Are ASR foundation models generalized enough to capture features of regional dialects for low-resource languages?
Tawsif Tashwar Dipto, Azmol Hossain, Rubayet Sabbir Faruque, Md. Rezuwan Hassan, Kanij Fatema, Tanmoy Shome, Ruwad Naswan, Md.Foriduzzaman Zihad, Mohaymen Ul Anam, Nazia Tasnim, Hasan Mahmud, Md Kamrul Hasan, Md. Mehedi Hasan Shawon, Farig Sadeque, Tahsin Reasat
Abstract
Conventional research on speech recognition modeling relies on the canonical form for most low-resource languages while automatic speech recognition (ASR) for regional dialects is treated as a fine-tuning task. To investigate the effects of dialectal variations on ASR we develop a 78-hour annotated Bengali Speech-to-Text (STT) corpus named Ben-10. Investigation from linguistic and data-driven perspectives shows that speech foundation models struggle heavily in regional dialect ASR, both in zero-shot and fine-tuned settings. We observe that all deep learning methods struggle to model speech data under dialectal variations, but dialect specific model training alleviates the issue. Our dataset also serves as a out-of-distribution (OOD) resource for ASR modeling under constrained resources in ASR algorithms. The dataset and code developed for this project are publicly available.- Anthology ID:
- 2025.ijcnlp-short.17
- Volume:
- Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
- Month:
- December
- Year:
- 2025
- Address:
- Mumbai, India
- Editors:
- Kentaro Inui, Sakriani Sakti, Haofen Wang, Derek F. Wong, Pushpak Bhattacharyya, Biplab Banerjee, Asif Ekbal, Tanmoy Chakraborty, Dhirendra Pratap Singh
- Venues:
- IJCNLP | AACL
- SIG:
- Publisher:
- The Asian Federation of Natural Language Processing and The Association for Computational Linguistics
- Note:
- Pages:
- 178–188
- Language:
- URL:
- https://preview.aclanthology.org/ingest-ijcnlp-aacl/2025.ijcnlp-short.17/
- DOI:
- Cite (ACL):
- Tawsif Tashwar Dipto, Azmol Hossain, Rubayet Sabbir Faruque, Md. Rezuwan Hassan, Kanij Fatema, Tanmoy Shome, Ruwad Naswan, Md.Foriduzzaman Zihad, Mohaymen Ul Anam, Nazia Tasnim, Hasan Mahmud, Md Kamrul Hasan, Md. Mehedi Hasan Shawon, Farig Sadeque, and Tahsin Reasat. 2025. Are ASR foundation models generalized enough to capture features of regional dialects for low-resource languages?. In Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics, pages 178–188, Mumbai, India. The Asian Federation of Natural Language Processing and The Association for Computational Linguistics.
- Cite (Informal):
- Are ASR foundation models generalized enough to capture features of regional dialects for low-resource languages? (Dipto et al., IJCNLP-AACL 2025)
- PDF:
- https://preview.aclanthology.org/ingest-ijcnlp-aacl/2025.ijcnlp-short.17.pdf