Large Language Models Exhibit Limited Reasoning Ability on
Coding Problems

Jinyoung Jo
Stanford University
jinyoungjo@stanford.edu

Abstract

Claims that large language models (LLMs)
have complex reasoning ability have stirred
broad interests, and controversies, of academics
and non-academics alike. A popular basis
for such claims comes from LLMs’ ability to
solve coding questions, which involves under-
standing the question statement and provid-
ing code that solves the question. Although
such abilities are remarkable feats worth prais-
ing, we argue that they come from memoriza-
tion rather than reasoning. We first show that
LLMs’ question-solving ability degrades with
increased recency of the question, likely due to
the reduced amount of training data for more
recent questions. Additionally, we show that
an LLM often fails to solve the question when
presented with rephrased but equivalent ques-
tion statements, further suggesting their limited
reasoning ability.

1 Introduction

The development of large language models (LLMs)
has substantially advanced natural language pro-
cessing, enabling various applications across mul-
tiple domains. Their remarkable performance on
diverse tasks has sparked significant research in-
terest in their reasoning abilities. While LLMs are
often claimed to possess reasoning abilities, it still
remains a controversy (Huang and Chang, 2023;
Mondorf and Plank, 2024). Although some previ-
ous studies provide evidence that LLMs are able
to reason (Shi et al., 2022; Suzgun et al., 2023;
Lampinen et al., 2024; Saparov and He, 2023),
others show that their ability to reason is limited
(Arkoudas, 2023; Yang et al., 2023; Kambhampati
et al., 2024; McCoy et al., 2023; Valmeekam et al.,
2023; Razeghi et al., 2022; Hao et al., 2025; Xu
et al., 2025). Some studies show evidence for both
the true ability to reason and reliance on shallow
heuristics (Prabhakar et al., 2024). Thus, it remains
unclear whether the behavior of these systems is
based on true reasoning or superficial heuristics

Jonah Engelmann
Santa Clara University
joengelmann@scu.edu

Sean Choi
Santa Clara University
sean.choi@scu.edu

such as memorization or recognition of surface-
level patterns.

In this study, we evaluate LLMs’ reasoning
ability on solving coding questions, which inher-
ently require reasoning skills. Code generation,
where models assist with generating and complet-
ing code, is one of the most popular applications
of LLMs (Jiang et al., 2024), with the promises
of Al-generated code improving coding efficiency.
While previous research has shown that LLMs
can generate code, often more efficiently than hu-
mans (Coignion et al., 2024), it has rarely been in-
vestigated whether this ability stems from genuine
reasoning or merely from retrieving patterns from
training data. Coding questions provide an effec-
tive test case for this distinction, as they require rea-
soning skills, yet many widely used question sets
are likely to have been included in training data.
This allows us to assess whether LLMs’ perfor-
mance reflects true reasoning or pattern recognition.
If LLMs exhibit lower accuracy on prompts that
are unlikely to have appeared in their training data,
while performing well on otherwise similar ques-
tions, this would suggest that their performance
is primarily dependent on memory retrieval rather
than reasoning.

To test this, we conducted two analyses. First,
we investigated the change in model performance
as a function of the time point at which the question
was entered into the coding question database. If
models perform better with older questions, which
are more likely to have been included in the train-
ing data, compared to more recent questions with
similar difficulty, the finding would suggest that the
model tend to recite from memory rather than use
reasoning skills. Second, we investigated the effect
of prompt perturbation, by replacing one to three
keywords with their synonyms and testing whether
the model performance changes. If model perfor-
mance on code generation is susceptible to word-
level perturbation in the prompts, as often reported

