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Abstract

Certain strong LLMs have shown promise for
zero-shot formal planning by generating plan-
ning languages like PDDL. Yet, performance
of most open-source models under 50B param-
eters has been reported to be close to zero due
to the low-resource nature of these languages.
We significantly improve their performance via
a series of lightweight pipelines that integrates
documentation retrieval with modular code gen-
eration and error refinement. With models
like Llama-4-Maverick, our best pipeline im-
proves plan correctness from 0% to over 80%
on the common BlocksWorld domain. How-
ever, while syntactic errors are substantially re-
duced, semantic errors persist in more challeng-
ing domains, revealing fundamental limitations
in current models’ reasoning capabilities.1

1 Introduction

Using large language models (LLMs) for planning
has garnered significant attention, with two main
paradigms as shown in Figure 1. First, the LLM-
as-Planner approach (Kambhampati et al., 2024;
Valmeekam et al., 2023; Stechly et al., 2025; Ma-
jumder et al., 2023) relies on the reasoning ability
of LLMs to directly generate action plans based on
descriptions of the environment. In contrast, the
LLM-as-Formalizer (Tang et al., 2024; Guo et al.,
2024; Zhang et al., 2024) approach leverages the
code generation capability of LLMs to represent
the environment in some planning language, which
is then passed to a formal solver to derive a plan.
Leading to better interpretability and verifiability
of the plans, the latter approach has recently gained
considerable attention, with Planning Domain Defi-
nition Language (PDDL) as one of the predominant
formal languages for LLM planning (see the Ap-
pendix A for an example of PDDL).

1Our code and data can be found at https://github.
com/Nangxxxxx/PDDL-RAG.

Action 1

     Action 2…

: LLM : Solver LLM-as-Planner

LLM-as-Formalizer

Action 1

     Action 2…

Domain File:

(define (domain blocks-world)

(:predicates…)

(:action pickup…)…

Problem File:

(define (block-problem)

  (:domain blocks-world)

  (:objects…)

  (:init …)

  (:goal…)

Domain Description:

Here are the actions I can do

Pickup block …

I have the following restrictions on 

my actions:

    To perform Pickup action, the 

following facts need to be true:  …

Problem Description:

As initial conditions I have that…

My goal is to have that  block 1 is 

on the table, block 2 is on the 

table …

Figure 1: A simplified illustration of LLM-as-Planner
and LLM-as-Formalizer on the BlocksWorld domain.

While LLMs have been shown to somewhat able
to generate PDDL, their performance has proven
unsatisfactory in realistic and rigorous evaluations
(Zuo et al., 2025). Even state-of-the-art coding
LLMs have shown close-to-zero performance as
PDDL formalizers on planning benchmarks espe-
cially when the model size is less than 100 billion
parameters (Huang and Zhang, 2025), while an
array of code generation techniques struggle to
improve performance (Kagitha et al., 2025). More-
over, training data for low-resource and domain-
specific languages like PDDL is extremely limited,
making generation even more challenging (Taras-
sow, 2023; Joel et al., 2024). Existing attempts of
improvement such as fine-tuning (Cassano et al.,
2023; McKenna et al., 2025; Giagnorio et al., 2025)
and translation from high-resource languages (Liu
et al., 2024) require supervised PDDL data that
barely exists. In contrast, retrieval of library doc-
umentation (Zhou et al., 2023; Dutta et al., 2024)
has proven effective for high-resource languages.

We find that simply providing the documentation
to LLMs does not help low-resource PDDL gener-
ation. However, we present some novel methods
that generate PDDL either modularly or with error
refinement, while only retrieving the most relevant
documentation. These methods enable a big im-
provement of PDDL generation performance for
models like Llama-4-Scout and Llama-4-Maverick
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Figure 2: Overview of one of our pipeline that retrieve
documents based on error codes located by LLM, and
finally using them as hints to correct the code.

on domains like BlocksWorld, improving correct-
ness from 0% to 50%. Moreover, we verify the
intuition that documentation significantly reduces
syntax errors, but has limited effect on semantic
errors. We also present interesting findings that
LLMs are more reliant on documentation initially
than during error refinement, different models vary
in their ability to leverage documentation effec-
tively and that examples are more effective than
descriptions in the documentation.

