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Abstract

Conventional research on speech recognition
modeling relies on the canonical form for
most low-resource languages while automatic
speech recognition (ASR) for regional dialects
is treated as a fine-tuning task. To investigate
the effects of dialectal variations on ASR we
develop a 78-hour annotated Bengali Speech-
to-Text (STT) corpus named Ben-10. Inves-
tigation from linguistic and data-driven per-
spectives shows that speech foundation mod-
els struggle heavily in regional dialect ASR,
both in zero-shot and fine-tuned settings. We
observe that all deep learning methods strug-
gle to model speech data under dialectal varia-
tions but dialect-specific model training allevi-
ates the issue. Our dataset also serves as an out-
of-distribution (OOD) resource for ASR mod-
eling under constrained resources in ASR al-
gorithms. The dataset and code developed for
this project are publicly available.!
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Figure 1: t-SNE plot of GeMAPS features (Eyben
et al., 2015) of the standard Bengali speech data (OOD-
Speech (Rakib et al., 2023)) and the proposed Ben-10
dataset (10 regions) shows a clear distribution shift.

"https://github.com/BengaliAI /reg-speech-aacl

1 Introduction and Related Works

Computational linguistics has been essential for
understanding written and spoken language, aim-
ing to bridge gaps (Wald and Bain, 2008) via natu-
ral language interaction in systems. Significant ad-
vances in this area encompass automated speech
assessment for language learning (Chapelle and
Voss, 2016), evaluating language disorders and
therapy (Kitzing et al., 2009) and supporting agri-
culture (Swetha and Srilatha, 2022). Speech-to-
Text (STT) is one such technology that is com-
monly used, yet resources for low-resource lan-
guages like Bengali, especially regional variations
are lacking. Over the years, a few datasets have
been developed for different languages focusing
on regional dialects. Researchers in (Shivaprasad
and Sadanandam, 2020) created a Telugu dataset
for dialect study in speech recognition, (Zhai et al.,
2022) focused on the low-resource Yulin dialect
in China and (Javed et al., 2024) introduced In-
dicVoices, a corpus which contains 7k+ hours of
everyday dialogues, speeches and readings from
22 Indian languages. Research such as (Hai, 1964)
and (Morshed, 1997) focused on modeling stan-
dard colloquial Bengali (SCB) phonology, but lit-
tle has been explored in the diverse regional Ben-
gali dialectal variations in Bangladesh.

Despite advances in the application of deep
learning in automatic speech recognition
(ASR) (Mehrish et al., 2023) (Kheddar et al.,
2024), no prior research has thoroughly inves-
tigated their performance in regional Bengali
dialects due to the unavailability of diverse
datasets. Although existing speech recognition
datasets for Bengali (Rakib et al., 2023; Kibria
et al., 2022) contain Standard Colloquial Ben-
gali (SCB) and its accents, these lack dialectal
variations, which can substantially diverge from
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SCB. Recent efforts, such as the ChatgaiyyaAlap
dataset (Chowdhury et al., 2025), provide re-
sources for converting the Chittagonian dialect to
standard Bangla, highlighting the need for dialect-
specific data in speech processing. Similarly,
BnTTS (Basher et al., 2025) explores few-shot
speaker adaptation for Bengali text-to-speech
in low-resource settings, underscoring the chal-
lenges of adapting models to diverse linguistic
contexts. Our research bridges the domain gaps
by offering an open-sourced dataset containing
spontaneous, diversified regional speech dialects.
We demonstrate that available state-of-the-art
(SOTA) models struggle to transcribe this dataset
in both zero-shot and fine-tuned scenarios. Ad-
ditionally, we crowdsourced the development of
ASR models that outperform existing systems in
transcribing speech with regional dialects.

Our contributions presented in this paper are as
follows.

1. Introducing the first and largest ASR dataset
for 10 regional dialects of Bengali (hence the
name Ben-10). The dataset contains sponta-
neous speech data with linguist-validated an-
notation.

2. Benchmarking of the performance of existing
Bengali ASR models, APIs and foundation
models on the Ben-10 dataset.

3. Dialect capture rate analysis of the founda-
tional and finetuned models.

2 Regional Dialect Speech Dataset
(Ben-10)

Data Collection

+ Hire Native Collector

« Introduce collection
Protocol

« Collect Dialogue on
Pre-specified topics

Transcription Linguistic Validation

+ Hire native transcribers + Linguist checks

Introduce transcription transcription quality

protocol « Updates transcription

« Transcribe (with protocol for non-SCB
linguistic feedback) words

[ |

Data Validation &
Processing
—> .+ Check sample quality —»
« Process audio clips
for annotation

Figure 2: Ben-10 dataset creation workflow.