139

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 139-146
December 20-24, 2025 ©2025 Association for Computational Linguistics

in previous studies (Wang et al., 2023; Qiang et al.,
2024; Zhu et al., 2024; Zhuo et al., 2023), the find-
ing would suggest that models perform well only
on word sequences they have encountered during
training, rather than applying reasoning skills to an-
swer coding questions. We also examine the effect
of word frequency on performance under perturba-
tion. Our results from both analyses demonstrate
that models respond differently to questions that
are essentially the same but phrased differently,
suggesting that LLMs have limited reasoning abil-

ity.
2 Methods
2.1 Dataset Specification

The evaluation data set consists of coding questions
from a popular repository called LeetCode'. Each
LeetCode question has a set of associated attributes:
question ID, difficulty, test cases, number of sub-
missions, and number of acceptances. Question
IDs are numerical values assigned automatically by
LeetCode, indicating the order in which questions
were added to the database. A higher ID corre-
sponds to a more recently added question. The
difficulty level is one of Easy, Medium and Hard,
and is a manually labeled identifier that provides
an estimate of the difficulty of each question. Test
cases are input—output pairs used to verify the cor-
rectness of the provided solution. A solution is
considered correct or accepted only if it produces
the expected output for every given input, thereby
passing all test cases. Number of submissions is
the number of attempted solutions submitted by the
users, and the number of acceptances are the subset
of such submissions that pass all the test cases. A
sample of the question and test cases is presented
in Appendix A.

After removing questions for which fewer than
three test cases were available, the dataset collected
for the present study consisted of 1191 questions
(Easy N=309, Medium N=572, Hard N=310).

2.2 Model Specifications

The model we used for the main experiment re-
ported below was GPT-40 (OpenAl et al., 2024),
where we investigated the model accuracy as a
function of question ID on the full set of 1191
questions described above. Before conducting the
main experiment, we tested five models including
GPT-40 on a smaller subset of 90 questions (Easy

"https://leetcode.com

N=30, Medium N=30, Hard N=30): GPT-3.5, GPT-
40 (OpenAl et al., 2024), Gemini 1.5 (Gemini
Team et al., 2024), Llama 3 70B (Grattafiori et al.,
2024), and StarCoder 2 15B (Li et al., 2023). This
selection ensures coverage of key model variables
such as the model size, whether the model is open
source or closed source, and whether the model is
vanilla or fine-tuned. Among these models, GPT-40
exhibited the highest accuracy (see Appendix B for
a comparison between models); however, results
from GPT-40 on the larger dataset and those from
the other models on the smaller dataset yielded
similar and consistent conclusions. We report the
results from GPT-40 in Section 3 and include the
results from other models in Appendix B.

2.3 Prompt Perturbation Analysis

We examined how modifying certain words within
a prompt affects the output quality of an LLM, par-
ticularly GPT-40. Specifically, we identified one to
three keywords in each prompt and replaced them
with each of their synonyms using two different
methods, outlined below. We assessed the abil-
ity of GPT-40 to generate code for these modified
prompts.

In the first method, we asked GPT-40 to iden-
tify keywords in each prompt and replace each one
with an appropriate synonym, without relying on
any external libraries or databases. An example
of prompt perturbation using GPT-40 is presented
in Appendix C. For this method, we used a sub-
set of questions (N=750 out of 1191), for which
GPT-40 passed all test cases with the original, un-
modified prompt.

In the second method, we extracted a set of key-
words in each prompt using keyBERT (Grooten-
dorst, 2020), a model that provides a list of key-
words, each with a score that measures how im-
portant the word is in the prompt. Next, for each
selected keyword, we retrieved a list of synonyms
from the WordNet database (Princeton University,
2010) via the NLTK package (Bird et al., 2009).
We then manually selected the most appropriate
synonym for each keyword, i.e., the one that pre-
served the original meaning as closely as possible.
This was to test whether the results obtained using
GPT-40 in the first method hold when synonyms
were manually chosen. For this manual replace-
ment, we used a smaller data set of 25 questions.
The results of this manual analysis closely aligned
with those from the LLM-based synonym replace-

140

ment. We present the results of the first method in
Section 3 and those of the manual replacement in
Appendix D.