2 Methodology

We conduct experiments in text-based simulated
planning environments. Each planning problem in
the dataset is accompanied by a domain descrip-
tion (DD) outlining the environment, and a problem
description (PD) specifying the task objective.

We begin with the most basic setting, referred to
as Base, where a LLM zero-shot generates PDDL
code. Given the DD and PD as input, the LLM pro-
duces a Domain File (DF) and a Problem File (PF):

DF, PF = LLM(DD, PD)

Building upon this, we leverage the PDDL doc-
umentation (Doc) during generation. We consider
two approaches, Once w/ Whole Doc where the
model is given an entire Doc before generating
the entire PDDL, and Modular w/ Specific Doc
where the model incrementally generates PDDL
code guided by relevant parts of the Doc. Here, we
break down the DF structure into types, predicates,
actions, etc. and PF structure into initial and goal
states. We partition the Doc accordingly.

DF, PF = LLM(DD, PD, Doc)

Next, we optionally perform up to three rounds
of iterative error correction. We first use a PDDL
solver to obtain error feedback:

Err_Feedback = Solver(DF, PF)

Without the Doc, the standard Refinement w/o
Doc directly input the error feedback back to the
LLM to re-generate the PDDL:

DF, PF = LLM(DF, PF, Err_Feedback)

With the Doc, we attempt to retrieve a specific,
helpful part that pertains to the particular error. Us-
ing the feedback directly as the query is referred
to as Refinement w/ Feedback-Retrieved Doc.
Otherwise, we may prompt an LLM to localize the
code that caused the error based on the feedback, re-
ferred to as Refinement w/ Code-Retrieved Doc.

Err_Code = LLM(Err_Feedback)

In either case, we then retrieve the most relevant
documentation snippet using the BM25 (Robertson
et al., 2009) retrieval algorithm:

Rel_Doc = BM25(Err_Feedback|Err_Code)

Finally, the LLM corrects the code using the
retrieved Doc, the Error_Feedback, and the local-
ized Error_Code if any.

DF, PF = LLM(DF, PF, Err_Feedback,

[Err_Code], Rel_Doc)

The full prompts and the pseudocode are pro-
vided in Appendix E, and C. Also we list two
examples of how Refinement w/ Code-Retrieved
Doc works when facing the wrong PDDL in Ap-
pendix D

While we only consider PDDL as the plan-
ning language in this work following cited
works, we also have explored the feasibility
of using Satisfiability Modulo Theories (SMT)
solvers—specifically Z3, a general-purpose solver
for constraint satisfaction planning problems. Fol-
lowing Hao et al. (2025), our evaluation shows that
Z3 exhibits suboptimal performance when handling
complex planning tasks and is thus not discussed
further (see details in Appendix B).

3 Evaluation

Dataset To conduct experiments in a text-
based simulation environment, we use the dataset
from (Huang and Zhang, 2025). Included are three
simulated planning domains, BlocksWorld, Logis-
tics, Barman from the International Planning Com-
petition (IPC, 1998), with increasing action space
and reported difficulty. We also consider Mystery
BlocksWorld (Valmeekam et al., 2023) where all
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Figure 3: Syntactic accuracy (orange) and semantic accuracy (blue) on various planning domains.

keywords are perturbed to combat LLM memoriza-
tion. Each instance comes with domain and prob-
lem descriptions and ground-truth PDDL domain
and problem files that are used to validate a pre-
dicted plan. Each domain has 100 tasks of varying
problem complexity and description naturalness.
We use the heavily templated descriptions which
are also the easiest due to the reported close-to-zero
performance of LLMs with less than 100B param-
eters that we focus on. We crawl, process and use
the Planning Wiki2 as the source of documentation
of the PDDL language.

