
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 217–231

December 20-24, 2025 ©2025 Association for Computational Linguistics

p2-TQA: A Process-based Preference Learning Framework
for Self-Improving Table Question Answering Models

Wei Zhou1,3 Mohsen Mesgar1 Heike Adel2 Annemarie Friedrich3

1Bosch Center for Artificial Intelligence, Renningen, Germany
2Hochschule der Medien, Stuttgart, Germany 3University of Augsburg, Germany

{wei.zhou3|mohsen.mesgar}@de.bosch.com
annemarie.friedrich@uni-a.de adel-vu@hdm-stuttgart.de

Abstract

Table question answering (TQA) focuses on
answering questions based on tabular data. De-
veloping TQA systems targets effective inter-
action with tabular data for tasks such as cell
retrieval and data analysis. While recent work
has leveraged fine-tuning to improve TQA sys-
tems, existing approaches often under-utilize
available data and neglect the potential of post-
training for further gains. In this work, we
introduce p2-TQA, a process-based preference
learning framework for TQA post-training. p2-
TQA automatically constructs process-based
preference data via a table-specific pipeline,
eliminating the need for manual or costly data
collection. It then optimizes models through
contrastive learning on the collected data. Ex-
periments show that p2-TQA effectively im-
proves TQA models by up to 5% on in-domain
datasets and 2.4% on out-of-domain datasets
with only 8,000 training instances. Further-
more, models enhanced with p2-TQA achieve
competitive results against larger, more com-
plex state-of-the-art TQA systems, while main-
taining up to five times higher efficiency.

1 Introduction

Table question answering (TQA) aims to generate
accurate responses to queries over tables. Current
TQA systems fall into two categories: fine-tuned
models (Zhang et al., 2025a; Wu and Feng, 2024)
and training-free frameworks (Zhou et al., 2025b;
Nahid and Rafiei, 2024). The former fine-tune pre-
trained small-size (≤ 8B) large language models
(LLMs) while the latter rely on large LLMs and
involve complex designs. There is a growing in-
terest in understanding and developing fine-tuned
TQA models (Deng et al., 2025; Deng and Mihal-
cea, 2025) due to their promising performance and
inference efficiency.

Current fine-tuning methods for TQA often
augment only a subset of existing datasets with
Chain-of-Thought (CoT) reasoning (Wei et al.,

TQA model

s1

s2

...

0.1

0.1

process-based
preference data

1. state
generation

...

2. value
estimation

 problem

...

3. pair-wise
step sampling

0.1

0.1

...

1.0

process preference
fine-tuning

reasoning chain

Figure 1: An overview of p2-TQA: An existing model
generates reasoning chains for a given problem. The
chains are parsed into states, composed of cumulative
steps. Each state is scored by a value function. We then
create pairwise steps by rolling out parent states, select-
ing those with value differences exceeding a threshold.
Lastly, contrastive learning is performed over collected
data to improve the TQA model.

2023), constrained by the high cost of querying
large commercial models (Wu and Feng, 2024).
Models are then trained on these reasoning chains
and answers via supervised fine-tuning. This work-
flow has two key limitations: (1) only part of the
training data is used, i.e., data is under-utilized; and
(2) potential performance gains from post-training
are neglected. Based on the identified gaps, this
study aims to answer the research question: How
can we leverage existing datasets to post-train a
TQA model for further performance gains? Our
effective post-training method (shown in Figure 1)
enhances models without requiring additional man-
ual or costly data.

While post-training with self-generated data has
primarily been explored in mathematics and coding
(Singh et al., 2024; Zelikman et al., 2024; Xiong
et al., 2024; He et al., 2024), particularly through
step-wise preference learning (Tu et al., 2025; Xu
et al., 2024), its application in TQA remains under-
explored. Previous methods for obtaining step-wise
preference pairs typically rely on (1) closed-source
or large open-source models as judges to discern
correct and incorrect steps (Lai et al., 2024), (2)

217

Monte Carlo Sampling (MCS) to estimate a step’s
quality (Wang et al., 2024; Xiong et al., 2024;
Hwang et al., 2024), or (3) a combination of both
(Zhang et al., 2025b). However, performing step-
wise preference learning to TQA presents unique
challenges. Compared to mathematics, it typically
involves longer inputs and intermediate reasoning
due to large tables. This necessitates a careful de-
sign of steps; simply using newline breaks to obtain
steps, as in math, could lead to excessive compu-
tation costs, because newline breaks also denote
new rows in tables. Furthermore, the structured na-
ture of input in TQA demands a reconsideration of
value functions, since LLM judges have a limited
understanding of table structures (Sui et al., 2024),
especially with larger tables (Zhou et al., 2024).

To this end, we introduce p2-TQA, a process-
based preference learning pipeline for TQA post-
training: p2-TQA operates in three stages for data
collection (Figure 1): state generation, state value
estimation, and pair-wise step sampling. The first
stage collects and parses reasoning chains into
states, composed of cumulative reasoning steps that
are carefully designed for TQA. The last two stages
construct step-wise preference pairs via MCS for
state value estimation and a stringent filtering pro-
cess for quality control. We apply direct preference
optimization (DPO) (Rafailov et al., 2024) with the
collected data to self-improve a TQA model.

Experiments show that p2-TQA improves TQA
models by up to 5% on in-domain datasets and by
up to 2.4% on out-of-domain datasets with only
8k preference training pairs. It surpasses methods
that require additional LLMs as judges, yet it is ten
times more efficient. This underscores our contribu-
tion in establishing an effective and efficient frame-
work for self-improving TQA models. The self-
improved models outperform existing fine-tuned
TQA models and achieve comparable performance
to much larger and more complex frameworks on
three datasets, while maintaining five times higher
inference efficiency. Code is available. 1

2 Step-wise Preference Learning for TQA

Given a table t, a question q, and a fine-tuned TQA
model Mft that outputs a reasoning chain r con-
sisting of l steps: {k1, k2, ..., kl}, along with a pre-
dicted answer a, our goal is to collect high-quality
step-wise preference data (kgoodi , kbadi) from Mft

and perform contrastive learning to improve Mft.
1https://github.com/boschresearch/p2-TQA

s0

s11 s12

s21 s22

0.3

0

0.4

0.8 s'22 0

si

a1 a2 a3

si-1

(b) Data sampling (a) Value estimation

...