In both methods described above, we performed
three levels of analysis, replacing the highest scor-
ing (the most important), the top two, and the top
three keywords with their synonyms, as determined
by GPT-40 or keyBERT. This allowed us to exam-
ine changes in model performance as a function of
the number of keywords replaced.

Further, we obtained the word frequencies of the
original keywords and their synonyms from SUB-
TLEXus (Brysbaert and New, 2009) to examine the
effect of relative frequency between keywords and
their synonyms on model performance. If a word
does not appear on the SUBTLEXus frequency list,
the frequency was regarded as zero.

2.4 Evaluation Metric

Model performance is evaluated on whether or not
each generated output code passes all test cases.
For a given model m, question p and query g, cor-
rectness of the model and question pair for the
given query is defined as:

1, m’s solution for p generated
Cmpla) = from g passes all test cases
0, Otherwise.

Given Cyy, p(q), the accuracy A is defined as
2_pep Cmp(d)

Am(q) = P

where accuracy for a given model m for a set of
question P varies for input query gq.

3 Results & Discussion

3.1 Recency effect on accuracy

We first evaluated how the performance of GPT-40
changes as a function of the time point at which
a question was entered into LeetCode. Figure 1
presents correctness of the model’s output as a
function of question ID, divided by difficulty. The
overall accuracy was 0.63; not surprisingly, the ac-
curacy was highest in Easy questions (0.77), inter-
mediate in Medium (0.64) and lowest in the Hard
category (0.48). Crucially, in Medium and Hard
questions, we see an effect of question ID such
that the model tends to struggle more often with
higher-numbered (more recent) questions. This

141

finding demonstrates that the model performs bet-
ter with older questions, which are more likely to
have been included in the training data, suggesting
that the question solving ability is likely based on
memorization rather than true reasoning.

3.2 Prompt perturbation effect on accuracy

Next, we evaluated changes in model performance
under prompt perturbation. Figure 2 presents the
correctness of GPT-4o outputs as a result of prompt
perturbation. By design, the accuracy in the Orig-
inal Prompt condition is 1, since only the origi-
nal prompts that the model correctly solved were
included in our prompt perturbation analysis, as
described in Section 2.3. Crucially, replacing a
single keyword with its synonym already led to a
drop in accuracy (0.93), with a slight further de-
cline as more keywords were replaced (0.909 when
two words were replaced; 0.907 when three were
replaced). Within Easy questions, the number of
correct solutions decreased from 227 to 226 and
then to 225 across the 1-, 2-, and 3-word replace-
ments. For the Medium category, the number of
correct solutions was 341 when one word was re-
placed, which decreased to 330 when two words
were replaced; interestingly, it increased slightly
to 334 when three were replaced. For Hard ques-
tions, the number of correct solutions was 126 in
both 1- and 2-word replacements, which decreased
to 121 in the 3-word replacement condition. We
found similar results with manual perturbation (see
Appendix D).

In the 1-word replacement condition, we also
examined how the relative frequency between the
original word and its synonym affected model per-
formance. The results demonstrated that the effect
of relative frequency was minimal. Among the 750
questions analyzed, 65 had identical frequencies
for both words and were excluded from the analy-
sis. For the remaining 685 questions, the new word
(synonym) had a higher frequency in 346 cases and
a lower frequency in 339 cases, compared to the
original word. When the new word was more fre-
quent, the accuracy dropped from 1 to 0.95 after
synonym replacement. When the new word had
a lower frequency, the accuracy dropped from 1
to 0.92. These results suggest that changes in fre-
quency in either direction had a comparable impact
on performance.

