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Abstract

{"tokens":["Il€","igbimo",
{"tokens":["Rohr","pe",

,'ner_tags":[3,4,..., 0]}
'ner_tags":[1,0,...,0]}

{"tokens":["Alaaja"'Silifa", ..., "ni"], "ner_tags":[0,1,...,0}

We explore whether synthetic datasets gener-
ated by large language models using a few High Quality
NER Data

high quality seed samples are useful for low-
resource named entity recognition, considering
11 languages from three language families. Our
results suggest that synthetic data created with
such seed data is a reasonable choice when
there is no available labeled data, and is bet-
ter than using entirely automatically labeled
data. However, a small amount of high-quality
data, coupled with cross-lingual transfer from

arelated language, always offers better perfor-

nnance}

1 Introduction

Named Entity Recognition (NER) for low-resource
languages aims to produce robust systems for lan-
guages with limited labeled training data available,
and has been an area of increasing interest within
natural language processing (NLP) over the past
decade. Two common approaches to address this
data scarcity are cross-lingual transfer and data
augmentation/synthesis; recent research has in par-
ticular explored the usefulness of large language
models (LLMs) for such data augmentation and
synthetic data creation in NLP (Whitehouse et al.,
2023; Li et al., 2023), while their use for NER is
also emerging (Bogdanov et al., 2024; Dao et al.,
2025).

In this background, we propose LLM-based syn-
thetic data generation using a small amount of gold
examples (Figure 1) as an alternative to relying
on automatically created datasets for low-resource
NER. With experiments covering 11 languages
from 3 language families—Danish, Swedish and
Slovak from the Indo-European language fam-
ily; Swabhili, Kinyarwanda, Yoruba and Igbo from

“Work done during an internship at the National Research
Council, Canada.

'Data and code available at: https://github.com/
grvkamath/low-resource-syn-ner.

Help me make a Yoruba Named Entity Recognition
dataset. Please give me new datapoints,
formatted as a single JSON object. Make sure
the examples are unique and diverse. Here are
some examples to get you started:

{"tokens":["Rohr""pe",...,""],"ner_tags":[1,0,...,0]}
{"tokens":["T6","ba";...,""],"ner_tags":[0, O, ..., O]}
In-Context
Examples

O Multilingual LLM

Raw LLM Output ‘

Here are 20 new datapoints for the Yoruba
Named Entity Recognition dataset:

{
"datapoints": [
{"tokens": ["Ayoade", "ti", "di", "\
"5 "\
", "omo", "odun", "merinla"],
"ner_tags": [1, @, @0, 0, 0, @, 0, O]},...

Parseable JSON Strings
Extracted using Regex

Figure 1: High-level overview of our data generation
process. We use multilingual large language models to
generate new NER data points on the basis of a handful
of high quality human labeled data points. See Section
3.1 for more.

the Niger-Congo language family, and Kannada,
Malayalam, Tamil, and Telugu from the Dravidian
language family, we show that:

1. Even a small amount of human annotated data
can yield far better performance than much
larger amounts of synthetic data.

2. Zero-shot transfer from a related language can
provide high baselines for low-resource lan-
guage NER.

3. Synthetic data generated by prompting an
LLM with a few high quality (generally
human labeled) examples (Figure 1) could
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be better than using automatically labeled
datasets when training low-resource NER
models.

We start with a review of related literature (Sec-
tion 2) and describe our data generation approach
and experimental setup in Section 3, followed by
a discussion of the results (Section 4), limitations
(Section 6) and broader impact (Section 7).

