note that step-wise sampling requires higher com-
puting budgets than full chain sampling; we con-
duct a cost-effectiveness analysis over FDPO and
p2-TQA. We do that by examining models’ perfor-
mance under different computing budgets (approx-
imately by training instances). We first calculate
the average number of tokens needed to generate
an instance for different methods. This results in
approximately 3k for FDPO and 10K for p2-TQA.
We fine-tune models with varying sizes of training
samples. This not only allows us to compare FDPO
and p2-TQA under the same computing budgets,
but also demonstrates each method’s sensitivity to
training size. Table 8 shows the results. We observe
that for FDPO, adding more training data does not
necessarily improving models’ performance (69.1–
>67.1). In contrast, scaling training sizes remains
effective for p2-TQA. This suggests that though
FDPO generates more training instances than our
method under the same budgets, the real effect of
the generated data on performance is limited.

A.7 Reasoning Chains Analysis

We sample 100 reasoning chains leading to cor-
rect answers generated from models using p2-TQA
and models using MIX as the value function. We
manually examine the correctness of the reasoning
chains. Among the 100 instances, we exclude 8
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Models Method Fine-tuning Learning rate Epoch Batch size LoRA rank DPO β

Qwen-2.5-7B supervised fine-tuning full-parameter 5e-6 2 128 - -
Qwen-2.5-7B rejected sampling fine-tuning LoRA 1e-5 1 128 64 -
Qwen-2.5-7B full chain DPO LoRA 1e-5 3 128 64 0.1
Qwen-2.5-7B step-wise DPO LoRA 1e-5 3 128 64 0.1

LlaMA-3.1-8B supervised fine-tuning full-parameter 5e-6 2 128 - -
LlaMA-3.1-8B rejected sampling fine-tuning LoRA 1e-5 1 128 32 -
LlaMA-3.1-8B full chain DPO LoRA 1e-5 3 128 32 0.1
LlaMA-3.1-8B step-wise DPO LoRA 1e-5 3 128 32 0.1

Table 5: Hyper-parameters used for model fine-tuning.

Models WTQ TabFact HiTab WiKiSQL SCITAB CRT In-domain Out-of-domain

Qwen-2.5-7B 28.66 73.77 26.07 47.76 39.46 35.58 42.83 40.93
+ TQA training (Mft) 54.93 82.37 61.36 68.26 54.90 48.49 66.22 57.22

+RFT 56.26 82.44 60.29 68.15 52.29 46.15 66.33 55.53
+FDPO 61.10 84.65 63.83 72.04 56.94 52.06 69.86 60.34
+SELF-EXPLORE 52.70 82.30 55.62 65.20 53.67 44.23 63.54 54.37
MC-B 60.80 82.98 65.72 70.08 52.04 50.24 69.83 57.45
MIX 63.86 85.32 64.20 71.44 55.56 52.47 71.63 59.82
P2-TQA (τ = 0.9) 63.10 84.88 67.55 71.97 56.94 51.37 71.84 60.09

LlaMA-3.1-8B 30.64 63.91 26.20 31.87 43.38 32.55 40.25 35.93
+ TQA training (Mft) 64.80 83.36 69.63 69.48 51.63 49.04 72.60 52.76

+RFT 62.06 84.15 67.30 70.73 50.49 48.63 70.84 56.62
+FDPO 65.22 85.91 68.18 71.34 53.35 50.41 73.10 58.37
+SELF-EXPLORE 61.67 82.83 64.52 67.79 52.20 44.28 69.67 54.76
MC-B 65.54 84.01 69.95 70.67 50.25 49.31 73.17 56.74
MIX 62.39 84.98 66.79 68.31 52.94 51.24 72.05 57.50
P2-TQA (τ = 0.9) 65.84 85.50 70.33 70.08 54.44 50.27 73.98 58.26

Table 6: Exact Match accuracies of models fine-tuned with different strategies and value functions, generated with
greedy decoding. We bold the best results and underline the second best results for each model type.

instances where either the answers are incorrect
or the questions are ambiguous. We find similar
accuracies of the reasoning chains generated from
the aforementioned methods, with 95.7 and 94.6,
respectively. This suggests the two methods do not
differ much in terms of leading to correct reason-
ing chains. Nevertheless, wrong reasoning chains
leading to correct answers still exist, possibly due
to overly complex table inputs. An error case is
shown in Figure 9.