Figure 2: Process-based preference data collection. We
estimate a state value by the probability of a state lead-
ing to a correct answer. In the first example, V (si) =

2
3 .

After obtaining state values, we do not consider inter-
mediate states that have a value of 0 (s21), together with
their child states. We sample pair-wise states for each
remaining state, e.g., s′22 is sampled by rolling out s12
and is regarded as a pair state for s22.

Step Design and State Generation. Designing
an effective step scope is crucial for both perfor-
mance and sampling efficiency. Inspired by SQL
query operations, we define a step as a basic oper-
ation, such as filtering or counting. To aid LLM
reasoning in TQA, each step includes a planning
component that outlines the required operation and
a reasoning component that provides its result, e.g.,
Count the number of gold medals received in 2004.
There are 6 gold medals received in 2004. For each
TQA problem, an initial state s0 is formed from t, q,
and an instruction u. We then sample m reasoning
chains, denoted as {r}mi=1 from Mft. Prompts can
be found in Appendix A.1. A new state si is defined
as the combination of previous state si−1 and a step
ki generated at the timestep i: si = (si−1, ki),
where si−1 = {s0, k1, k2,ki−1}. Problems
where all reasoning traces lead to correct answers
are discarded, as they are considered too easy.

State Value Estimation. A state value function
V takes in a state and returns its value. We approxi-
mate a state’s value by using Monte Carlo Sampling
similar to Wang et al. (2024): Mft takes in si and
completes the current reasoning chain until reach-
ing an answer. This is repeated n times. V (si) is
calculated as the probability of si leading to the
correct answer. An example is shown in Figure 2,
where V (si) =

2
3 . The continuous value allows a

flexible and controlled selection of pair-wise steps
described in the following paragraph.

Pair-wise Step Sampling. After obtaining state
values, we filter out intermediate states si, where
V (si) = 0, and also remove their child states
{si+1, ...sz}. This is exemplified by the red nodes

218

https://github.com/boschresearch/p2-TQA

in Figure 2. We assume a state of value 0 to
contain erroneous steps. Rolling out from it
is likely to create bad-quality child states. For
each remaining state si, we use the comple-
tion traces sampled when calculating V (si−1):
{(si,j , ..., szj ,j , aj)}nj=1 as rollouts, where aj is the
predicted answer and zj is the total number of steps
for the j-th finalized solution. Next, we calculate
state values for each sampled {si,j}nj=1. This re-
sults in a set of pair-wise states: (si, {si,j}nj=1)
that can be used to construct step-wise preference
dataset Dsdpo. As V (si) is a continuous value, a
pair comprising one good state sgood and one bad
state sbad is selected if V (sgood) − V (sbad) ≥ τ ,
where τ is a hyper-parameter. We prove later
in our experiments that for TQA, this filtering
mechanism greatly improves performance and ef-
ficiency on top of using MCS as the value func-
tion, while maintaining efficiency. The prefer-
ence data for step DPO can be represented as
Dsdpo = {(si−1, k

good
i , kbadi)d}|Dsdpo|

d=1 .
After collecting the preference dataset, we fine-

tune Mft using pairs of good and bad steps given
previous steps. The loss function is defined as
follows, where β is a hyper-parameter controlling
the strength of incorporating the preference sig-
nal. πref and πθ denote the original reference and
updated model, respectively.

L = −E
(si−1,k

good
i ,kbadi)∼Dsdpo

[
log σ

(
β log

πθ(k
good
i |si−1)

πref (k
good
i |si−1)

)

−β log
πθ(k

bad
i |si−1)

πref (k
bad
i |si−1)

]

(1)

3 Experiments

We present details for TQA models, baselines,
datasets, and experimental settings in this section.

TQA Models. Existing fine-tuned TQA models
do not feature clear step separations. We therefore
obtain a TQA model Mft by fine-tuning an LLM
using the step definition introduced before. Fol-
lowing previous work (Wu and Feng, 2024; Zhang
et al., 2025a), we employ Deepseek-V3 (DeepSeek-
AI et al., 2025) to generate reasoning chains. We
sample 2.4k, 1.5k, and 2.3k examples from the
training sets of WTQ (Pasupat and Liang, 2015),
TabFact (Chen et al., 2020), and HiTab (Cheng
et al., 2022), respectively. We prompt Deepseek-
V3 to produce reasoning chains along with final an-
swers, retaining only those chains that yield correct

answers. This process results in 1,612 instances
from WTQ, 1,425 from TabFact, and 1,277 from
HiTab, for a total of 4,314 instances.

Baselines. We consider the following baselines
for self-improvement strategies: (1) RFT (Yuan
et al., 2023) trains a model with self-generated
reasoning traces that lead to correct answers using
supervised fine-tuning. (2) FDPO (Xu et al., 2024)
trains a model with pair-wise correct and incorrect
full reasoning chains using DPO.

Baselines for value functions include: (3) MC
with binary labels (MC-B) (Wang et al., 2024) re-
turns binary state values based on whether states de-
rive final correct answers. Mixed estimation (MIX)
(Zhang et al., 2025b) scores si 1 if both MC-B and
an external LLM judge Mj output 1. If both judges
return 0, si is 0. States receiving different scores
from the judges are not considered for building the
preference dataset. (4) SELF-EXPLORE (Hwang
et al., 2024) randomly selects a preferred reason-
ing trace and uses full completion of it instead of
a step. This results in longer preferred responses
over rejected ones.