We constructed a speech corpus that empha-
sizes regional dialects of Bengali, drawing from
ten distinct regions: Rangpur, Kishoreganj, Narail,
Chittagong, Narsingdi, Tangail, Barishal, Habi-
ganj, Sylhet, and Sandwip. Table 1 presents the
proportional distribution of data across these re-
gions. To visualize the high-dimensional embed-
dings in the Geneva feature space, we generated a
t-SNE (Van der Maaten and Hinton, 2008) projec-
tion into 2D. As shown in Fig. 1, the t-SNE plot re-
veals a pronounced distribution shift between stan-

dard Bengali speech and our Ben-10 dataset, pri-
marily attributable to prosodic variations across di-
alects and the inclusion of spontaneous speech in
the latter. More details on geneva features and
comprehensive analysis can be found in the Ap-
pendix sections A.1 and A.4. We have illustrated
the complete workflow in Fig. 2.

We have collected more than 5 hours of data per
region from 394 unique speakers. The responses
contain 155 topic stimuli such as family, religion,
sports, politics etc. After excluding low-quality
samples, recordings were segmented using Silero
VAD (Team, 2021) with a maximum segment du-
ration of 30 seconds. Since segmentation bound-
aries were determined by speech activity rather
than fixed intervals, the resulting clips averaged
16.60 seconds in length. The clips were tran-
scribed by 34 trained annotators over 14 months,
while linguists validated accuracy. The Ben-10
corpus comprises 16,690 audio clips amounting to
78+ hours of mostly spontaneous speech, 131.38
words per minute and 62,762 unique words. The
dataset includes 40.12 hours from males, 32.55
hours from females and 8.35 hours from multiple-
gender speakers. The region-wise gender distribu-
tion of speakers is shown in Fig. 3.
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Figure 3: Gender distribution

The dataset was split into train, validation and
test sets following an 80:10:10 ratio for each of
the dialects. The dialect-wise recording and text
length distribution can be found in the Appendix
A.2. More details about the dataset can be found
in the Appendix A.5

We conducted a NISQA (Mittag et al., 2021)
quality evaluation on the speech data. The ex-
tracted NISQA features include Mean Opinion
Score (MOS), Noisiness, Coloration, Discontinu-
ity and Loudness. From Fig.4 we see that the Dis-
continuity for Narsingdi is really high, This sug-
gests that speech from this region may have more
interruptions, glitches or sudden changes. The
audio quality for Narsingdi also suffers from the
busier acoustic environment which is indicated by
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the high Loudness metric. Rangpur also has high
Loudness and Discontinuity. More analysis on this
can be found in the Appendix A.3.
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chittagong —— kishoreganj —— sylhet ——— sandwip habiganj
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Figure 4: Comparison in the distribution of NISQA fea-
tures across regions in Ben-10.

Duration [H:M] 00V% wpy  Contributor
Train  Valid Test Train Valid Test Train Valid Test (M/E/B)
Rangpur 1,037 131 130 448  0:36 0:35 47.86 37.64 37.99 13438 27 (19/8/0)
Kishoreganj 1,638 204 206  7:42  0:55 0:58 6233 53.57 47.14 117.96 47 (25/18/4)
Narail 1488 183 188 6:52  0:52 051 5474 4129 4342 13681 37 (21/12/4)
Chittagong 1,406 174 177 635 0:48 047 6113 5628 6333 13442  41(15/22/4)
Narsingdi 1,098 136 137 504 0:38 0:37 5224 39.08 37.59 14853 26(9/16/1)
Tangail 987 131 132 454 0:36 035 43.04 2472 23.06 14167 36 (18/11/7)
Habiganj 940 117 113 420 0:32 033 5655 57.96 5428 12347 34 (19/15/0)
Barishal 796 105 105 345  0:30 030 4829 43.62 4486 123.79  26(6/7/13)
Sylhet 2903 356 362 1334 150 141 6324 5036 5027 1265 94 (62/30/2)
Sandwip 1,049 129 132 448 0:36 037 6191 5161 5277 14412 26(15/972)
Total 13342 1,666 1,682 627 7:58 T:50 72.54 5972 5846 13138 394 (209/148/37)

- Sample Counts
Districts Sample Counts

Table 1: Ben-10 dataset statistics. OOV — words
unique to the district that are Out Of Vocabulary in
comparison to SCB (Rakib et al., 2023). M — Male,
F — Female, B — Both

3 Dialectic Features of Regional Bengali

Comparing Bengali dialects with SCB reveals no-
table deviations in all linguistic aspects. Pho-
netic differences, such as vowel and consonant
shifts, morphological variations like unique verb
conjugations, syntactic peculiarities including sen-
tence structure and lexical distinctions with region-
specific vocabulary highlight the rich tapestry of
linguistic diversity. Below, we discuss the intrica-
cies with the International Phonetic Alphabet (IPA)
transcript (Fatema et al., 2024).