2 Related Work

NER in low resource settings has long been a topic
of interest in NLP. Significant research examines
cross-lingual transfer from a high resource source
language to a lower-resource target language for
the task (Rahimi et al., 2019; Mueller et al., 2020;
Zeng et al., 2022; Zhao et al., 2022; Yang et al.,
2022; Zhou et al., 2022), while other approaches
have explored the creation of synthetic datasets
through e.g. parallel corpora or machine transla-
tion (Mayhew et al., 2017; Ni et al., 2017; Pan et al.,
2017; Xie et al., 2018; Liu et al., 2021; Yang et al.,
2022; Fetahu et al., 2022). There are also large ex-
isting automatically constructed multilingual NER
datasets that rely on sources such as Wikipedia
(Pan et al., 2017; Krishnan et al., 2021; Malmasi
et al., 2022), some of which have become a part of
large multilingual benchmarks (Asai et al., 2024).

More recent work has explored using LLMs as
data generators for NER (Bogdanov et al., 2024;
Heng et al., 2024; Evuru et al., 2024). We build on
such work, but differ from their methods. Our data
generation process uses high quality, human vali-
dated examples as seeds, and we not only evaluate
different LLMs (both open and closed-source) as
synthetic data generators, but also experiment with
11 languages covering three language families and
five base scripts. To our knowledge, this is the first
attempt to explore using large language models for
synthetic data generation in low-resource NER, and
the first to cover > 10 languages.

3 Our Approach
At a high level, our approach involves two steps:

1. Using the train split of a high quality (usu-
ally manually annotated) NER dataset for a
target language to generate synthetic data for
that language with the help of an LLM (Sec-
tion 3.1); and then

2. Comparing the performance of an NER model
on the test split of the high quality dataset

when trained on synthetic data from Step 1
and another model trained on the train split of
the same high quality dataset (Section 3.2).

3.1 Synthetic Data Generation:

Our synthetic data generation process (shown in
Figure 1) involves using LLMs to generate new
synthetic data points on the basis of existing, high
quality NER annotations as described below:

* First, we randomly sample m data points from
the train split of an organic (i.e. non-synthetic)
NER dataset.

* Next, we format and append these data points
to a prompt asking the model to produce n
new, unique data points on the basis of the m
data points in the prompt.

* We submit this prompt as input to the LLM,
and extract the correctly-formatted data points
from its response;

* We repeat steps (1)-(3) k£ times, with each
call to the model choosing a different random
sample of organic data points.

In our experiments, we set m to 10, n to 20, and
k to 250. This sets an upper cap of 5000 synthetic
training data points, if every model response con-
tains perfectly formatted data points. We present
and solicit data structured as JSON strings to the
LLMs, and extract well-formatted samples from
model responses using regular expressions. Ap-
pendix A provides further details about this pro-
cess.

We compare three LLMs as our source
of synthetic data: GPT-4.12 (OpenAl, 2025),
which we assume to be the state of the art;
Llama-3.1-8B-Instruct (Dubey et al., 2024),
as a much smaller, open-source instruction-tuned
model; and finally, aya-expanse-32b (Dang et al.,
2024), as a larger open source multilingual LLM.

3.2 Training NER models:

For all experiments, we use the pre-trained version
of XLM-RoBERTa-1large (Conneau et al., 2020) as
our base model and fine-tune it on our synthetic
and organic training sets in two distinct settings.

2We use gpt-4.1-2025-04-14. Note that in an earlier
draft of this work, we used gpt-4-turbo (Achiam et al.,
2023), when it represented the state-of-the-art; surprisingly,
gpt-4-turbo yielded slightly better results. Nevertheless,
here we report results on GPT-4.1, to better represent cur-
rently available models.
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LLM Response Quality

Examples

‘Well-Formatted

{"data": [{ "tokens": ["Lars",

"Lpkke", "Rasmussen”, "bespgte”, "firmaet”, "i", "Odense”, "."],
"ner_tags”: [1, 2, 2, 0, 0, 0, 5, 01},...

Unequal Token & Tag Lengths

{"id": "4123", "tokens": ["Wananchi”, "wamekunja", "mashitaka”, "."]

"ner_tags": [0, 0, 0, 0, 0, 0]}

Run-On & Incomplete Data {"id": "9000", "tokens": ["Olorun”,

{"id":"4617","tokens": [”Qt:jﬁ" s

"1ge”,
"gse”,

e, men,

R o, e,
"orit, M-t vade”,

“sfent”.