Baselines for TQA models include both end-
to-end and training-free frameworks: (1) TableL-
laMA (Zhang et al., 2023a) is an end-to-end fine-
tuned model with LlaMA-2-7B (Touvron et al.,
2023) as the base model. (2) Protrix (Wu and Feng,
2024) is fine-tuned with around 4k instances with
reasoning chains generated from GPT-4, also us-
ing LlaMA-2-7B as the base model. (3) MACT
(Zhou et al., 2025b) is a training-free framework,
leveraging tools and agent collaboration. (4) Tab-
SQLify (Nahid and Rafiei, 2024) decomposes ta-
bles into relevant sub-tables with SQL query gener-
ation and execution. Then, sub-tables and questions
are passed to LLMs to obtain final answers.

Datasets. We train Mft using the training sets
of WTQ, TabFact, and HiTab. To obtain prefer-
ence data, we sample from their validation sets.
We use the test sets of these three datasets as
in-domain evaluation data and incorporate three
out-of-domain datasets: WikiSQL (Zhong et al.,
2017), SCITAB (Lu et al., 2023), and CRT (Zhang
et al., 2023b) to test models’ generalisability. These
datasets test our method in various degrees of com-
plexity. Thus, we make sure our method is gener-
ally effective. Details about the datasets are pre-
sented in Appendix A.2.

219

58
60
62
64
66

59

63

57

6363
65

WTQ

E
M

83

84

85

86

83

85

83

84

8585

TabFact

RFT FDPO Self-Exp MC-B MIX p2-TQA

60

65

70

64
66

60

68
66

69

HiTab

Figure 3: Comparing p2-TQA with baselines using Ex-
act Match. Results are averaged across models. RFT
and FDPO stand for rejected sampling fine-tuning and
full-chain DPO, respectively. We experiment with sev-
eral value functions: SELF-EXP (Self-Exploration), MC-
B (Monte Carlo with binary values), and MIX (a com-
bination of LLM-as-a-judge and MC-B). Dashed lines
show performances of fine-tuned TQA models Mft be-
fore applying self-improvement methods.

Experimental Settings. We choose Qwen-2.5-
7B (Qwen et al., 2025) and LlaMA-3.1-8B
(Grattafiori et al., 2024) as base models. During
preference learning, we fix the fine-tuning dataset
size to 8k for Qwen-2.5-7B and 6.7k for LlaMA-
3.1-8B, as different baselines result in different
sample sizes (statistics are shown in Appendix A.3).
For fair comparison, we use the smallest sample
size collected as the fine-tuning data size. Hyper-
parameters are shown in Appendix A.4. We use
Qwen-2.5-72B as Mj (Prompt in Appendix A.1).
The number of reasoning chains m is set to 4, and
the roll-out number n is set to 8. The threshold
τ is set to 0.9, and the temperature is set to 0.7
and 0 during dataset construction and inference,
respectively. We use Exact Match (EM) as the
evaluation metric. All experiments are conducted
using 4 A100 GPUs. Training is performed with
LlaMA-Factory (Zheng et al., 2024) and inference
is performed with VLLM (Kwon et al., 2023).

4 Results and Discussions

Figure 3 shows the Exact Match of different meth-
ods on in-domain datasets, averaged across models.
Per-model results can be found in Appendix A.5.

p2-TQA effectively improves the performance
of TQA models. As Figure 3 shows, applying
p2-TQA enhances the performance of Mft by 3.5%
on average on in-domain datasets. The gains are
more obvious on WTQ (5%) compared to TabFact
(2%). This might be attributed to dataset features:
TabFact is a binary classification dataset, thus it
is easier for models to achieve high performance
and harder to further reach improvements. When

Models WTQ TabFact HiTab WikiSQL SCITAB CRT

Protrix 56.2 71.6 - 67.4 45.0 40.2
T-LlaMA 35.0 82.6 64.7 50.5 38.6 26.9
Msi-Qwen 63.1 84.9 67.6 72.0 56.9 51.4
Msi-LlaMA 65.8 85.5 70.3 70.8 54.4 50.3

MACT 70.4 - - - 55.8 57.4
T-SQLify 64.7 80.2 - 76.7 50.9 42.0

Table 1: Exact Match of TQA models. Msi refers to
self-improved models. T-LlaMA and T-SQLify refer to
TableLlaMA and TabSQLify, respectively. Framework
results (the last two rows) are obtained using GPT-3.5 as
the backbone. State-of-the-art TQA results are obtained
from previous work (Zhou et al., 2024; Zhang et al.,
2023a; Wu and Feng, 2024; Nahid and Rafiei, 2024).

evaluating on out-of-domain datasets, we witness
an average of 2.2% performance gain after apply-
ing our framework (↑ 2.2% for WikiSQL, ↑ 2.4%
for SCITAB, and ↑ 2.1% for CRT). These findings
demonstrate the generalisability of our method on
out-of-domain data. The performance gains on
both in-domain and out-of-domain datasets are sig-
nificant and can be observed with inference sam-
pling over multiple runs. Detailed results are shown
in Appendix A.5.

p2-TQA delivers competitive results against
baselines, highlighting the effectiveness of pair-
ing a lightweight value function with stringent
filtering for self-improving models. Comparing
p2-TQA with RFT and FDPO, we find that our
framework leads to higher improvements. The ef-
fect is more obvious on in-domain datasets than
out-of-domain datasets, as results in Appendix A.5
show. Though FDPO is generally computation-
ally cheaper than p2-TQA, i.e., under the same
token budgets, it generates more training instances.
We find that the performance of p2-TQA improves
when training example sizes increase. In contrast,
more examples do not necessarily lead to better per-
formance using FDPO, suggesting early saturation.
More analysis is presented in Appendix A.6.