Metrics We follow Kagitha et al. (2025) and use
syntactic and semantic accuracy to assess the DF
and PF generated by an LLM. Syntactic accuracy
is the percentage of problems where no syntax er-
ror are returned by the planning solver. Semantic
accuracy is the percentage of problems where a
plan is not only found but also correct. We use the
dual-bfws-ffparser planner Muise (2016) to solve
for the plan and the VAL4 (Howey et al., 2004) to
validate the plan against the gold DF and PF.

Model We conduct experiments on four open-
source models, ranging from 8B to 32B parameters:
Llama-4-Maverick-17B-128E-Instruct, Llama-4-

2https://planning.wiki/guide/whatis/pddl

Scout-17B-16E-Instruct3, QwQ-32B, Qwen3-8B4.
We follow most cited previous works and only con-
sider zero-shot prompting.

4 Results

We present the following key conclusions based on
the results shown in the Figure 3.

Documentation brings significant perfor-
mance improvement. On BlocksWorld, most
LLMs under the Base setting perform close to zero
accuracy, as observed in previous work. However,
when equipped with appropriate documentation,
they demonstrate a dramatic increase in their ability
to generate valid PDDL. While the improvement
depends on the LLM, Llama-4-Maverick sees a
dramatic improvement of syntactic accuracy from
0% to over 90% and semantic accuracy of 0% to
over 80% with the help of documentation but re-
gardless of error refinement. Other originally zero-
performing models such as Llama-4-Scout see an
improvement of 50% for syntactic and 30% for se-
mantic accuracy. On more challenging domains,
absolute performance for all LLMs are thwarted,
while documentation still greatly improves syntac-
tic accuracy for many models. Overall, models that

3https://github.com/meta-llama/llama-models/
tree/main/models/llama4

4https://github.com/QwenLM/Qwen3
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Domain Method Metric Qwen3-8b Llama-4-Maverick

Blocksworld
Feedback-Retrieved Syntax 41 / 42 (+1) 43 / 93 (+50)

Semantic 26 / 30 (+4) 39 / 85 (+46)

Code-Retrieved Syntax 44 / 44 (0) 96 / 97 (+1)
Semantic 32 / 28 (-4) 86 / 90 (+4)

Mystery Blocksworld
Feedback-Retrieved Syntax 8 / 14 (+6) 35 / 67 (+32)

Semantic 0 / 0 (0) 24 / 51 (+27)

Code-Retrieved Syntax 22 / 7 (-15) 56 / 60 (+4)
Semantic 0 / 0 (0) 49 / 47 (-2)

Logistic
Feedback-Retrieved Syntax 42 / 40 (-2) 59 / 56 (-3)

Semantic 10 / 12 (+2) 50 / 60 (+10)

Code-Retrieved Syntax 43 / 34 (-9) 63 / 33 (-30)
Semantic 11 / 8 (-3) 55 / 30 (-25)

Barman
Feedback-Retrieved Syntax 0 / 0 (0) 0 / 0 (0)

Semantic 0 / 0 (0) 0 / 0 (0)

Code-Retrieved Syntax 1 / 0 (-1) 1 / 2 (+1)
Semantic 0 / 0 (0) 0 / 0 (0)

Table 1: Comparison of BM25 vs Embedding-base retriever results across domains, methods, and models. Values
are reported as BM25 / Embedding (∆), where ∆ = Embedding− BM25.

previously failed entirely begin to become func-
tional as planning formalizers.

Specific docs significantly reduces syntax er-
rors. Documentation proves effective in reducing
syntax errors during both initial PDDL generation
(Modular w/ Specific Doc) and subsequent error-
correction (Refinement w/ Code-Retrieved Doc).
This effect is especially evident in the case of
Llama-4-Scout, which fails to generate any valid
PDDL originally regardless of whether error cor-
rection is applied. Only when supported by rele-
vant docs can it successfully generate valid PDDL,
many of which leading to correct plans. Notably,
using feedback to retrieve doc does not lead to
consistent or significant performance gains, as the
retrieved documents often fail to accurately cor-
respond to the actual errors. This highlights that
retrieval based on error codes is more effective in
improving the accuracy of documentation retrieval.