Medium

Easy

Hard

&, 8 8 & 0% o
el o 8FB S oo [5
180 TR
n
n
@ Correctness
3 > Correct
S < Incorrect
(@]
x % XXXXXX % xxxx >)<§< X“ & ’);"é‘&x" § 5 X f"{:x)%,(x)g &;g: XXX
e PRRAY IUEREVR DRI LER
0 1000 2000 3000 O 1000 2000 3000 O 1000 2000 3000

Question ID (Higher number means more recent problem)

Figure 1: Correctness of GPT-40 outputs as a function of question ID, grouped by difficulty level

Original Prompt

1 Word Replaced
1.00-

0.75-

Proportion

[ORTORR N = 2390N= 363fN= 148
0.25-
0.00-
Ea{sy Medium Hard Eésy Medium Hard
Difficu

2 Words Replaced 3 Words Replaced

Correctness

B Incorrect
B Correct

Eésy Medium Hard

Eésy Medium Hard
Ity

Figure 2: Correctness of GPT-40 outputs, grouped by the number of keywords replaced and difficulty level

3.3 Summary & Discussion

In summary, likely due to memorization from train-
ing data, LLMs exhibit decreasing accuracy on
more recent questions and when a small portion of
the prompts are perturbed, suggesting a reliance
on surface-level patterns rather than true reasoning.
Our findings are consistent with those of previous
studies (Gonen et al., 2023; Razeghi et al., 2022)
indicating that the more frequently the prompt ap-
pears in the training data, the more familiar the
model is with it, leading to improved model perfor-
mance. Similarly, numerous studies have reported
a close relationship between pretraining data and
task performance (e.g. Elazar et al. 2023; Kand-
pal et al. 2023). The issue of data contamination
has been raised in studies that tested the ability

of LLMs to solve LeetCode questions (Coignion
et al., 2024; Xia et al., 2025), and our study shows
that the model performance indeed degrades when
tested on more recent questions.

4 Conclusion

We argue that LLMs are, by design, autoregressive
word sequence predictors and that there is nothing
inherent in them that enables reasoning. LLMs
can only simulate reasoning by learning statisti-
cal patterns in large amounts of data and applying
learned patterns in a way that appears logical. This
work provides compelling evidence to this argu-
ment, showing that LLMs struggle with prompts
less likely included in the training data and fail
to solve the simple questions with subtle changes
in wording. We believe that this work will moti-

142

vate future research to improve LLMs’ question
solving ability via data augmentation using prompt
perturbation and improved LLM architectures.

Acknowledgment

We are grateful to the anonymous reviewers for
their helpful comments. We are also grateful to
Graham Kim for helping with expanding the exper-
imental data set for the camera ready version. This
research is funded in part by Santa Clara Univer-
sity’s Faculty-mentored Undergraduate Research
Support (2FURS) to support Engelmann’s under-
graduate summer research. This article solely re-
flects the opinions and conclusions of its authors.

Limitations

One of the main limitations of this work is that
the experiment is performed only on English query
and result pairs. Although the experimental meth-
ods are not limited to English, models trained with
other languages may or may not perform better
than models trained mostly on English. Another
limitation is the restricted set of models evaluated.
Although this work evaluates the reasoning capa-
bilities of many popular LLMs, it does not cover
the full range of available models, mainly due to
the ever increasing number of LLMs coming into
the market. In addition, our work does not evaluate
specialized reasoning models that employ Chain-
of-Thought (CoT) reasoning. We argue that solving
LeetCode questions may not be greatly influenced
by CoT due to the nature of LeetCode questions
asking for a one-step solution. Nevertheless, this
claim is worth investigating in future work. In ad-
dition, this study examines performance based on
a single LLM query, whereas CoT reasoning sub-
mits multiple LLM queries to achieve the desired
outcome. Therefore, the result of the present work
shows limited reasoning abilities of the models
when a single query is submitted and evaluated.

Ethics Statement

We do not anticipate an immediate ethical or so-
cietal impact resulting from our work. However,
we acknowledge that LeetCode is a widely used
tool in the industry to assess interview candidates’
programming aptitude. Thus, if the content and
the result of this work is maliciously used, it can
potentially lead to plagiarism on programming in-
terviews. In addition, it is well known that LLMs
hallucinate, i.e., generate invalid answers that seem

correct. Thus, code generation via the approaches
mentioned in this paper can also result in halluci-
nations, which may lead to unforeseen issues if the
code is used directly in real-world applications.