When comparing against methods using dif-
ferent value functions, we observe that p2-TQA
greatly outperforms SELF-EXPLORE. It also shows
advantages over methods that simply use a binary
value function (MC-B), or combining it with an
LLM judge (MIX). Notably, p2-TQA takes 10 times
less time than using MIX when sampling the same
amount of data. This demonstrates that our method
delivers strong performance while being efficient.
Interestingly, the efficiency is not compromised for

220

Model Retrieval Reasoning Total
instances 1133 451 1584

Qwen (Mft) 71.32 36.36 61.36
Qwen (Mft) +p2-TQA 78.02 41.24 67.55

LlaMA (Mft) 79.44 45.23 69.70
LlaMA (Mft) +p2-TQA 81.38 42.57 70.32

Table 2: Exact Match of models with and without p2-
TQA, evaluated across different question types on the
HiTab test set.

reasoning correctness. We evaluate models fine-
tuned using data generated by p2-TQA and MIX

with regard to step correctness and find that the
two methods achieve similar accuracy (95.7% vs.
94.6%). Detailed analysis can be found in Ap-
pendix A.7. We provide an analysis of threshold
impact in Appendix A.8, showing the necessity of
picking a relatively high threshold for data filtering.

Self-improved TQA models achieve competitive
results compared to complicated state-of-the-art
approaches, with five times less inference time.
Table 1 shows results for current TQA models. first
four rows of Table 1 compare small-size fine-tuned
TQA models, and the last two rows show state-
of-the-art training-free frameworks back-boned by
GPT-3.5. We find that both the Qwen and LlaMA
models, enhanced using p2-TQA, outperform ex-
isting TQA models. More importantly, both self-
improved models achieve competitive performance
compared to larger and more complex frameworks
where tools and agentic collaboration are involved.
On SCITAB, Msi with the Qwen even achieves
the best performance. Apart from the competitive
task performance, we emphasize the inference effi-
ciency of self-improved models: they require eight
times less inference time than MACT and five times
less than TabSQLify.

Applying p2-TQA generally improves accuracy
across question types, table sizes, and step cor-
rectness. We compare models fine-tuned with
p2-TQA against those without, from two perspec-
tives: We take a closer look at question type and
table size, inspired by Zhou et al. (2025a). For
question type analysis, we categorize questions
into those requiring only retrieval and those requir-
ing reasoning in addition. We evaluate models on
the HiTab dataset, which provides explicit ques-
tion type annotations. As shown in Table 2, the
enhanced Qwen-2.5-7B model outperforms its pre-
trained counterpart in both categories, whereas the

500 1000 1500
40

50

60

70

80

#Table size

E
M

(%
)

Qw Qw+p2-TQA LM LM+ p2-TQA

Figure 4: Exact Match of models with and without p2-
TQA, evaluated across different table sizes and averaged
over in-domain datasets. Qw and LM show the perfor-
mance of Qwen Mft and LlaMA Mft respectively.
Instances are grouped into three bins by table token
count: < 500, 500–1000, and ≥ 1000.

LLaMA-3.1-8B model shows notable gains primar-
ily in retrieval questions. For table size analysis, we
partition tables into three bins based on token count
and compute EM accuracy for each bin. Figure 4
reports results averaged over in-domain datasets,
revealing that self-improved models consistently
achieve higher accuracy across all table sizes.

Finally, we examine step correctness by compar-
ing models with (Msi) and without (Mft) p2-TQA.
We randomly sample 50 instances from HiTab and
manually examine the correctness of reasoning
steps for both Qwen and LLaMA, yielding a total
of 200 reasoning chains (50 instances × 2 models ×
2 variants) and 245 steps for Mft versus 239 steps
for Msi. Models enhanced with p2-TQA demon-
strate higher step accuracy than those without (83%
vs. 75%), with most improvements arising from re-
duced errors in planning and numerical reasoning.

5 Conclusions

We have introduced a self-improvement framework
p2-TQA that uses process-based preference learn-
ing. Our framework effectively improves the per-
formance of TQA models by up to 5%. The result-
ing models demonstrate competitive performance
compared to state-of-the-art TQA systems, which
depend on huge LLMs and tool usage. Yet, mod-
els enhanced with p2-TQA require five times less
inference time.

221

Limitations

First, While our method effectively enhances the
performance of small-sized TQA models, its im-
pact on large TQA models remains unexplored. To
the best of our knowledge, current fine-tuned TQA
models only focus on small-sized LLMs. Future
work can explore an efficient training strategy for
large fine-tuned TQA models. Second, we limit
the task in our study to only TQA, while there
exist other table-related tasks, such as table sum-
marization. Third, although our framework sup-
ports iterative self-learning, the present work only
demonstrates the effectiveness of the first iteration,
leaving multi-iteration evaluations for future study.
As the datasets we used in this study are originally
sourced from Wikipedia, scientific papers, and sta-
tistical reports, we do not observe any potential
risks from the datasets.

References
Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai

Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020. Tabfact : A large-scale
dataset for table-based fact verification. In Inter-
national Conference on Learning Representations
(ICLR), Addis Ababa, Ethiopia.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2022. HiTab: A hierarchical table
dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1094–1110, Dublin,
Ireland. Association for Computational Linguistics.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao

Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi
Gao, and Zizheng Pan. 2025. Deepseek-v3 technical
report.

Naihao Deng and Rada Mihalcea. 2025. Rethinking
table instruction tuning.

Naihao Deng, Sheng Zhang, Henghui Zhu, Shuaichen
Chang, Jiani Zhang, Alexander Hanbo Li, Chung-
Wei Hang, Hideo Kobayashi, Yiqun Hu, and Patrick
Ng. 2025. Towards better understanding table in-
struction tuning: Decoupling the effects from data
versus models.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,

222

https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
http://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2501.14693
http://arxiv.org/abs/2501.14693
http://arxiv.org/abs/2501.14717
http://arxiv.org/abs/2501.14717
http://arxiv.org/abs/2501.14717

Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-

dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,

223

Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models.

Yifei He, Haoxiang Wang, Ziyan Jiang, Alexandros
Papangelis, and Han Zhao. 2024. Semi-supervised
reward modeling via iterative self-training.