A R Y
"4FG", "fan”, "awon”, "gb", "." ]
"ner_tags":[8,0,0,0,0

e,

Empty Responses & Prompt Continuations

<EOS_TOKEN>
<EOS_TOKEN>include a mix of names, locations, organizations...

Table 1: Examples of different types of responses from the synthetic data-generating LLMs tested, across languages

1. In the first setting, we use our synthetic
data to train an NER model from scratch,
by fine-tuning XLM-RoBERTa-large on target
language NER data.

In the second setting, we first fine-tune the
model on the high quality NER data in a re-
lated source language?, and then further fine-
tune this NER model using our synthetic or
organic target language data.

While the first setting—which we name NER
FROM SCRATCH—aims to shed light on the relative
utility of synthetic data for training an NER model
(largely) from the ground up, the latter —which we
name NER FINE-TUNING—simulates a common
setting, when a lower resource language lacks ade-
quate NER data, but is related to a higher-resource
language with existing NER systems. In both set-
tings, we modulate the amount of data (both syn-
thetic and organic) used, so as to compare model
performance when trained on smaller or larger
amounts of each type of data.

Languages & Datasets: We focus on 11
languages from three distinct language fami-
lies: Tamil, Kannada, Malayalam, Telugu (Dra-
vidian), Kinyarwanda, Swahili, Igbo, Yoruba
(Niger-Congo), Swedish, Danish and Slovak (Indo-
European). Of these, Igbo, Yoruba, and Kin-
yarwanda are not among the 100 languages in
the XLM-Roberta pre-training corpus. We use the
Universal NER dataset (Mayhew et al., 2024) as
our high quality, manually annotated dataset for
Swedish, Danish and Slovak; MasakhaNER2 (Ade-
lani et al., 2022) for Kinyarwanda, Swahili, Igbo
and Yoruba; and the Naamapadam dataset (Mhaske
et al., 2023) for Tamil, Kannada, Malayalam and
Telugu.

While the first two datasets are completely manu-
ally annotated, the train and validation splits of the

3See Table 2 in Appendix B for the full list of chosen
related languages for all the target languages.
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Naamapadam dataset are constructed using parallel
corpora, and thus contain some noise. Nevertheless,
we choose it as our organic dataset, as (i) its test
sets, which contain 500-1000 datapoints per lan-
guage, are completely manually annotated, and (i1)
it remains the largest NER resource for these four
languages. Crucially, all of these datasets cover
largely identical NER categories, allowing for com-
parisons between them. The Universal NER and
Naamapadam datasets cover persons, locations and
organizations as categories; the MasakhaNER2
data covers these three categories, as well as dates.

Additionally, we compare models trained en-
tirely on LLM-generated data with those trained
using WikiANN (Pan et al., 2017; Rahimi et al.,
2019), a large, automatically created NER dataset
based on Wikipedia cross-linking, as it covers the
11 languages we study. This dataset represents a
different form of synthetic data—one generated not
from LLMs, but instead from scraping knowledge
bases without any seed data. Although the dataset
has no manual annotations, it is frequently used as
a standard low-resource NER benchmark (Schmidt
et al., 2022; Asai et al., 2024).

4 Results

4.1 Synthetic Data Generation

We generate the synthetic datasets following the
process described in Section 3.1. While model re-
sponses from GPT-4.1 are generally usable, we
found more recurring errors in responses from
the other two models. Some of these errors are
described in Table 1; we discard such instances
when compiling our synthetic datasets from model
responses. The average percentage of usable
training datapoints from GPT-4.1, L1lama-3.1 and
aya-expanse are 82.6%, 59.7% and 11.1% respec-
tively. We assess the overall quality and viability of
this synthetic data by measuring the performance
of an NER model on a high quality, manually-
annotated test set, when trained on the synthetic



Fine-tuning at different sizes with no prior NER training
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Figure 2: NER model performance when trained on increasingly large subsets of training data. aya-expanse-32b
and L1lama-3.1-8B-Instruct produced lower amounts of usable data; this is why they do often not extend as far
as organic or GPT-4. 1-produced data in fine-tuning data size. In the NER FINE-TUNING setting, performance at
Fine-tuning Training Data Size = 0 indicates zero-shot performance of a related-language NER model.

data.