Phonetic feature analysis of the dialects from
the ten regions reveals notable regional variations
in vowel and consonant pronunciation. For in-
stance, some unaspirated sounds in Standard Ben-
gali become aspirated in different dialects, espe-
cially, the Sylheti dialect: unaspirated < /k/ is pro-
nounced as aspirated ‘¥’ /k"/ and sometimes as ve-
lar fricative ¥ /x/. Similarly, Chittagong dialect
is characterized by the change in bilabial plosive
sounds ? /p/ and ¥ /k/ into the aspirated ¥ /f/ and
¥ /k%/ sound at the initial syllable position- often
at the medial and final position too. One example
of this is N*/mep/ > NF/mef [English: Measure].

Sandwip and Chittagonian speakers frequently em-
ploy nasalization, particularly in vowel sounds,
which contributes to the unique phonetic identity,
which is not a characteristic behaviour of the stan-
dard colloquial Bengali, e.g. ®IW& [my] > &
[/femer/ > /&r/]. In Rangpuri dialect, it is common
to find aspirated sounds /k"/, /t*/, /b, /g"/, /d"/,
/p"/ being changed into non-aspirated sounds /k/,
/d/, v/, /g/, Ip/. Barishal speakers exhibit phonetic
traits influenced by the eastern Bengali dialect. In
Tangail dialect, the intonation patterns tend to rise
at the end of declarative sentences, giving an in-
quisitive tone, which contrasts with the typically
falling intonation in Standard Bengali. Distinctive
prosodic patterns in the Rangpur dialect include
the frequent use of pitch accents, where certain syl-
lables are emphasized with a higher pitch, affect-
ing the overall rhythm of the speech. Morpholog-
ical feature analysis indicates distinctive word for-
mation and inflectional patterns across the dialects.
For example, we find some distinctions in singu-
lar and plural inflections in the Narsingdi dialect.
For example, singular inflection ‘B /te/ and plu-
ral inflection ‘=T’ /gule/ in SCB becomes “©! and
f© /dv/, respectively. Chittagong dialect speak-
ers exhibit unique verb conjugations and pronouns
(e.g. N S’ /em1/ /korry/ [ i do] > @2 & /8r/
/gort/). Different dialects also exhibit high gemina-
tion characteristics adding to the lexical richness.
For example, in Barishal dialect, we have seen the
word ‘UIZGITF’ [can eat] /k"erttere/ analogous to the
SCB verb form ‘(¥ 7N’ /k"ete/ /pere/. Syntac-
tic feature analysis shows deviations from SCB
where a sentence follows the subject-object-verb
sequence. In the Chittagong dialect, the negation
word often comes before the verb, which is differ-
ent from SCB (e.g. “@If¥l T =1 (negation)’ [I don’t
go] /emy/ /jer/ /ne/ > ©2 7 (negation) A’ /er/ /no/
/ser/). Some representative samples of diversity is
shown in Table 2 where we can see the high lin-
guistic variations compared to SCB.

4 Benchmarking

We rigorously evaluated transcription capability
using pretrained and finetuned foundational ASR
models (Table 3). The evaluation was based on
word error rate (WER) and character error rate
(CER), reported as decimal fractions. In this paper,
we refer to large-scale pretrained ASR systems
such as Google ASR, Whisper-large and Hishab
Conformer as foundational models, since they
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Region Regional Sentence

IR T RS FAN | GIIRE G2 @ Fh@ 1 1 will record on mobile
[mobeglot skne rekod kormo] [mobeile sk"on rekord korbo] now.