Hyeonbin Hwang, Doyoung Kim, Seungone Kim,
Seonghyeon Ye, and Minjoon Seo. 2024. Self-
explore: Enhancing mathematical reasoning in lan-
guage models with fine-grained rewards. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, pages 1444–1466, Miami, Florida,
USA. Association for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise
preference optimization for long-chain reasoning of
llms.

Xinyuan Lu, Liangming Pan, Qian Liu, Preslav Nakov,
and Min-Yen Kan. 2023. SCITAB: A challenging
benchmark for compositional reasoning and claim
verification on scientific tables. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 7787–7813, Singapore.
Association for Computational Linguistics.

Md Mahadi Hasan Nahid and Davood Rafiei. 2024. Tab-
SQLify: Enhancing reasoning capabilities of LLMs
through table decomposition. In Proceedings of the
2024 Conference of the North American Chapter of

the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), pages 5725–5737, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal,
Ankesh Anand, Piyush Patil, Xavier Garcia, Pe-
ter J. Liu, James Harrison, Jaehoon Lee, Kelvin Xu,
Aaron Parisi, Abhishek Kumar, Alex Alemi, Alex
Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet,
Gamaleldin Elsayed, Hanie Sedghi, Igor Mordatch,
Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jef-
frey Pennington, Jiri Hron, Kathleen Kenealy, Kevin
Swersky, Kshiteej Mahajan, Laura Culp, Lechao
Xiao, Maxwell L. Bileschi, Noah Constant, Roman
Novak, Rosanne Liu, Tris Warkentin, Yundi Qian,
Yamini Bansal, Ethan Dyer, Behnam Neyshabur,
Jascha Sohl-Dickstein, and Noah Fiedel. 2024. Be-
yond human data: Scaling self-training for problem-
solving with language models.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data? a
benchmark and empirical study.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Vik-
tor Kerkez, Madian Khabsa, Isabel M. Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne
Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,

224

http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2409.06903
http://arxiv.org/abs/2409.06903
https://doi.org/10.18653/v1/2024.findings-emnlp.78
https://doi.org/10.18653/v1/2024.findings-emnlp.78
https://doi.org/10.18653/v1/2024.findings-emnlp.78
http://arxiv.org/abs/2406.18629
http://arxiv.org/abs/2406.18629
http://arxiv.org/abs/2406.18629
https://doi.org/10.18653/v1/2023.emnlp-main.483
https://doi.org/10.18653/v1/2023.emnlp-main.483
https://doi.org/10.18653/v1/2023.emnlp-main.483
https://doi.org/10.18653/v1/2024.naacl-long.320
https://doi.org/10.18653/v1/2024.naacl-long.320
https://doi.org/10.18653/v1/2024.naacl-long.320
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2312.06585
http://arxiv.org/abs/2312.06585
http://arxiv.org/abs/2312.06585
http://arxiv.org/abs/2305.13062
http://arxiv.org/abs/2305.13062
http://arxiv.org/abs/2305.13062

Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog, Yixin
Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, R. Subramanian, Xia Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan,
Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melissa Hall Melanie Kambadur, Sha-
ran Narang, Aur’elien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open foundation and fine-tuned chat models. ArXiv,
abs/2307.09288.

Songjun Tu, Jiahao Lin, Xiangyu Tian, Qichao Zhang,
Linjing Li, Yuqian Fu, Nan Xu, Wei He, Xiangyuan
Lan, Dongmei Jiang, and Dongbin Zhao. 2025. En-
hancing llm reasoning with iterative dpo: A compre-
hensive empirical investigation.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce LLMs
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426–9439, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Zirui Wu and Yansong Feng. 2024. ProTrix: Building
models for planning and reasoning over tables with
sentence context. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
4378–4406, Miami, Florida, USA. Association for
Computational Linguistics.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu,
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and
Sujian Li. 2024. Watch every step! LLM agent
learning via iterative step-level process refinement.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1556–1572, Miami, Florida, USA. Association for
Computational Linguistics.

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan
Li, Xiaohan Zhang, Zihan Wang, Aohan Zeng,
Zhengxiao Du, Zhao Wenyi, Jie Tang, and Yux-
iao Dong. 2024. ChatGLM-math: Improving math
problem-solving in large language models with a
self-critique pipeline. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
9733–9760, Miami, Florida, USA. Association for
Computational Linguistics.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023. Scaling relationship on learning
mathematical reasoning with large language models.

Eric Zelikman, Eliana Lorch, Lester Mackey, and
Adam Tauman Kalai. 2024. Self-taught optimizer
(stop): Recursively self-improving code generation.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2023a. Tablellama: Towards open large generalist
models for tables. In North American Chapter of the
Association for Computational Linguistics.

Xiaokang Zhang, Sijia Luo, Bohan Zhang, Zeyao Ma,
Jing Zhang, Yang Li, Guanlin Li, Zijun Yao, Kangli
Xu, Jinchang Zhou, Daniel Zhang-Li, Jifan Yu, Shu
Zhao, Juanzi Li, and Jie Tang. 2025a. Tablellm: En-
abling tabular data manipulation by llms in real office
usage scenarios.

Zhehao Zhang, Xitao Li, Yan Gao, and Jian-Guang Lou.
2023b. CRT-QA: A dataset of complex reasoning
question answering over tabular data. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 2131–2153,
Singapore. Association for Computational Linguis-
tics.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025b. The lessons of
developing process reward models in mathematical
reasoning.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Wei Zhou, Mohsen Mesgar, Heike Adel, and Annemarie
Friedrich. 2024. FREB-TQA: A fine-grained robust-
ness evaluation benchmark for table question answer-
ing. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (Volume 1: Long Papers), pages 2479–2497,
Mexico City, Mexico. Association for Computational
Linguistics.

Wei Zhou, Mohsen Mesgar, Heike Adel, and Annemarie
Friedrich. 2025a. Texts or images? a fine-grained
analysis on the effectiveness of input representations
and models for table question answering. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2025, pages 2307–2318, Vienna, Austria.
Association for Computational Linguistics.