References

Konstantine Arkoudas. 2023. Gpt-4 can’t reason.

Steven Bird, Edward Loper, and Ewan Klein. 2009.
Natural Language Processing with Python. O’Reilly
Media Inc.

M. Brysbaert and B New. 2009. Moving beyond Kucera
and Francis: A critical evaluation of current word
frequency norms and the introduction of a new and
improved word frequency measure for American En-
glish. Behavior Research Methods, 41:977-990.

Tristan Coignion, Clément Quinton, and Romain Rou-
voy. 2024. A performance study of llm-generated
code on leetcode. In Proceedings of the 28th Inter-
national Conference on Evaluation and Assessment
in Software Engineering, EASE 2024, page 79-89.
ACM.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Amir
Feder, Abhilasha Ravichander, Marius Mosbach,
Yonatan Belinkov, Hinrich Schiitze, and Yoav Gold-
berg. 2023. Measuring causal effects of data statistics
on language model’s ‘factual’ predictions.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Bur-
nell, Libin Bai, et al. 2024. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens
of context.

Hila Gonen, Srini Iyer, Terra Blevins, Noah Smith, and
Luke Zettlemoyer. 2023. Demystifying prompts in
language models via perplexity estimation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 10136-10148, Singapore.
Association for Computational Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, et al. 2024. The
Ilama 3 herd of models.

Maarten Grootendorst. 2020. Keybert: Minimal key-
word extraction with bert.

Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li,
Zhengyuan Yang, Lijuan Wang, and Yu Cheng. 2025.
Can MLLMs Reason in Multimodality? EMMA: An
Enhanced MultiModal ReAsoning Benchmark.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

143

http://arxiv.org/abs/2308.03762
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.1145/3661167.3661221
http://arxiv.org/abs/2207.14251
http://arxiv.org/abs/2207.14251
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
https://doi.org/10.18653/v1/2023.findings-emnlp.679
https://doi.org/10.18653/v1/2023.findings-emnlp.679
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
http://arxiv.org/abs/2501.05444
http://arxiv.org/abs/2501.05444
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2212.10403

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Saldyt, and Anil Murthy. 2024. Llims can’t
plan, but can help planning in llm-modulo frame-
works.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023. Large language
models struggle to learn long-tail knowledge.

Andrew K Lampinen, Ishita Dasgupta, Stephanie C Y
Chan, Hannah R Sheahan, Antonia Creswell, Dhar-
shan Kumaran, James L McClelland, and Felix
Hill. 2024. Language models, like humans, show
content effects on reasoning tasks. PNAS Nexus,
3(7):pgae233.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, et al. 2023. Starcoder:
may the source be with you!

R. Thomas McCoy, Shunyu Yao, Dan Friedman,
Matthew Hardy, and Thomas L. Griffiths. 2023. Em-
bers of autoregression: Understanding large language
models through the problem they are trained to solve.

Philipp Mondorf and Barbara Plank. 2024. Beyond
accuracy: Evaluating the reasoning behavior of large
language models - a survey. In First Conference on
Language Modeling.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, et al. 2024. Gpt-4 technical report.

Akshara Prabhakar, Thomas L. Griffiths, and R. Thomas
McCoy. 2024. Deciphering the factors influencing
the efficacy of chain-of-thought: Probability, memo-
rization, and noisy reasoning.

Princeton University. 2010. About WordNet.

Yao Qiang, Subhrangshu Nandi, Ninareh Mehrabi, Greg
Ver Steeg, Anoop Kumar, Anna Rumshisky, and
Aram Galstyan. 2024. Prompt perturbation consis-
tency learning for robust language models. In Find-
ings of the Association for Computational Linguistics:
EACL 2024, pages 1357-1370, St. Julian’s, Malta.
Association for Computational Linguistics.