Standard Bengali English Translation

Rangpur

Kishoregani T ¥ TR0 7111 @1 T foreace oreat o See what is written
SROTEAN eno ki likele dsho] [ekene ki lik"ece dsk"o] here.
: wifet ot AT IR IR (Ol TG IR | —
Narail — h h Then it has increased.
[telr to berre gec"e] [tehole to bere gec"e]
; o] weet 1 feg 2@ )
Chittagong [kic"u aito no] [kic®u habe ne] Nothing will happen.
Sandwi (TS WIEre! 7 GT @I =T H ot
andwip T [fe =fbe ] e won't come.
< R FAfle o dfae SN S (A G |
Sylhet — ho— — Pray for me too.
[emrer legio doe k"orig] [emer jonnog doe koro]
o TR0 fEel wgem? FA 2 T,
PR [1skuler kite k"ortem?] [skule ki bolbo?] Rlticles Jatsckoct
- -] Tl T 1 BTG-S L T 1
Narsingdi [ulte-pelte kote ko] [ulte-palte kot bole] Talk back and forth.
43 BTl Wl 9w |3 &3 RO 7 = 1 This image has not

Coeat [e1 c"obide dsha o' na]

@z M oIeet ol w1
[ehon berr gsle reg o']

[e1 chobrte dsk™e ho'ni]
Q¥ = coree =1el =
[sk"on ber: gele reg ho']

been viewed.
Now I get angry when

Barishal 1 g0 home.

Table 2: Regional dialectal variations in Bengali

are trained on vast amounts of general-purpose
multilingual data prior to any task-specific fine-
tuning. We used Google’s speech-to-text cloud ser-
vice API which uses Conformer-based models (Gu-
lati et al., 2020). We investigated the dialect-
wise performance of the Wav2vec2 (Baevski et al.,
2020) (fine-tuned on SCB (Rakib et al., 2023)
and fine-tuned Ben-10). We also evaluated the
Hishab Conformer (Nandi et al., 2023) model
which was trained on 20k hours of pseudolabelled
Bengali speech data. We further benchmarked
Whisper-large-v3 (Radford et al., 2023) alongside
two models that won previous ASR competitions
on SCB (Mashiat et al., 2022) (Addison Howard,
2023): finetuned Wav2Vec2 and Tugstugi (fine-
tuned Whisper (Radford et al., 2022)). Foun-
dational models (Google ASR, Hishab, Whis-
per) performed poorly across all regions. While
Wav2Vec2’s performance on SCB is known to be
limited (Rakib et al., 2023), fine-tuning did not sub-
stantially mitigate the issue. Whisper-based mod-
els, particularly Tugstugi, achieved relatively bet-
ter accuracy but still exhibited high WER and CER.
For context, with sufficient training data, these
models can achieve WERs below 0.30 in various
English benchmarks (Radford et al., 2022).

Several dataset-driven factors appear to under-
lie these outcomes. Wav2Vec?2 struggles particu-
larly in Sandwip and Tangail, as many of these
dialectal words do not exist in Standard Bengali
(about 62% for Sandwip and 43% for Tangail)
and phonetic or prosodic deviations (e.g., Sand-
wip’s consonant shifts and Tangail’s rising into-
nation) cause frequent substitutions and deletions.
Tugstugi, built on Whisper, benefits from exposure
to hundreds of thousands of hours of multilingual
data. These diverse pretraining priors appear to en-
able better adaptation to dialectal variations com-
pared to Wav2Vec2, which remains more aligned

with SCB. Moreover, WER reduction varies by
dialect due to differences in data volume and lin-
guistic proximity to SCB. Larger splits, such as
Sylhet, facilitate better learning despite high diver-
gence, while smaller splits like Barishal show lim-
ited gains. Dialects closer to SCB (e.g., Narail,
Habiganj) improve more readily than highly dis-
tinct ones (e.g., Chittagong, Sandwip). These hy-
potheses are informed by dataset statistics and lin-
guistic traits; a full causal analysis is planned for
future work. More analysis comparing dialect-
wise error rates with NISQA metrics can be found
in Appendix A.6.

Chittagong
WER CER WER CER WER CER WER CER

Whisper Large V3 1.09 070 1.10 081 1.17 093 148 1.20
Google ASR 1.02 098 1.06 1.12 087 074 102 094
Hishab Conformer 095 068 1.02 068 084 056 082 052
Wav2Vec2 (SCB) 097 071 095 079 089 061 087 0.61
Tugstugi 093 062 092 072 079 048 0.76 0.46
Wav2Vec2 (Ben-10) 093  0.59 092 0.69 082 054 0.78 0.46
Tugstugi (Ben-10) 085 045 086 052 0.64 029 062 029