4.2 Training on Synthetic Data

Figure 2 shows our results when using synthetic
data from different models, in both the NER FROM
SCRATCH and NER FINE-TUNING settings. While
the models trained on organic data in the NER
FROM SCRATCH setting always perform better than
synthetic data based models, we find that the mod-
els trained on GPT-4. 1-generated data often come
the closest to models trained on organic data com-

pared to the other synthetic data sources. Best
results with synthetic data based training are seen
for Danish, followed by Swahili and Swedish. We
also find that more synthetic data is not necessarily
useful; for most languages, we see relative satu-
ration after 1000 data points, and in the case of
Kannada, we actually notice a drop in performance
with more data.

Perhaps more surprisingly, in the NER FINE-
TUNING setting, we notice that zero-shot trans-
fer from a related language usually outperforms
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the same models after they have been further fine-
tuned on synthetic target language data. Fine-
tuning the related language NER model with or-
ganic data from the target language helped for only
Kinyarwanda and Yoruba. This suggests that in
some cases where an NER model for a related
language exists, synthetic data in target languages
may actually be detrimental to overall performance.
Models trained on synthetic data from GPT-4.1 do
better than those trained on synthetic data from
Llama-3.1-8B-Instruct only about half of the
time; on the other hand, there are often too few us-
able aya-expanse-32b datapoints for a fair com-
parison.

Comparison with WikiAnn: In addition to
comparing models fine-tuned on synthetic data
versus organic data, we also looked into the ques-
tion of whether our synthetic data generation ap-
proach offers any benefits over automatically la-
beled datasets, taking WikiAnn as an example.
Training models on WikiANN data leads to higher
performance than training on GPT-4. 1-generated
data only for the four Dravidian languages in our
data, but generally leads to significantly worse
performance than training on synthetic data from
GPT-4.1 for the remaining languages (see Table 3
in Appendix C for detailed results). This holds
in both the NER FROM SCRATCH and NER FINE-
TUNING settings, when data size is comparable;
and, in the case of Danish and Swedish, training on
WikiANN leads to worse performance even when
there is several times more WikiANN data than
GPT-4.1-generated data. Overall, we can conclude
that using synthetic data following our approach
appears to be better than relying on WikiAnn for
most languages. This echoes the findings by Lig-
nos et al. (2022), who arrive at similarly negative
findings around the data quality of WikiANN, and
calls for not considering results on WikiANN as a
benchmark for multilingual NER comparisons in
the future.

5 Conclusions and Discussion

Our results lead us to three main conclusions
around the utility of LLM-generated synthetic data
for low resource language NER.

1. A small amount of carefully annotated data
yields better performance than a large amount
of synthetic data. As is evident in Figure 2,
even 100 manually annotated data points can

yield NER models that cannot be matched by
models trained on much larger amounts of
synthetic data.

2. In many cases, zero-shot transfer from a
related-language NER model is a high base-
line, and that further training such a model
on synthetic data may even lower the perfor-
mance. We find this to be true in the case
of all languages tested except the Yoruba and
Swahili. For these two languages, it is worth
noting that the overall baselines are lower, pre-
sumably because these languages are all lower
resource than the others tested. This may ex-
plain why synthetic data yields performance
gains over the zero-shot baseline, though it
does not change the trend of a small amount
of manually annotated data yielding far better
performance.

3. Despite the fact that it falls short of manu-
ally annotated data, LLM-generated data of-
ten still yields better model performance than
WikiANN, which is automatically extracted
from Wikipedia texts.

Overall, while showing how synthetic data from
LLMs can help train NER models from scratch
for low resource languages, our results reinforce
the need for manually annotated gold test sets in
benchmarking NER for lower resource languages.