Docs cannot reliably reduce semantic errors.
During error correction, Llama-4-Maverick shows
a 3% improvement in syntax accuracy on the Logis-
tic dataset under the Refinement w/ Code-Retrieved
Doc setting compared to the Refinement w/o Doc
setting. However, its semantic accuracy decreases
by 1%. This is because generating valid PDDL not
only requires syntactic correctness but also an accu-
rate representation of the environment. Otherwise,
the resulting plan may fall into a loop, fail to reach
the goal due to insufficient executable actions, or
be unnecessarily complex. Achieving this depends
heavily on the reasoning capabilities and world
modeling abilities of the LLM, and simply provid-

ing documentation is not sufficient to enhance such
reasoning.

LLMs exhibit varying sensitivity to documen-
tation across different phases of the code genera-
tion process. Our results reveal that documentation
exerts a stronger influence during the initial code
generation phase compared to the subsequent error
refinement phase. Specifically, in the Formalize
phase—corresponding to the initial generation of
PDDL—providing specific documentation signif-
icantly improves syntax accuracy, reaching up to
72% for modular models with targeted documen-
tation. In contrast, the benefits of documentation
during the later Refinement phase are substantially
smaller. This suggests that models rely more on
documentation cues when initially producing struc-
tured code, whereas later refinements depend more
on internal representations and the code previously
generated.

LLMs that are better at generating PDDL can
make more effective use of documentation. Since
QwQ-32B and Qwen3-8B outperform LLaMA-4
models in the Base setting, we consider them more
proficient at PDDL generation. Compared to the
Base and Modular w/ Specific Doc settings, these
PDDL-proficient models (QwQ-32B and Qwen3-
8B) perform better under the Once w/ Whole Doc
setting. In contrast, the less proficient LLaMA-4
model does not outperform Modular w/ Specific
Doc under the same condition. This suggests that
for models less capable of generating PDDL, mod-
ular generation is more effective, as they tend to be-
come overwhelmed when processing large amounts
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Figure 4: Syntactic accuracy on various rounds of Refinement w/ Code-Retrieved Doc.
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descriptions in the doc.

of documentation.
Using examples to convey knowledge is more

effective than using descriptions. Figure 5
presents the performance of different types of
documentation in the LLM-as-Formalizer setting.
Among all types, Once w/ whole doc yields the
best results. Notably, for Llama-4-Maverick, per-
formance is 0% when provided with only exam-
ples or only descriptions, but nearly 100% when
given the entire documentation. Comparing Once
w/ whole example and Once w/ whole description,
we observe that examples consistently outperform
descriptions. This suggests that examples are eas-
ier for LLMs to comprehend and are more useful
for correcting syntax errors. Furthermore, even for
models with inherently strong PDDL generation
capabilities, such as QwQ-32B, the use of docu-
mentation still leads to a noticeable improvement
in performance.

The embedding-based retriever exhibits diver-
gent effects across refinement settings. Table 1
showing that in Refinement w/ Feedback-Retrieved
Doc, replacing BM25 with text-embedding-3-small
leads to substantial performance gains. For in-
stance, llama-4-maverick-17b achieves 93% syn-
tax and 85% semantic accuracy in Blocksworld,

indicating that embeddings provide more precise
retrieval guidance than BM25 in this context. Con-
versely, in Refinement w/ Code-Retrieved Doc,
embeddings negatively impact performance. In
the Logistic domain, llama-4-maverick-17b-128e-
instruct drops to 33% syntax accuracy compared
to 63% with BM25, while Qwen3-8b falls to 34%
compared to 43% with BM25. In other domains,
results remain roughly comparable to BM25. Over-
all, BM25 continues to achieve the strongest results
for code-retrieved refinement, highlighting its ro-
bustness in this setting.

Refinement yields substantial but diminishing
improvements, with most gains concentrated in
the first iteration.As shown in Figure 4. We evalu-
ate refinement across 0–3 iterations on four bench-
marks (Blocksworld, Mystery_Blocksworld, Logis-
tic, Barman). Results show that, starting from the
0-round baseline, refinement consistently improves
performance, with the largest gains observed be-
tween 0→ 1 round. For example, in Blocksworld,
Qwen-8B improves from 24 → 44 and llama-4-
maverick-17b from 0→ 96 in syntax accuracy after
the first round. Beyond two rounds, the marginal
improvements diminish, suggesting that a small
number of refinement iterations is sufficient.