Yasaman Razeghi, Raja Sekhar Reddy Mekala, Robert L
Logan Iv, Matt Gardner, and Sameer Singh. 2022.
Snoopy: An online interface for exploring the effect
of pretraining term frequencies on few-shot LM per-
formance. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 389-395, Abu Dhabi,
UAE. Association for Computational Linguistics.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International
Conference on Learning Representations.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das,

and Jason Wei. 2022. Language models are multilin-
gual chain-of-thought reasoners.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003-13051, Toronto,
Canada. Association for Computational Linguistics.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2023. Planbench: An extensible benchmark for eval-
uating large language models on planning and rea-
soning about change. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets
and Benchmarks Track.

Haoyu Wang, Guozheng Ma, Cong Yu, Ning Gui, Linrui
Zhang, Zhiqi Huang, Suwei Ma, Yongzhe Chang,
Sen Zhang, Li Shen, Xueqgian Wang, Peilin Zhao,
and Dacheng Tao. 2023. Are large language models
really robust to word-level perturbations?

Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu,
Huifeng Sun, Siyue Wu, Jian Hu, and Xiaolong Xu.
2025. Leetcodedataset: A temporal dataset for robust
evaluation and efficient training of code llms.

Xinnuo Xu, Rachel Lawrence, Kshitij Dubey, Atharva
Pandey, Fabian Falck, Risa Ueno, Aditya Nori, Rahul
Sharma, Amit Sharma, and Javier Gonzalez. 2025.
Re-imagine: Symbolic benchmark synthesis for rea-
soning evaluation. In ICLR 2025 - Workshop on
Reasoning and Planning for LLMs.

Zhun Yang, Adam Ishay, and Joohyung Lee. 2023. Cou-
pling large language models with logic programming
for robust and general reasoning from text. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 5186-5219, Toronto, Canada.
Association for Computational Linguistics.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue
Zhang, Neil Gong, and Xing Xie. 2024. Promptro-
bust: Towards evaluating the robustness of large
language models on adversarial prompts. In Pro-
ceedings of the 1st ACM Workshop on Large Al Sys-
tems and Models with Privacy and Safety Analysis,
LAMPS °24, page 57-68, New York, NY, USA. As-
sociation for Computing Machinery.

Terry Yue Zhuo, Zhuang Li, Yujin Huang, Fatemeh
Shiri, Weiqing Wang, Gholamreza Haffari, and Yuan-
Fang Li. 2023. On robustness of prompt-based se-
mantic parsing with large pre-trained language model:
An empirical study on codex. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 1090—
1102, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

144

http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2211.08411
http://arxiv.org/abs/2211.08411
https://doi.org/10.1093/pnasnexus/pgae233
https://doi.org/10.1093/pnasnexus/pgae233
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
http://arxiv.org/abs/2309.13638
https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=Lmjgl2n11u
https://openreview.net/forum?id=Lmjgl2n11u
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2407.01687
https://wordnet.princeton.edu
https://aclanthology.org/2024.findings-eacl.91/
https://aclanthology.org/2024.findings-eacl.91/
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://doi.org/10.18653/v1/2022.emnlp-demos.39
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
http://arxiv.org/abs/2210.03057
http://arxiv.org/abs/2210.03057
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
http://arxiv.org/abs/2309.11166
http://arxiv.org/abs/2309.11166
http://arxiv.org/abs/2504.14655
http://arxiv.org/abs/2504.14655
https://www.microsoft.com/en-us/research/publication/re-imagine-symbolic-benchmark-synthesis-for-reasoning-evaluation/
https://www.microsoft.com/en-us/research/publication/re-imagine-symbolic-benchmark-synthesis-for-reasoning-evaluation/
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.18653/v1/2023.findings-acl.321
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.18653/v1/2023.eacl-main.77
https://doi.org/10.18653/v1/2023.eacl-main.77
https://doi.org/10.18653/v1/2023.eacl-main.77