Wei Zhou, Mohsen Mesgar, Annemarie Friedrich, and
Heike Adel. 2025b. Efficient multi-agent collabo-
ration with tool use for online planning in complex

225

https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
http://arxiv.org/abs/2503.12854
http://arxiv.org/abs/2503.12854
http://arxiv.org/abs/2503.12854
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.emnlp-main.93
https://doi.org/10.18653/v1/2024.emnlp-main.93
https://doi.org/10.18653/v1/2024.findings-emnlp.569
https://doi.org/10.18653/v1/2024.findings-emnlp.569
https://doi.org/10.18653/v1/2024.findings-emnlp.569
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2310.02304
http://arxiv.org/abs/2310.02304
https://api.semanticscholar.org/CorpusID:265213406
https://api.semanticscholar.org/CorpusID:265213406
http://arxiv.org/abs/2403.19318
http://arxiv.org/abs/2403.19318
http://arxiv.org/abs/2403.19318
https://doi.org/10.18653/v1/2023.emnlp-main.132
https://doi.org/10.18653/v1/2023.emnlp-main.132
http://arxiv.org/abs/2501.07301
http://arxiv.org/abs/2501.07301
http://arxiv.org/abs/2501.07301
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://doi.org/10.18653/v1/2024.naacl-long.137
https://doi.org/10.18653/v1/2024.naacl-long.137
https://doi.org/10.18653/v1/2024.naacl-long.137
https://doi.org/10.18653/v1/2025.findings-acl.117
https://doi.org/10.18653/v1/2025.findings-acl.117
https://doi.org/10.18653/v1/2025.findings-acl.117
https://aclanthology.org/2025.findings-naacl.54/
https://aclanthology.org/2025.findings-naacl.54/

table question answering. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2025,
pages 945–968, Albuquerque, New Mexico. Associa-
tion for Computational Linguistics.

A Appendix

A.1 Prompts

Figure 6, 7, and 8 show prompts for generating a
full reasoning trace, completing a reasoning trace,
and LLM judge evaluation for a reasoning trace.

A.2 Datasets

Table 3 shows the number of instances and do-
mains for the test data we used. WTQ (Pasupat and
Liang, 2015), HiTab (Cheng et al., 2022) and Wik-
iSQL (Zhong et al., 2017) are under the license of
CC-BY-SA-4.02, BSD-3 CLAUSE3 and C-UDA4

respectively. TabFact (Chen et al., 2020), CRT
(Zhang et al., 2023b) and SCITAB (Lu et al., 2023)
are under the MIT5 license.

Datasets #instances Domain

WTQ 4344 Wikipedia
TabFact 12779 Wikipedia
HiTab 1584 statistical reports

WikiSQL 15878 Wikipedia
SCITAB 1224 scientific paper

CRT 728 Wikipedia

Table 3: Test data statistics. The second column shows
the number of test instances in each dataset.

A.3 Sampled Dataset Statistics

Table 4 shows the sampling size for each method.
We find MC-B results in the most data while RFT
the least.

A.4 Hyper-parameters

Table 5 shows the hyper-parameters used for model
fine-tuning.

A.5 Additional Results

Table 6 shows different models’ performance on
the six investigated datasets under greedy decoding.
To validate the effectiveness of applying p2-TQA,

2https://creativecommons.org/licenses/by-sa/4.
0/

3https://opensource.org/license/bsd-3-clause
4https://github.com/microsoft/HiTab?tab=

License-1-ov-file
5https://opensource.org/license/mit

Methods HiTab WTQ TabFact Total

Original 1.6k 2.8k 5k 9.4k

RFT 2.2k/1.6k 2.7k/2.4k 3k/2.7k 8k/6.7k
FDPO 3.6k/2k 4.7k/4k 4.6k/3.6K 12.9k/9.6k
SDPO

+MC-B 25k/20.8k 46k/47.1k 37k/38.4k 109k/106k
+MIX 5.4k/3.5k 9.6k/9.7k 5k/4.9k 20k/18.1k
+MC-0.9 6.8k/1.6k 16k/4.4k 11k/2.4k 33.8k/8.4k

Table 4: Sampled dataset sizes for different methods.
Results for Qwen-2.5-7B and LlaMA-3.1-8B are sepa-
rated by “/”. MC-B refers to using Monte Carlo sampling
with binary values as the value function. MIX stands for
using both MC-B and an LLM judge (Qwen-2.5-72B)
as the value function. MC-0.9 stands for using Monte
Carlo sampling with continuous values and setting the
selection threshold as 0.9. RFT refers to rejected sam-
pling fine-tuning. FDPO and SDPO stand for full-trace
DPO and step-wise DPO.

we set the temperature to 0.8 during inference. We
report the mean and standard deviation over five
runs in Table 7.

A.6 Cost Effectiveness Analysis

Note that step-wise sampling requires higher com-
puting budgets than full chain sampling; we con-
duct a cost-effectiveness analysis over FDPO and
p2-TQA. We do that by examining models’ perfor-
mance under different computing budgets (approx-
imately by training instances). We first calculate
the average number of tokens needed to generate
an instance for different methods. This results in
approximately 3k for FDPO and 10K for p2-TQA.
We fine-tune models with varying sizes of training
samples. This not only allows us to compare FDPO
and p2-TQA under the same computing budgets,
but also demonstrates each method’s sensitivity to
training size. Table 8 shows the results. We observe
that for FDPO, adding more training data does not
necessarily improving models’ performance (69.1–
>67.1). In contrast, scaling training sizes remains
effective for p2-TQA. This suggests that though
FDPO generates more training instances than our
method under the same budgets, the real effect of
the generated data on performance is limited.