5 Conclusion

Our experiments clearly demonstrate that incor-
porating documentation to the process greatly
improves generation of low-resource formal lan-
guages like PDDL. We show that for models less
skilled at generating PDDL, documentation is only
useful when paired with techniques like modular
generation or error refinement. For more capa-
ble models, documentation accuracy matters more.
Despite the clear gain, models still struggle when
their size is small and when the domain is complex,
which future work should strive to address.
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6 Limitations

While our proposed pipelines significantly improve
the syntactic and, to a lesser extent, semantic ac-
curacy of PDDL generation in low-resource set-
tings, several limitations remain. First, our methods
rely on well-structured documentation and domain
descriptions; performance may degrade in noisy
or under-specified environments. Moreover, docu-
mentation itself may contain outdated, incomplete,
or inaccurate information, which can mislead the
model during generation. Second, although doc-
umentation helps reduce syntax errors, semantic
correctness still heavily depends on the model’s in-
ternal reasoning capabilities, which are limited for
smaller LLMs. Lastly, our evaluation is confined to
a few benchmark domains; generalization to more
diverse or real-world planning scenarios remains
to be verified.

The datasets we use are all under the MIT Li-
cense.
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A Data and PDDL Examples

Figure 6 and 7 is an example of the
dataset Heavily_Templated_BlocksWorld-100
from (Huang and Zhang, 2025).

B Z3 Result

We followed the (Hao et al., 2025) by using Formu-
lator to define all possible variables in the environ-
ment and generate their instantiation information
before producing the Z3 code. However, we did
not adopt their iterative error correction method. In
their experiments, Formulator improved the results
on the BlocksWorld domain from 0.2 to 96.2.

We conducted experiments on our dataset using
GPT-4o as the LLM, but the results were 0. The
distribution of error causes is shown in the Table 2.
Goal unsatisfied means that the final output plan
cannot solve the problem correctly. We analyzed
the cause of this error. We printed the state of
each time slice and found that as long as any condi-
tion in the goal state is met, the planning will stop.
When we tried to let LLM correct this error, it only
caused more syntax errors, and never corrected the
error. This is likely because our dataset is more
complex—theirs only involved 4 blocks, whereas
ours often includes more than 10 blocks.

Since even the simplest BlocksWorld dataset
yielded a score of 0 after following the (Hao et al.,
2025) approach, we did not apply our pipeline to Z3
and instead reported the findings in the appendix.

Heavily BlocksWorld
Model syntax error goal unsatisfied

gpt-4o 16/100 84/100

Table 2: Z3 Result

C Pseudocode of Refinement w/
Code-Retrieved Doc

Algorithm 1 shows the Pseudocode of Refinement
w/ Code-Retrieved Doc.

Algorithm 1 Retrieval-Augmented PDDL Genera-
tion with Iterative Correction
Require: Domain Description (DD), Problem De-

scription (PD)
Ensure: Valid Domain File (DF) and Problem File

(PF)
1: ⟨DF,PF ⟩ ← LLM(DD,PD)
2: while true do
3: feedback ← Solver(DF,PF )
4: if feedback indicates success then
5: return ⟨DF,PF ⟩
6: end if
7: e_type← Parse_Error_Type(feedback)
8: if e_type == syntax_error and

feedback.file == DF then
9: e_code← LLM(feedback)

10: doc← Retrieve(e_code)
11: ⟨DF,PF ⟩ ←

LLM(DF,PF, e_code, feedback, doc)
12: else if e_type == syntax_error and

feedback.file == PF then
13: ⟨DF,PF ⟩ ←

LLM(DF,PF, feedback)
14: else if e_type == semantic_error then
15: ⟨DF,PF ⟩ ←

LLM(DF,PF, feedback)
16: else
17: raise UnknownErrorType
18: end if
19: end while