Rangpur Barishal
WER CER WER CER WER CER WER CER

Whisper Large V3 122 099 1.04 068 091 049 103 0.72
Google ASR 084 092 125 137 110 1.0 123 150
Hishab Conformer 088 056 056 029 087 052 087 0.62
Wav2Vec2 (SCB) 092 071 059 026 088 055 091 0.67
Tugstugi 083 056 049 021 079 043 081 054
Wav2Vec2 (Ben-10) 0.81 0.53 0.60 030 0.84 049 084 0.58
Tugstugi (Ben-10) 078 041 036 012 0.65 029 0.67 034

Kishoreganj Narsingdi Narail

Models

Tangail Habiganj

Models

Models Sylhet Sandwip Average
WER CER WER CER WER CER
Whisper Large V3 1.10 086 1.14 0.78 1.13 081
Google ASR 091 078 1.00 094 1.03  1.03
Hishab Conformer 090 052 097 0.67 0.87  0.56
Wav2Vec2 (SCB) 092 0.61 1.00 1.00 0.89  0.62
Tugstugi 0.87 049 092 0.66 0.81 0.52
Wav2Vec2 (Ben-10)  0.85 0.53 1.05 1.01 0.83  0.53
Tugstugi (Ben-10) 0.75 043 0.82 048 0.70  0.36

Table 3: Benchmark results of pretrained and finetuned
foundational models. Finetuned versions indicate their
respective training datasets in parentheses. For each re-
gion, the best WER and CER are in bold.

5 Dialect Transcription Analysis

In this section, we present a method to determine
the average rate of successful dialectal word tran-
scription per region. This requires building a vo-
cabulary of region-specific dialectal words, anno-
tating the words in each transcription using this
vocabulary, and comparing ASR predictions from
multiple models against these annotations to assess
whether dialectal variations are accurately tran-
scribed. However, this process demands extensive
manual effort, which is beyond the scope of this
paper. Therefore, we conduct the experiment on a
smaller scale.

Sample transcriptions of 5—10 sentences per re-
gion, each containing approximately 50 dialectal
words, were extracted by the linguist. Then spe-
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cific dialectal words were annotated from the tran-
scriptions for evaluating the performance of the
models. Then we manually compared the ground
truth dialectal words with the transcriptions of the
models. If the dialectal word is perfectly tran-
scribed, it is considered a true positive (TP), or else
a false positive (FP). For each sentence, we com-
pute the dialect recall rate (i.e., TP/(TP+FP)) for
each model (Table 4). Since manual annotation
is time-consuming, we only constrain the experi-
ment to the best performing foundational models:
Tugstugi and Tugstugi (Ben-10).

The analysis shows that the tugstugi-base model
which was not fine-tuned in the regional dialects
performed worst across all the regions. The best
performing regions were Sylhet and Tangail and
the worst were Chittagong and Kishoregan;.

In Table 5, we present some example dialects
that are prevalent in their corresponding districts
but they are inaccurately transcribed by the mod-
els. The foundational model (Tugstugi) often does
not predict any text (<> for null prediction) for
the dialect word due to the lack of dialect vocab-
ulary in its training corpus. Additionally, founda-
tional models have a strong tendency to default
to standard Bengali (Table 4 underlined words).
This is expected as the Tugstugi model which is
only trained on SCB has no vocabulary for di-
alectal words and the inferences get aligned with
the closest phonetically similar standard Bengali
word. The regionally fine-tuned version of the
model also does not perform well, but the attempt
to map phoneme to grapheme is visible, although
the formed words do not match the dialectal anno-
tation.

Region Tugstugi  Tugstugi (Ben-10) Region Tugstugi  Tugstugi (Ben-10)
Chittagong 0.033 0.200 Tangail 0.075 0.471
Kishoreganj 0.044 0.156 Habiganj 0.060 0.340
Narsingdi 0.016 0.275 Barishal 0.014 0.400
Narail 0.038 0.325 Sylhet 0.090 0.530
Rangpur 0.033 0.204 Sandwip 0.050 0.342

Table 4: Variation of dialect recall observed for differ-
ent models across different regions.