A.8 Threshold Analysis

The threshold τ decides the state value differences
when sampling a pair of (preferred and not pre-
ferred) states. We set τ to 0.9 in our study. We
experiment with different values of τ to investi-
gate its impact on the fine-tuned process-supervised
models. The experimental settings are the same as
described in Section 3 except that we change the
values of τ . Figure 5 shows the performances of
models fine-tuned with data sampled using differ-
ent τ . We observe that there is a tendency for higher
thresholds to lead to better performance. However,

W
TQ

Ta
bF

ac
t

H
iT

ab
W

ik
iS

Q
L

SC
IT

A
B

CR
T

50

60

70

80

Datasets

E
M

Thresholds Comparison with Soft Estimation

Soft Estimation (τ=0.5)
Soft Estimation (τ=0.7)
Soft Estimation (τ=0.9)

Figure 5: Thresholds comparisons with different value
functions on six TQA datasets.
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Models WTQ TabFact HiTab WiKiSQL SCITAB CRT

Qwen-2.5-7B (Mft) 57.00 ±0.46 81.85 ±0.22 61.76 ±0.22 67.68 ±0.22 52.16 ±1.13 46.92 ±1.15
+RFT 51.08 ±0.60 80.28 ±0.32 56.92 ±0.55 61.77 ±0.08 49.90 ±0.83 46.02 ±0.60
+FDPO 58.54 ±0.23 84.32 ±0.28 61.40 ±0.49 68.20 ±0.23 56.98 ±0.80 49.64 ±1.40
MC-B 57.36 ±0.33 82.74 ±0.04 62.63 ±0.65 66.39 ±0.17 52.71 ±0.71 48.71 ±1.00
MIX 60.43 ±0.57 84.79 ±0.10 62.58 ±0.41 68.59 ±0.14 51.98 ±1.05 52.09 ±0.37
P2-TQA 60.42 ±0.29 84.81 ±0.21 65.05 ±0.80 68.90 ±0.13 55.08 ±1.04 50.99 ±0.80

LlaMA-3.1-8B (Mft) 57.67 ±0.38 82.82 ±0.29 63.18 ±0.80 62.17 ±0.18 49.98 ±1.34 47.86 ±0.65
+RFT 58.27 ±0.47 81.44 ±0.15 63.14 ±0.70 65.47 ±0.22 47.83 ±0.98 47.91 ±1.61
+FDPO 62.18 ±0.41 85.52 ±0.34 65.83 ±0.43 68.12 ±0.18 52.94 ±0.39 50.41 ±0.60
MC-B 60.92 ±0.18 83.98 ±0.17 65.86 ±0.69 65.86 ±0.30 52.25 ±1.54 49.07 ±0.83
MIX 59.57 ±0.62 84.99 ±0.07 62.11 ±0.44 63.23 ±0.19 51.42 ±0.63 50.05 ±1.09
P2-TQA 62.66 ±0.55 85.71 ±0.23 66.49 ±0.79 65.83 ±0.26 53.76 ±0.56 49.15 ±1.20

Table 7: Exact Match accuracies of models fine-tuned with different strategies and value functions, generated
with sampling. P2-TQA significantly improve fine-tuned model. Compared to baselines, it achieves competitive
performance across in-domain datasets.

Method 2k 4k 6k 8k 12k

FDPO 67.3±0.6 68.2±0.5 68.5 ±0.4 69.1±0.4 67.1±0.3

p2-TQA 69.0 ±0.5 69.7±0.3 70.8±0.3 71.4±0.2 72.9±0.2

Table 8: Exact Match against varying training sizes.
Results are obtained by averaging across three runs and
three in-domain datasets using Qwen-2.5-7B.

we do not observe big differences in terms of model
performances when setting τ to 0.7 or 0.9.
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You are an expert in table question answering.
Based on the given question and table, provide a step by step solution to the question.
Start each step with 'Step x.' where x is the current step number.
Do not carry out verification in each step.
Each step should include two parts: a planning part that indicates what to do and a reasoning part that 
returns the results of the planning part.
Separate these two parts via the [SEP] token. 
Return the result in the last line following 'Therefore, the final answer is: '.
Table: {table}
Question: {question}

Figure 6: Prompt to generate full reasoning trace given a TQA problem.