6 Limitations

Although we experimented with many languages,
the nature of the NER datasets used is relatively
simple, containing only three or four entity cate-
gories (persons, locations, organizations and dates).
Thus, we don’t know if the general conclusions,
especially about the quality of synthetic data, will
extend to scenarios where there are many entity
categories. While we did study datasets covering
more than one language family, the selection of lan-
guage is far from extensive, and is also constrained
by the availability of human labeled test data. The
observations need not necessarily hold true across
all language families, naturally. Finally, to keep the
experiments under control, we explored a limited
set of methods for fine-tuning and synthetic data
generation. Our findings should be viewed after
taking these aspects into consideration.
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7 Ethics and Broader Impact

We used publicly available datasets with human-
annotated and automatically labeled data, and
also created synthetically generated datasets as
a part of this work. The models built using
such artificially created datasets should always
be validated with a human-labeled data. We
did not involve any human participants in this
study. All the code and generated datasets is
provided at this GitHub repository to support
reproducible research: https://github.com/
grvkamath/low-resource-syn-ner.
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A Synthetic Data Generation

As shown in Figure 1, we present the following
prompt to the LLM in the data generation process:

Help me make a {language} Named Entity
Recognition dataset. Please give me {n}
new datapoints, formatted as a single
JSON object. Make sure the examples
are unique and diverse. Here are some
examples to get you started:

{m examples}

We prompt GPT-4.1 using OpenAlI’s batch API
functionality?; for the open-source models, we use
the vLLM library (Kwon et al., 2023) to run infer-
ence.

For GPT-4.1, we used the OpenAl API’s
functionalities for structured outputs to ensure that
outputs were formatted as JSON strings. For the
open-sourced models, we experimented with using
transformers-compatible libraries for obtaining
structured outputs from LLMs, but ultimately
found better results simply specifying the JSON
requirement in the model and system prompt. For
the open-sourced models, we used the following
system prompt:

You are a helpful model that helps
build text-based datasets, but does not
produce any conversation besides the
text it is asked to produce. You only

*https://platform.openai.com/docs/guides/batch

output JSON strings.

For GPT-4.1, we used the following (minimally
different) system prompt, on the assumption that
specifying output mode in the system prompt was
less important on account of the API’s structured
output functionalities:

You are a helpful model that helps
build text-based datasets, but does not
produce any conversation besides the
text it is asked to produce.

We ran both open-sourced models with a tem-
perature setting of 0.8, and nucleus sampling value
of 0.8. We initially used a maximum new token
limit of 4096 for both models. However, noticing
that some of L1ama-3.1-8B-Instruct’s unusable
datapoints were specifically due to hitting new to-
ken limits, we regenerated data from this model
with a maximum new token limit of 8192. Calls
to GPT-4.1 were made using default hyperparame-
ters.

Table 1 shows some of the examples of the dif-
ferent types of responses to these prompts.

B Related-Language Model Details

In the NER FINE-TUNING setting, we first train
an NER model on a language related to the target
language, before fine-tuning it further on the target
language NER data. Below is the list of related
languages chosen to build a base NER model for
each target language.

B.1 NER-fine tuning: Implementation Details

We source the pre-trained XLM-RoBERTa-large
weights  from  Huggingface using the
transformers library; fine-tuning is imple-
mented using training pipelines from the same
library. In the NER FROM SCRATCH setting, we
train on the the target language data for 10 epochs;
in the NER FINE-TUNING setting, we train on the
related language data for 5 epochs, and then the
target language data for 10 epochs. In all cases, we
use a learning rate of 2e-05, and a batch size of 16.