A Question Structure B Evaluation results with additional
models (Figure 3)

Each LeetCode question has three parts: question

description, a set of constraints and code snippet * Accuracy by model: GPT-4o exhibited the
to guide the answer generation. Here is a sample highest accuracy (0.79), followed by Llama
question. 3 (0.64), GPT-3.5 (0.59), StarCoder (0.46),
and Gemini 1.5 showed the lowest accuracy
Description: 0.41).
Special Positions in a Binary Matrix. e Accuracy by difficulty: the accuracy of output
Given an m x n binary matrix mat, re- was highest among the Easy questions (0.82),
turn the number of special positions in intermediate among the Medium (0.59), and
mat. lowest among the Hard ones (0.33).

A iti i, j)i lled ial if .
position (1, J) is called special i C Prompt Perturbation Example

mat[i][j] == 1 and all other elements

in row i and column j are @ (rows and An example of prompt perturbation is as follows.

columns are 0-indexed). Consider the following original prompt:

. There are n people and 40 types of hats

Constraints: labeled from 1 to 40. Given a 2D inte-
ger array hats, where hats[i] is a list of

m == mat.length all hats preferred by the i th person. Re-

n == mat[i].length turn the number of ways that n people

1 <=m, n<=100 can wear different hats from each other.

mat[i][j] is either @ or 1. Since the answer may be too large, return
it modulo 109 + 7.

Code Snippet:

The words ‘hats’, ‘people’, and ‘ways’ were iden-
) tified as keywords (boldfaced above), and the syn-
def numSpecial(mat): onyms of these words are selected as ‘headwear’,

n ‘individuals’, and ‘methods’.
:type mat: List[List[int]]

:rtype: int D Manual prompt perturbation results
o (Figure 4)

Given such question template, the prompt involves
prepending the following statement:

Write Python code to solve the following
coding problem

To test whether the generated code is correct,
each question also has test cases with IDs that spec-
ify a set of inputs and expected outputs.

’ ID ‘ Input ‘ Output
1 | [[C1,0,0]1,[0,0,11,[1,0,0]11] 1
2 | [C[1,0,0]1,[0,1,0]1,[0,0,1]11] 3
3 | CL[1,1,0]1,00,0,0],00,0,0]1]] 0

If the generated code is correct, the code should
produce the correct output for all inputs in a rea-
sonable amount of time.

145

Easy Medium Hard

D

- %% 800 D O@ ° ® o © ° o ° o oo fab

EX

- x x J. x x x X X% x X X % X ox X% Xxx x XXX xEx % X x k=

o

'@@0083 oo 00%8 2 90000 °9 o o L& o G’OO o %

il

- X ox x XX x Xk o xx x Xxx My WX Xx xR G
w
1773

Q.- go® 8% Veg8 o © e°% °8 § © 8 o0 8 §°%° ©8 % 9 oo ° @

5 T

g' <3 X x x x % x X x %X &
S
O

- 8o 8% &888 ° g @°%® oo 8§ © o , o & o o o o c

5

i % x X x4 o % 3 XXX X e X x % o

(7]

- 009 ©° ® & o 8° °8e <= ° ® ° o o &

g

- x X % x x x % Ee's - X% X% XX % =S XXX 06X M X X %% 9

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

Problem ID (Higher number means more recent problem)

Correctness © Correct x Incorrect

Figure 3: Correctness of model outputs as a function of Question ID, grouped by difficulty level and LLM type

Original Prompt 1 Word Replaced 2 Words Replaced 3 Words Replaced
1.00 -
0.75-
c
k=l
8_ 0.50 -
o
o
0.25-
0.00 -
Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard
Difficulty

Correctness] mcorrect [correct

Figure 4: Correctness of GPT-40 outputs grouped by the number of keywords replaced and difficulty level in the
manual prompt perturbation analysis

146