A.7 Reasoning Chains Analysis

We sample 100 reasoning chains leading to cor-
rect answers generated from models using p2-TQA
and models using MIX as the value function. We
manually examine the correctness of the reasoning
chains. Among the 100 instances, we exclude 8

226

https://aclanthology.org/2025.findings-naacl.54/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.org/license/bsd-3-clause
https://github.com/microsoft/HiTab?tab=License-1-ov-file
https://github.com/microsoft/HiTab?tab=License-1-ov-file
https://opensource.org/license/mit

Models Method Fine-tuning Learning rate Epoch Batch size LoRA rank DPO β

Qwen-2.5-7B supervised fine-tuning full-parameter 5e-6 2 128 - -
Qwen-2.5-7B rejected sampling fine-tuning LoRA 1e-5 1 128 64 -
Qwen-2.5-7B full chain DPO LoRA 1e-5 3 128 64 0.1
Qwen-2.5-7B step-wise DPO LoRA 1e-5 3 128 64 0.1

LlaMA-3.1-8B supervised fine-tuning full-parameter 5e-6 2 128 - -
LlaMA-3.1-8B rejected sampling fine-tuning LoRA 1e-5 1 128 32 -
LlaMA-3.1-8B full chain DPO LoRA 1e-5 3 128 32 0.1
LlaMA-3.1-8B step-wise DPO LoRA 1e-5 3 128 32 0.1

Table 5: Hyper-parameters used for model fine-tuning.

Models WTQ TabFact HiTab WiKiSQL SCITAB CRT In-domain Out-of-domain

Qwen-2.5-7B 28.66 73.77 26.07 47.76 39.46 35.58 42.83 40.93
+ TQA training (Mft) 54.93 82.37 61.36 68.26 54.90 48.49 66.22 57.22

+RFT 56.26 82.44 60.29 68.15 52.29 46.15 66.33 55.53
+FDPO 61.10 84.65 63.83 72.04 56.94 52.06 69.86 60.34
+SELF-EXPLORE 52.70 82.30 55.62 65.20 53.67 44.23 63.54 54.37
MC-B 60.80 82.98 65.72 70.08 52.04 50.24 69.83 57.45
MIX 63.86 85.32 64.20 71.44 55.56 52.47 71.63 59.82
P2-TQA (τ = 0.9) 63.10 84.88 67.55 71.97 56.94 51.37 71.84 60.09

LlaMA-3.1-8B 30.64 63.91 26.20 31.87 43.38 32.55 40.25 35.93
+ TQA training (Mft) 64.80 83.36 69.63 69.48 51.63 49.04 72.60 52.76

+RFT 62.06 84.15 67.30 70.73 50.49 48.63 70.84 56.62
+FDPO 65.22 85.91 68.18 71.34 53.35 50.41 73.10 58.37
+SELF-EXPLORE 61.67 82.83 64.52 67.79 52.20 44.28 69.67 54.76
MC-B 65.54 84.01 69.95 70.67 50.25 49.31 73.17 56.74
MIX 62.39 84.98 66.79 68.31 52.94 51.24 72.05 57.50
P2-TQA (τ = 0.9) 65.84 85.50 70.33 70.08 54.44 50.27 73.98 58.26

Table 6: Exact Match accuracies of models fine-tuned with different strategies and value functions, generated with
greedy decoding. We bold the best results and underline the second best results for each model type.

instances where either the answers are incorrect
or the questions are ambiguous. We find similar
accuracies of the reasoning chains generated from
the aforementioned methods, with 95.7 and 94.6,
respectively. This suggests the two methods do not
differ much in terms of leading to correct reason-
ing chains. Nevertheless, wrong reasoning chains
leading to correct answers still exist, possibly due
to overly complex table inputs. An error case is
shown in Figure 9.

A.8 Threshold Analysis

The threshold τ decides the state value differences
when sampling a pair of (preferred and not pre-
ferred) states. We set τ to 0.9 in our study. We
experiment with different values of τ to investi-
gate its impact on the fine-tuned process-supervised
models. The experimental settings are the same as
described in Section 3 except that we change the
values of τ . Figure 5 shows the performances of
models fine-tuned with data sampled using differ-
ent τ . We observe that there is a tendency for higher
thresholds to lead to better performance. However,

W
TQ

Ta
bF

ac
t

H
iT

ab
W

ik
iS

Q
L

SC
IT

A
B

CR
T

50

60

70

80

Datasets

E
M

Thresholds Comparison with Soft Estimation

Soft Estimation (τ=0.5)
Soft Estimation (τ=0.7)
Soft Estimation (τ=0.9)

Figure 5: Thresholds comparisons with different value
functions on six TQA datasets.

227

Models WTQ TabFact HiTab WiKiSQL SCITAB CRT

Qwen-2.5-7B (Mft) 57.00 ±0.46 81.85 ±0.22 61.76 ±0.22 67.68 ±0.22 52.16 ±1.13 46.92 ±1.15
+RFT 51.08 ±0.60 80.28 ±0.32 56.92 ±0.55 61.77 ±0.08 49.90 ±0.83 46.02 ±0.60
+FDPO 58.54 ±0.23 84.32 ±0.28 61.40 ±0.49 68.20 ±0.23 56.98 ±0.80 49.64 ±1.40
MC-B 57.36 ±0.33 82.74 ±0.04 62.63 ±0.65 66.39 ±0.17 52.71 ±0.71 48.71 ±1.00
MIX 60.43 ±0.57 84.79 ±0.10 62.58 ±0.41 68.59 ±0.14 51.98 ±1.05 52.09 ±0.37
P2-TQA 60.42 ±0.29 84.81 ±0.21 65.05 ±0.80 68.90 ±0.13 55.08 ±1.04 50.99 ±0.80

LlaMA-3.1-8B (Mft) 57.67 ±0.38 82.82 ±0.29 63.18 ±0.80 62.17 ±0.18 49.98 ±1.34 47.86 ±0.65
+RFT 58.27 ±0.47 81.44 ±0.15 63.14 ±0.70 65.47 ±0.22 47.83 ±0.98 47.91 ±1.61
+FDPO 62.18 ±0.41 85.52 ±0.34 65.83 ±0.43 68.12 ±0.18 52.94 ±0.39 50.41 ±0.60
MC-B 60.92 ±0.18 83.98 ±0.17 65.86 ±0.69 65.86 ±0.30 52.25 ±1.54 49.07 ±0.83
MIX 59.57 ±0.62 84.99 ±0.07 62.11 ±0.44 63.23 ±0.19 51.42 ±0.63 50.05 ±1.09
P2-TQA 62.66 ±0.55 85.71 ±0.23 66.49 ±0.79 65.83 ±0.26 53.76 ±0.56 49.15 ±1.20

Table 7: Exact Match accuracies of models fine-tuned with different strategies and value functions, generated
with sampling. P2-TQA significantly improve fine-tuned model. Compared to baselines, it achieves competitive
performance across in-domain datasets.