D PDDL Error Cases and Corrections

D.1 Example 1: Action Definition Error

We use @@@ ... @@@ to clearly mark errors. In the
original definition, the action was generated as:

(: action pickup
:parameters (?b)

@@@:preconditions@@@ (and (clear ?b)
(on-table ?b)
(arm-empty))

:effects (and (holding ?b)
(not (clear ?b))
(not (on-table ?b))
(not (arm-empty))))
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I am playing with a set of blocks. Here are the actions I can do

   Pickup block

   Unstack block from another block

   Putdown block

   Stack block on another block

I have the following restrictions on my actions:

    To perform Pickup action, the following facts need to be true: clear block, block on table, 

arm-empty.

    Once Pickup action is performed the following facts will be true: holding block.

    Once Pickup action is performed the following facts will be false:  clear block, block on 

table, arm-empty.

    To perform Putdown action, the following facts need to be true: holding block.

    Once Putdown action is performed the following facts will be true: clear block, block on 

table, arm-empty.    

    Once Putdown action is performed the following facts will be false: holding block.

    To perform Stack action, the following needs to be true: clear block2, holding block1.

    Once Stack action is performed the following will be true: arm-empty, clear block1, block1 

on block2.

    Once Stack action is performed the following will be false: clear block2, holding block1.

    To perform Unstack action, the following needs to be true: block1 on block2, clear block1, 

arm-empty.

    Once Unstack action is performed the following will be true: holding block1, clear block2.

    Once Unstack action is performed the following will be false:, block1 on block2, clear 

block1, arm-empty.

Figure 6: DD for the BlocksWorld domain

As initial conditions I have that, block 1 is clear, block 2 is clear, block 3 is clear, block 

4 is clear, arm-empty, block 1 is on the table, block 2 is on the table, block 3   

is on the table, and block 4 is on the table.

My goal is to have that block 1 is on the table, block 2 is on the table, block 3 is on the  

table, and block 4 is on the table.

Figure 7: PD for the BlocksWorld domain

In PDDL, :precondition must be strictly sin-
gular. Therefore, the solver returns the error
message: domain: syntax error in line
12, ’:PRECONDITIONS’: domain definition
expected.

Based on this error, BM25 retrieved the follow-
ing documentation:

type_name: Actions

documentation: An action defines a
transformation in the state of the world.
It is broken down into three sections:

1. :parameters — entities involved
in the action. 2. :precondition
— conditions required for applicabil-
ity. 3. A choice between :effect
and :expansion (most domains use
:effect).

Example:
(: action BUILD-WALL

:parameters (?s - site ?b -
bricks)
:precondition (and (on-site ?b

?s)

(foundations-set ?s)
(not

(walls-built ?s))
(not

(material-used ?b)))
:effect (and (walls-built ?s)

(material-used
?b)))

The corrected PDDL definition is:

(: action pickup
:parameters (?b)
:precondition (and (clear ?b)

(on-table ?b)
(arm-empty))

:effects (and (holding ?b)
(not (clear ?b))
(not (on-table ?b))
(not (arm-empty))))
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(define (domain blocks-world)

  (:requirements :strips :typing)

  (:predicates (clear ?x - block) 

               (on ?x ?y - block)

               (ontable ?x - block)

               (holding ?x - block) 

               (arm-empty))

  (:action pickup

    :parameters (?b - block)

    :precondition (and (clear ?b) (ontable ?b) (arm-empty))

    :effect (and (holding ?b) (not (clear ?b)) (not (ontable ?b)) (not (arm-empty))))

  (:action unstack

    :parameters (?b1 ?b2 - block)

    :precondition (and (on ?b1 ?b2) (clear ?b1) (arm-empty))

    :effect (and (holding ?b1) (clear ?b2) (not (on ?b1 ?b2)) (not (clear ?b1)) 

 (not (arm-empty))))

  (:action stack

    :parameters (?b1 ?b2 - block)

    :precondition (and (clear ?b2) (holding ?b1))

    :effect (and (arm-empty) (clear ?b1) (on ?b1 ?b2) (not (clear ?b2)) 