6 Conclusion

Our study delves into Bengali speech intricacies,
creating a 78-hour regional corpus, the sole open
ASR dataset for these variations. We find signifi-
cant morphological and syntactic deviations of dif-
ferent dialects of the SCB, which have not been
extensively documented before. This work high-
lights the challenges SOTA models face in tran-
scribing regional speech, particularly in zero-shot

Region Ground Truth Tugstugi Tugstugi (Ben-10)
423728 [doprcon] 7571 [duffe] el [dito]
Rangpur
199 [gesnu] < ¢1t= [gec"enu]
. . 8O [kortem] < I [koroni]
Kishoreganj 0 .
7249 [dumnner] 7 [dunre’] 2R [dumner]
el WEEACS! [megfoto ] W@ GTg [meer fetu] N2 8 (81 [memfe o to]
arai —_—
ENfEF [meledik ] @IS [meled: ] NS [meled: ]
. (@FFC [bekkune ] QY [ek"ono | AFTAC [ekk"ono ]
Chittagong
219 [herep ] < AT [kl ele ]
. FAMGAEA [legrelen ] @R [cilender ] G4 [heler ]
Sandwip
QTN [eggere ] < Gt [egere ]
Sylhet CRITA [c"ok"o ] @TeE [fouke ] = 9T [c" oke ]
yihe — — —
SIZCT [temer ] 12 [tey ] 12 [ter ]
et i [achilal ] BiEfe [cechile ] TR [cerc™ile! ]
abiganj
g [k ic"udmn ] AT [pritibir | frgfa [fitudm ]
L 4% [kPerley ] @ [fele ] @ [felel |
Narsingdi
TS [dehet ] TIPCOCR [dektece ] TS [det ]
. IR [dehe ] TR [dehe ] MR [dehe ]
Tangail i
QR [0 ] 2 [ho' ] A [deke’ ]
. iRt [keglgo | < FG-NE [kej-mej |
Barishal o _ _
JEARA [berrere | A [bexre ] QAR [beire ]

Table 5: Examples of dialectal words that are incor-
rectly transcribed by all the models. If the word is tran-
scribed as a vocabulary of SCB it is underlined.

and fine-tuned settings due to limited dialect cover-
age in the training set. This dataset also provides
the first ever regional Bengali text corpus which
can be further analyzed to build region centric vo-
cabulary which is crucial in building efficient tok-
enizers (an integral part of speech encoders).

7 Limitations

The lack of computational resources needed to
run these DL models is ubiquitous in the Global
South and has been plaguing the development of
any low-resource language technology develop-
ment. We alleviated the issue by crowdsourcing
finetuning experiments. Future iterations will aim
to expand dialectal representation, address gender
bias, enhance sentence diversity and refine linguis-
tic analysis to improve understanding of Bengali’s
regional variations.

8 Ethical considerations

Authors of this paper acknowledge that this re-
search complies with ACL ethical guidelines. This
paper is original and any prior work that was used
in this research is properly cited. All the findings
presented in the paper are truthful and accurate to
the best of our knowledge. Data was collected
through informed consents and complies with eth-
ical standards. Payments were duly made to those
who collected the data (BDT 300 for every hour of
speech data collected) and to those who transcribed
them (BDT 2000 for every hour of speech data).
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A Appendix

A.1 Geneva Features

Definitions for the Geneva features mentioned in
the paper are provided below:

* F3frequency_sma3nz_amean: Average fre-
quency of the third formant

* F3amplitudeLogRelF0 _sma3nz_stddev-
Norm: Normalized standard deviation of the
logarithmic difference between the amplitude
of the third formant and the fundamental
frequency

+ alphaRatioV_sma3nz_stddev-Norm: Nor-
malized standard deviation of alpha ratio in
voiced segments

* hammarbergindexV_sma3nz_stddev-
Norm: Normalized standard deviation of
Hammarberg index in voiced segments

* slopeV0-500 sma3nz_stddev-Norm: Nor-
malized standard deviation of slope in the fre-
quency range 0-500Hz for voiced segments

* FOsemitoneFrom27.5Hz_sma3nz_amean:
Average fundamental frequency in a logarith-
mic scale - a frequency scale with semitones
starting at 27.5Hz (semitone 0)

* FOsemitoneFrom27.5Hz_sma3nz_stddev-
Norm: Normalized standard deviation of
fundamental frequency in semitones starting
at 27.5Hz

* FOsemitoneFrom27.5Hz_sma3nz_percent-
ile20.0: 20th percentile of fundamental
frequency in semitones starting at 27.5Hz

* FOsemitoneFrom27.5Hz_sma3nz_percent-
ile50.0: Median (50th percentile) of
fundamental frequency in semitones starting
at 27.5Hz

* loudness_sma3_pctlrange0-2:
loudness within the 0-2 percentile

Range of

* mfccl_sma3_amean: Average of the first
Mel-Frequency-Cepstral-Coefficients

+ alphaRatioV_sma3nz_amean: Average al-
pha ratio (ratio of the summed energy from
50-1000 Hz and 1-5 kHz) in voiced segments

* hammarbergIndexV_sma3nz_amean:
Average Hammarberg index (ratio of the
strongest energy peak in the 0-2 kHz region
to the 2—5 kHz region) in voice.