C Full Results of WikiANN Comparison

The WikiANN dataset is a massively multilingual
NER benchmark, comprising data from 176 lan-
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Target Language

Related Language Chosen

Kannada Telugu
Tamil Telugu
Telugu Kannada
Malayalam Tamil
Kinyarwanda Swahili
Swabhili Kinyarwanda
Yoruba Igbo
Igbo Yoruba
Swedish Danish
Danish Swedish
Slovak English*

Table 2: List of related languages used in the NER FINE-
TUNING setting for each target language. *English is
not closely related to Slovak, but given the absence of
another closely related language among the 11 target
languages, it was chosen as the language for the base
NER model to be fine-tuned.

guages (Pan et al., 2017; Rahimi et al., 2019).>
Table 3 shows the full list of comparisons between
NER model performance when trained on organic
data, GPT-4.1-produced data, and WikiANN data.
The sizes of the WikiANN train sets vary signif-
icantly between different languages, meaning we
often cannot assess the quality of the data in the
context of training sets containing over 1000 data-
points (e.g. Kannada and Yoruba, whose WikiANN
train sets contain only 100 datapoints). In such
cases, however, we compare model performance
when trained on equally small amounts of organic
or LLM-produced synthetic data.

3As Lignos et al. (2022) also note, strictly speaking, the
original version of WikiANN put together by Pan et al. (2017)
contains data from 282 languages; the version of the dataset
commonly downloaded from Huggingface, however, and put
together by Rahimi et al. (2019), contains data from 176 lan-
guages. In this work, we refer to the latter when referring to
the WikiANN dataset.

Language N.F.S. F1 N.ET. F1 DATA SI1ZE
Kannada WIKIANN 4.5e-3 0.77 100
GPT-4.1 0.03 0.75 100
GPT-4.1 0.00 043 4899
NAAMAPADAM 0.49 0.79 100
NAAMAPADAM 0.80 0.78 5000
Telugu WIKIANN 0.67 0.74 1000
GPT-4.1 0.00 0.40 1000
GPT-4.1 0.18 0.47 4931
NAAMAPADAM 0.71 0.81 1000
NAAMAPADAM 0.84 0.83 5000
Tamil WIKIANN 0.55 0.62 15000
GPT-4.1 0.00 0.57 4944
NAAMAPADAM 0.73 0.74 5000
Malayalam WIKIANN 0.65 0.74 10000
GPT-4.1 0.25 0.35 4859
NAAMAPADAM 0.83 0.83 5000
Yoruba WIKIANN 0.07 0.21 100
GPT-4.1 0.20 0.42 100
GPT-4.1 0.37 0.50 4187
MASAKHANER 2 0.28 0.54 100
MASAKHANER 2 0.83 0.84 5000
Swabhili WIKIANN 0.50 0.59 1000
GPT-4.1 0.74 0.78 1000
GPT-4.1 0.78 0.79 2619
MASAKHANER 2 0.88 0.91 1000
MASAKHANER 2 0.92 0.91 5000
Kinyarwanda WIKIANN 7.9e-4 0.35 100
GPT-4.1 0.29 0.46 100
GPT-4.1 0.47 0.50 2683
MASAKHANER 2 0.07 0.61 100
MASAKHANER 2 0.79 0.81 5000
Igbo WIKIANN 7.7¢-3 0.39 100
GPT-4.1 0.29 0.55 100
GPT-4.1 0.53 0.55 3473
MASAKHANER 2 0.48 0.76 100
MASAKHANER 2 0.82 0.83 5000
Danish WIKIANN 0.72 0.71 20000
GPT-4.1 0.79 0.82 4112
UNIVERSAL NER 0.83 0.85 4383
Swedish WIKIANN 0.36 0.29 20000
GPT-4.1 0.69 0.74 4215
UNIVERSAL NER 0.87 0.90 4303
Slovak WIKIANN 0.57 0.55 20000
GPT-4.1 0.29 0.29 4508
UNIVERSAL NER 0.77 0.80 5000

Table 3: Performance of NER models trained on
WikiANN, synthetic data from GPT-4. 1, and high qual-
ity ‘organic’ data, for all 11 languages. N.F.S: NER
FROM SCRATCH Setting; N.F.T: NER FINE-TUNING set-
ting.
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