 (not (holding ?b1))))

  (:action putdown

    :parameters (?b - block)

    :precondition (holding ?b)

    :effect (and (ontable ?b) (clear ?b) (arm-empty) (not (holding ?b))))

)  

Figure 8: DF for the BlocksWorld domain

D.2 Example 2: Predicate Definition Error
In the original definition, the predicates were gen-
erated as:
(: predicates
(on-table ?obj - container)
(hand-empty ?hand - hand)
(holding ?hand - hand ?container -

container)
(dispenses ?dispenser - dispenser

?ingredient - ingredient)
(empty ?container - container)
(clean ?container - container)
(used-with ?container - container

?item - @@@(ingredient
cocktail)@@@))

In PDDL, each parameter can only be assigned a
single type. Therefore, the solver returns the error
message: domain: syntax error in line 14,
’(’: domain definition expected.

BM25 retrieved the following documentation:

type_name: Predicates

documentation: Predicates represent
the state of the system in PDDL and
can be either true or false at any given
moment. They usually apply to specific
types of objects and can take one or more
arguments.

Example:

(: predicates
(walls-built ?s - site)
(windows-fitted ?s - site)
(foundations-set ?s - site)
(cables-installed ?s - site)
(site-built ?s - site)
(on-site ?m - material ?s -

site)
(material-used ?m - material))

The corrected PDDL definition is:
(: predicates
(on-table ?obj)
(hand-empty ?hand)
(holding ?hand ?container)
(dispenses ?dispenser ?ingredient)
(empty ?container)
(clean ?container)
(used-with ?container ?item))

E Prompt

Figure 10 11 12 13 and 14 is the Prompt of all our
methods. Refinement w/ Feedback-Retrieved Doc
and Refinement w/ Code-Retrieved Doc use the
same prompt but different retrieved docs.
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(define (problem block_problem)

  (:domain block-stacking)

  (:objects block1 block2 block3 block4 - block)

  (:init

    (clear block1)

    (on block1 block2)

    (clear block3)

    (on block3 block4)

    (on_table block2)

    (on_table block4)

    (arm_empty)

  )

  (:goal (and

    (on_table block1)

    (on_table block2)

    (on_table block3)

    (on_table block4)

  ))

)

Figure 9: PF for the BlocksWorld domain

You are a PDDL expert. Here is a game we are playing.

{domain_description}

{problem_description}
Write the domain and problem files in minimal PDDL.

Base Prompt

Figure 10: Base Prompt
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You are a PDDL expert.

Is next step needed here: yes

next step: domain definition

next domain file:

(define (domain construction)

)

Is next step needed here: yes

next step: requirements

next domain file:

(define (domain game)

(:requirements :strips :adl :typing)

)

[More steps here]

…

follow the example above, please do not add any other word, generate only the next one step for the domain file.

Here is a game we are playing.

{domain_description}

{problem_description}

modular w/ specific doc Prompt

Figure 11: modular w/ specific doc Prompt

Knowledge:

{doc}

are a PDDL expert. Here is a game we are playing.

{domain_description}

{problem_description}

Write the domain and problem files in minimal PDDL.

Once w/ Whole Doc

Figure 12: Once w/ Whole Doc Prompt

Wrong_domain_file:

{previous_domain_file}

Wrong_problem_file:

{previous_problem_file}

error feedback:{result}

Instruction: I provided a wrong set of PDDL files, you need according to the error feedback, give me the 

corrected domain_file and problem_file. You must make changes.

Refinement w/o Doc 

Figure 13: Refinement w/o Doc Prompt
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Knowledge:{doc}

Wrong_domain_file:

{previous_domain_file}

wrong_problem_file:

{previous_problem_file}

Wrong PDDL:

{query}

error: {result}

Instruction: I provided a wrong PDDL files and the documentation for the errors, you need according to the 

documentation, give me the corrected domain_file. You must make changes, and give me a logical reason for 

why you change like that. Do not add any other word.

Refinement w/ Retrieved Doc

Figure 14: Refinement w/ Retrieved Doc Prompt
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