A.2 Dialect-wise recording and text length
distribution

aracters)

Frequency(Log Scale)

30

%
Audio Length (seconds)

10 15 20 25
Audio Length (seconds)

Figure 5: (Left) Audio length distribution and (Right)
Scatter plot showing the relationship between Audio
length and transcript length

Fig. 5 shows that most of the recordings are
around 15 seconds in length and none are above 30
seconds. Furthermore, from Fig. 5 we observe that
the recording length and transcript character count
are not strictly correlated. Calculating the long-
term spectral average for different dialects, we ob-
tain Fig. 6(a). Here we see dialects diverge both
semantically and spectrally. This demonstrates the
high distribution shift among dialects. As we en-
sured the same recording protocol, this distribution
shift is suspected to be caused by the prosodic vari-
ations present in the different dialects.

A.3 Recording Quality Evaluation using
NISQA metrics

We performed a NISQA (Mittag et al., 2021) qual-
ity evaluation of the speech data. The features cal-
culated are Mean Opinion Score, Noisiness, Col-
oration, Discontinuity and Loudness. Definitions
of these features can be found in the NISQA pa-
per. The distribution difference of SCB OOD-
Speech and Regional Ben10 Datasets are provided
in Fig. 9. Noisiness is worse in our dataset when
compared to OOD-Speech due to recording in an
uncontrolled setting with the presence of environ-
mental noise. Our corpus fares well in Discontinu-
ity and is similar in Coloration compared to OOD-
Speech. Since the audio is recorded with a phone
mic and it is often not possible to hold the phone
at the speakers mouth Loudness is worse.There is
no visible difference in audio processing which re-
sults in a similar Coloration.

MOS (Mean Opinion Score): MOS is a subjec-
tive speech quality evaluation metric based on the
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Figure 6: (Left) Long-term Spectral Average of Record-
ings from different dialects (Right) t-SNE plot of
Geneva features of 10 dialects in Ben10 dataset

opinions of a diverse group of listeners, averaging
their ratings on a scale from 1 to 5 (poor to excel-
lent). It incorporates aspects such as clarity, dis-
tortion, and intelligibility and is influenced by the
crowd’s diversity and listening conditions.

Noisiness: Noisiness is a metric to measure the
amount of unwanted background noise in an audio
signal. Excessive noise can overwhelm the orig-
inal speech, making it harder to listen to and un-
derstand. It is often used to calculate the signal-to-
noise ratio and how different types of noise affect
the overall audio quality.

Coloration: Coloration measures alterations to
the speech signal, often due to audio processing or
transmission. This can include changes in the fre-
quency spectrum such as addition, removal, shift,
amplification, or attenuation in certain frequency
bands resulting in a speech sound that may appear
unnatural or distorted.

Discontinuity: Discontinuity evaluates sudden
interruptions or abrupt changes in the speech sig-
nal such as gaps, glitches, or shifts in audio levels.
These can disrupt the smooth flow of speech and
decrease its perceived quality.

Loudness: Loudness measures the perceived
volume of the speech signal. Proper loudness en-
sures the speech is audible without being over-

1 4 10 15 20 25 30 35 40 45

2 3
Mean Opinion Score Mean Opinion Score

Figure 7: Mean Opinion Score(MOS) Distribution of
the Train and Validation fold.

whelming or distorted.
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Figure 8: MOS comparsion between benl10 and OOD
speech
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Figure 9: Comparison in distribution of NISQA fea-
tures in Ben-10 2 and OOD-Speech | Datasets

A.4 Geneva feature Analysis

The Geneva Minimalistic Acoustic Parameter
Set (GeMAPS) (Eyben et al., 2015) provides
a compact yet informative representation of
speech signals. It is a set of acoustic fea-
tures used to characterize various aspects of
speech signals, such as pitch-related features,
energy-related features, timing-related features,
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Figure 10: Smile feature histogram comparisons be-
tween Ben-10 and OOD-Speech Datasets
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Figure 11: KDE plot of several geneva features show-
ing shifted distributions for different dialects from the
Ben-10 Dataset.

spectral features, and voice-quality related fea-
tures. slopeV0-500_sma3nz_stddevNorm de-
notes the Normalized standard deviation of slope
in the frequency range 0-500 Hz for voiced seg-
ments. F3amplitudeLogRelF0_sma3nz_stddev-
Norm denotes the Normalized standard devia-
tion of the logarithmic difference between the
amplitude of the third formant and the funda-
mental frequency. These parameters are re-
lated to the emotional state and voice control.
Less spread (OOD-Speech) indicates a steadier
or more controlled voice, while greater variabil-
ity (Benl0) suggests emotional arousal or less
control (as often observed in colloquial speech).
FOsemitoneFrom27.5Hz_sma3nz_amean refers
to voice pitch distribution. A balanced dataset
(male and female) will have a bimodal distribution
which can be seen in Ben10 but the bi-modal peaks
are not clearly observable in OOD-Speech as it is
male-heavy.