Method 2k 4k 6k 8k 12k

FDPO 67.3±0.6 68.2±0.5 68.5 ±0.4 69.1±0.4 67.1±0.3

p2-TQA 69.0 ±0.5 69.7±0.3 70.8±0.3 71.4±0.2 72.9±0.2

Table 8: Exact Match against varying training sizes.
Results are obtained by averaging across three runs and
three in-domain datasets using Qwen-2.5-7B.

we do not observe big differences in terms of model
performances when setting τ to 0.7 or 0.9.

228

You are an expert in table question answering.
Based on the given question and table, provide a step by step solution to the question.
Start each step with 'Step x.' where x is the current step number.
Do not carry out verification in each step.
Each step should include two parts: a planning part that indicates what to do and a reasoning part that
returns the results of the planning part.
Separate these two parts via the [SEP] token.
Return the result in the last line following 'Therefore, the final answer is: '.
Table: {table}
Question: {question}

Figure 6: Prompt to generate full reasoning trace given a TQA problem.

Given the following table, question and past steps to solve the question, continue to generate the steps
following past steps to obtain an answer.
Each step should include two parts: a planning part that indicates what to do and a reasoning part that
returns the results of the planning part.
Separate these two parts via the [SEP] token.
Start each step with 'Step x.' where x is the current step number.
Do not carry out verification in each step.
Return the result in the last line following 'Therefore, the final answer is: '.
Table: {table}
Question: {question}
Past steps: {steps}

Figure 7: Prompt to complete a reasoning trace given a TQA problem and past steps.

229

I will provide a table question answering(TQA) problem along with a step-by-step reasoning to solve the
problem. They will be formatted as follows: [TQA Problem]
...(TQA problem)...
[Solution]
<step_1 >
...(step 1 of a plan)...
</step_1 >
...
<step_n >
...(step n of a plan)...
</step_n >
Your task is to review each step of the plan in sequence, analyzing, verifying, and critiquing a step in
details to decide if a step is helpful or not for solving the problem.
A helpful step has the following features:
- It provides unique information about how to solve a question and does not repeat information
appeared in the previous steps.
- It is relevant to solving the question.
- It is correct in terms of the reasoning.
Please provide your analyses, decisions (1 for helpful and 0 not helpful) for each step and confidence for
each decision (from 0 to 1).
Higher confidence value suggests you are more certain that your decision is correct.
In contrast, lower confidence suggests you are more uncertain about your decision and your decision
might be incorrect.
Please do not be over confident about your decision.
You should be honest if you are not sure about your decision.
Please return your response strictly following the format below:
<analysis_1 >
...(analysis of step 1)...
</analysis_1 >
<decision_1 >
1/0
</decision_1 >
<confidence_1 >
(a numerical value from 0 to 1)
</confidence_1 >
...
<analysis_n >
...(analysis of step n)...
</analysis_n >
<decision_n >
1/0
</decision_n >
<confidence_n >
(a numerical value from 0 to 1)
</confidence_n >
--
The following is a TQA problem and a step-by-step solution to solve the problem:
[TQA Problem]
{problem}
[Solution]
{solution}

Figure 8: LLM judge prompt to generate analysis, decisions and confidence for each step.

230

Table:
| # | Date | Location | Winner | Score\nJSU | Score\nTU | Series |
| 1 | November 27, 1924 | Jacksonville, AL | Jacksonville State | 14 | 9 | JSU 1–0 |
…
| 8 | November 11, 1938 | Jacksonville, AL | Tied | 6 | 6 | TSU 4–3–1 |
…
| 21 | October 15, 1955 | Troy, AL | Jacksonville State | 12 | 0 | Tied 10–10–1 |
…
| 28 | October 6, 1962 | Jacksonville, AL | Jacksonville State | 21 | 14 | JSU 17–10–1 |
…
| 38 | November 11, 1972 | Jacksonville, AL | Tied | 14 | 14 | JSU 22–14–2 |
…
| | Totals | | | 1086 | 1110 | JSU 32–29–2 |

Question:what is the least amount of points scored in a tie game?

Step 1. Identify all the tie games in the table by checking the "Score\nJSU" and
"Score\nTU" columns for values that are the same.
#	Date	Location	Winner	Score\nJSU	Score\nTU	Series
8	November 11, 1938	Jacksonville, AL	Tied	6	6	TSU 4–3–1
21	October 15, 1955	Troy, AL	Jacksonville State	12	0	Tied 10–10–1
28	October 6, 1962	Jacksonville, AL	Jacksonville State	21	14	JSU 17–10–1
38	November 11, 1972	Jacksonville, AL	Tied	14	14	JSU 22–14–2

Step 2. Extract the scores of the tie games identified in Step 1.
Score\nJSU	Score\nTU
6	6
12	0
21	14
14	14

Step 3. Determine the least amount of points scored in a tie game by finding the
minimum value among the extracted scores.
The scores are 6, 12, 21, and 14. The least amount of points scored in a tie game is 6.

Therefore, the final answer is: 6.

Figure 9: Wrong reasoning chain generated by a self-improved model (Qwen-2.5-7B) using P2-TQA. The first
wrong step is highlighted with red.

231