Given the following table, question and past steps to solve the question, continue to generate the steps 
following past steps to obtain an answer.
Each step should include two parts: a planning part that indicates what to do and a reasoning part that 
returns the results of the planning part.
Separate these two parts via the [SEP] token. 
Start each step with 'Step x.' where x is the current step number.
Do not carry out verification in each step.
Return the result in the last line following 'Therefore, the final answer is: '.
Table: {table}
Question: {question}
Past steps: {steps}

Figure 7: Prompt to complete a reasoning trace given a TQA problem and past steps.
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I will provide a table question answering(TQA) problem along with a step-by-step reasoning to solve the 
problem. They will be formatted as follows: [TQA Problem]
...(TQA problem)...
[Solution]
<step_1 >
...(step 1 of a plan)...
</step_1 >
...
<step_n >
...(step n of a plan)...
</step_n >
Your task is to review each step of the plan in sequence, analyzing, verifying, and critiquing a step in 
details to decide if a step is helpful or not for solving the problem.
A helpful step has the following features:
- It provides unique information about how to solve a question and does not repeat information 
appeared in the previous steps.
- It is relevant to solving the question.
- It is correct in terms of the reasoning.
Please provide your analyses, decisions (1 for helpful and 0 not helpful) for each step and confidence for 
each decision (from 0 to 1).
Higher confidence value suggests you are more certain that your decision is correct.
In contrast, lower confidence suggests you are more uncertain about your decision and your decision 
might be incorrect.
Please do not be over confident about your decision.
You should be honest if you are not sure about your decision.
Please return your response strictly following the format below:
<analysis_1 >
...(analysis of step 1)...
</analysis_1 >
<decision_1 >
1/0
</decision_1 >
<confidence_1 >
(a numerical value from 0 to 1)
</confidence_1 >
...
<analysis_n >
...(analysis of step n)...
</analysis_n >
<decision_n >
1/0
</decision_n >
<confidence_n >
(a numerical value from 0 to 1)
</confidence_n >
--------------------------------------------------
The following is a TQA problem and a step-by-step solution to solve the problem:
[TQA Problem]
{problem}
[Solution]
{solution}

Figure 8: LLM judge prompt to generate analysis, decisions and confidence for each step.
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Table: 
| # | Date | Location | Winner | Score\nJSU | Score\nTU | Series |
| 1 | November 27, 1924 | Jacksonville, AL | Jacksonville State | 14 | 9 | JSU 1–0 |
…
| 8 | November 11, 1938 | Jacksonville, AL | Tied | 6 | 6 | TSU 4–3–1 |
…
| 21 | October 15, 1955 | Troy, AL | Jacksonville State | 12 | 0 | Tied 10–10–1 |
…
| 28 | October 6, 1962 | Jacksonville, AL | Jacksonville State | 21 | 14 | JSU 17–10–1 |
…
| 38 | November 11, 1972 | Jacksonville, AL | Tied | 14 | 14 | JSU 22–14–2 |
…
|  | Totals |  |  | 1086 | 1110 | JSU 32–29–2 |

Question:what is the least amount of points scored in a tie game?

-----------------------------------------------------------------------------------------------------------------------
Step 1. Identify all the tie games in the table by checking the "Score\nJSU" and 
"Score\nTU" columns for values that are the same. 
| # | Date | Location | Winner | Score\nJSU | Score\nTU | Series |
| 8 | November 11, 1938 | Jacksonville, AL | Tied | 6 | 6 | TSU 4–3–1 |
| 21 | October 15, 1955 | Troy, AL | Jacksonville State | 12 | 0 | Tied 10–10–1 |
| 28 | October 6, 1962 | Jacksonville, AL | Jacksonville State | 21 | 14 | JSU 17–10–1 |
| 38 | November 11, 1972 | Jacksonville, AL | Tied | 14 | 14 | JSU 22–14–2 |

Step 2. Extract the scores of the tie games identified in Step 1. 
| Score\nJSU | Score\nTU |
| 6 | 6 |
| 12 | 0 |
| 21 | 14 |
| 14 | 14 |

Step 3. Determine the least amount of points scored in a tie game by finding the
minimum value among the extracted scores. 
The scores are 6, 12, 21, and 14. The least amount of points scored in a tie game is 6.

Therefore, the final answer is: 6. 

Figure 9: Wrong reasoning chain generated by a self-improved model (Qwen-2.5-7B) using P2-TQA. The first
wrong step is highlighted with red.
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