A4.1 Feature Histograms

Fig. 10 shows observable distribution shifts
in some individual Geneva features for the
two sources. The OOD-Speech dataset

showcases broader distributions, whereas the
Ben-10 dataset often shows higher density
in the lower values.  For metrics such as
slopeV0-500_sma3nz stddevNorm, the Ben-
10 dataset concentrates on the lower part of
the scale signifying low slope deviation from
the mean.  Additionally, the distribution of
FOsemitoneFrom27.5Hz_sma3nz_percentile20.0
is right-skewed in both datasets.

A.4.2 KDE Plot

We analyzed KDE plots of various Geneva features
across different dialects in Fig. 11. The kernel
Density Estimation (KDE) plots compare the distri-
bution of various features across different district
samples. Most districts show a central tendency,
indicating similar behavior, while Habiganj, Nars-
ingdi and Tangail often deviate from the central
concentration. This suggests greater variability
and dispersion in their acoustic features.

A.5 Dataset

* Data gathering followed specific protocols to
encourage natural speech from the aforemen-
tioned regions.

» Conversation topics varied from family, uni-
versity, hostel, sports, religion, profession,
studies, gossip, childhood, news, politics,
agriculture, daily life etc. All conversations
were informal to ensure the inclusion of au-
thentic regional dialects.

* After data collection, we cleaned the data by
excluding samples that did not follow the pro-
tocol or had poor acoustic quality.

* The audios were uploaded onto the Labelbox
data annotation platform. A total of 34 lo-
cal transcribers, trained by a linguist were
engaged in transcription which took approx-
imately fourteen months. Residents from the
specific region where the data was collected
were employed as transcribers based on their
performance in a linguist-evaluated transcrip-
tion test involving 100 audio samples from
that region. While performing validation,
an expert linguist evaluated spelling and tran-
scription errors to ensure homogeneity and
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correctness of the data and also provided feed-
back to the annotators.

A.6 Result Analysis

Fig. 12 and Fig. 13 show the district-wise corre-
lation (Pearson coefficient) between WER/CER
and NISQA metrics for our benchmark Whisper
(Medium) model. Higher absolute values indicate
stronger linear relationships, with positive coeffi-
cients reflecting direct proportionality and nega-
tive ones indicating inverse trends.

In Fig. 12, Narsingdi exhibits the strongest pos-
itive correlation between WER and coloration, dis-
continuity and loudness, suggesting that perceived
audio distortions and loudness significantly drive
transcription errors in this dialect.

Conversely, Barishal displays strong negative
correlations, implying that higher perceived qual-
ity in these dimensions corresponds to /lower error,
highlighting its relative robustness among tested
dialects.

These findings underscore that dialect-specific
acoustic characteristics interact differently with
perceived quality dimensions, and NISQA metrics
can serve as useful proxies for predicting ASR reli-
ability in low-resource, dialectally diverse settings
like Bengali.
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Figure 12: District-wise correlation (Pearson Coeffi-
cient) of our benchmark Whisper (Medium) model and
NISQA metrics {WER(top) and CER(bottom)}
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Figure 13: Correlation (Pearson Coefficient) of our
benchmark model performance and NISQA metrics.

B Competition reports

We massively crowd-sourced fine-tuning experi-
ments through a public Bengali Regional Speech
Recognition research competition on Kaggle,
which lasted 20 days. The competition resulted in
399 submissions from 83 teams consisting of 247
competitors. More details about the competition
can be found on the competition page. The top
11 teams were selected based on the WER score
in the publicly available validation set. The pub-
lic leaderboard (LB) was created using 51% of the
validation data while there was another private LB
with the rest of the data which was only acces-
sible by competition hosts. Next, these models
were evaluated with the hidden test set. The fi-
nal standing was decided by aggregating the WER
scores (validation and test), report and presenta-
tion scores. The competitors documented their ap-
proach and wrote reports on their pipeline. The
pdfs can be found in the following link: Competi-
tion Reports
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