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Abstract

Pretrained language and vision-language mod-
els have become core components in building
vision-language-action models (VLAs) due to
their strong spatial reasoning capabilities. Eval-
uating the robustness of VLAs is crucial to en-
suring their reliability in practical scenarios. Al-
though prior work has focused on background
and environment robustness, positional robust-
ness remains underexplored. In this paper, we
propose a comprehensive evaluation protocol to
assess the positional robustness of VLAs and
apply it to OpenVLA, an open-source, high-
performing, and efficient model well suited for
real-world deployment. We find that OpenVLA
succeeds only when the target object is placed
at one of the two positions encountered dur-
ing training. Even in these cases, the success
rate never exceeds 50% because it exhibits a
memorized behavior that it randomly executes
a grasping action toward one of the two fixed
positions without relying on perception to lo-
calize the target object. This reveals that Open-
VLA’s positional robustness is extremely weak.

1 Introduction

In recent years, pretrained language (Guo et al.,
2025; Yang et al., 2024; Achiam et al., 2023; Wang
et al., 2024b, 2023) and vision-language (Bai et al.,
2025; Hurst et al., 2024; Team et al., 2023) models
have demonstrated strong spatial reasoning capabil-
ities, which are crucial for robotics. Consequently,
leveraging these models as core components to
build vision-language-action models (VLAs) can
avoid training robotic policies from scratch and has
emerged as a promising paradigm (Brohan et al.,
2023; Team et al., 2024; Kim et al., 2024b). How-
ever, in real-world applications, robots frequently
operate in complex and dynamic environments,
which can significantly impact the performance of
these VLAs in pick-and-place objects (Wang et al.,
2024a; Guruprasad et al., 2024; Zhong et al., 2025).

Therefore, evaluating their robustness is essential
to ensuring their reliability in practical scenarios.

Although existing work has begun to evaluate the
robustness of VLAs, these efforts have primarily fo-
cused on factors such as background variations and
environmental changes (Brohan et al., 2022; Kim
et al., 2024b; Zhang et al., 2024). However, there
remains a lack of systematic analysis of positional
robustness—that is, whether VLAs can maintain
reliable pick-and-place objects performance when
the position of the object changes. This aspect is
particularly important for two reasons. First, in
real-world scenarios, the positions of objects are
rarely fixed and often subject to change (Qu et al.,
2025; Li et al., 2025). Second, the ability of VLAs
to adapt to such spatial shifts reflects their spatial
reasoning capacity, which is crucial for executing
reliable policies in dynamic environments.

In this paper, we propose a comprehensive eval-
uation protocol to assess the positional robustness
of VLAs and apply it to OpenVLA (Kim et al.,
2024a), an open-source, high-performing, and ef-
ficient model well suited for real-world deploy-
ment, in object pick-and-place tasks. Specifically,
our protocol comprises three components. First,
we assess the positional robustness of OpenVLA
under the default configuration used in its origi-
nal training and evaluation within the same simu-
lated environment, which consists of the designated
grasp-and-place target object along with multiple
distractor objects. All objects are placed at canoni-
cal positions defined by the default spatial layout.
By separately swapping the target object with each
distractor object, we evaluate how changes in its
position affect performance. Second, we remove
all distractor objects and individually place the tar-
get object at each of the canonical positions defined
by the default layout to evaluate how changes in
its position affect performance without external
interference. Finally, with all distractor objects
removed, we place the target object at positions
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Figure 1: Positional robustness evaluation settings. Left (Default configuration): The target object is placed at
canonical positions with distractors present, following the default setup used in OpenVLA’s training and evaluation.
Middle (Only target object in canonical positions configuration): Only the target object is retained and placed at
each canonical position, without any distractors. Right (Only target object in extend positions configuration):
The target object is placed at positions outside the default canonical layout, with all distractors removed. The four
dashed white boxes indicate positions outside the default spatial layout. The solid white boxes in the left and middle
figures correspond to the default canonical positions defined by the LIBERO manipulation suite, while the four
dashed boxes in the right figure are additional positions selected as part of our evaluation. In each figure, the target
object is marked with a blue star.

beyond those defined in the default layout to fur-
ther assess OpenVLA’s robustness to non-default
spatial configurations.

We find that OpenVLA succeeds only when the
target object is placed at one of the two positions
encountered during training across all evaluation
settings. Even in these cases, the success rate never
exceeds 50% because it exhibits a memorized be-
havior that it randomly executes a grasping action
toward one of the two fixed positions without rely-
ing on perception to localize the target object. This
reveals that OpenVLA’s positional robustness is
extremely weak.

2 Evaluation Settings

Environment We conduct all our positional ro-
bustness evaluations using the LIBERO manipula-
tion suite (Gupta et al., 2023), as OpenVLA was
both trained and evaluated on this simulated envi-
ronment, covering the full set of object pick-and-
place tasks defined within the platform.
Protocol Our protocol comprises three compo-
nents. First, we assess the positional robustness of
OpenVLA under the default configuration defined
by the LIBERO manipulation suite, referred to as
default configuration, which was also used during
its original training and evaluation. As shown on
the left of Figure 1, each object pick-and-place task
in this configuration contains six objects placed at
canonical positions defined by the default spatial

layout of the environment, one designated as the tar-
get object and the remaining five as distractors. We
then swap it with each of the five distractor objects
to evaluate how changes in the target’s position
affect performance. Second, we remove all distrac-
tor objects and retain only the target object in the
environment, as shown in the middle of Figure 1.
We then individually place the target object at each
canonical position defined by the default layout to
evaluate how changes in its position affect perfor-
mance without external interference. Finally, with
all distractor objects removed, we also place the tar-
get object at positions beyond those defined in the
default layout, as shown on the right of Figure 1,
to further assess OpenVLA’s positional robustness
to non-default spatial configurations.

a) Observation with initial state b) Observation without initial state c) Absolute difference heatmap

Figure 2: Effect of removing the .init file. a) Image
rendered after loading the original initial state. b) Im-
age after a cold reset. c) Absolute pixel-wise difference
between a) and b) visualised as a heat-map. Brighter
colors highlight regions with greater differences, indi-
cating subtle pose drift of objects, the target bin, and the
end-effector.
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In our evaluations, we disable LIBERO’s de-
fault .init snapshots, which lock the scene to six
canonical coordinates and introduce a small but
systematic pose drift. The difference between us-
ing and not using the .init snapshots is shown in
Figure 2. Instead, all evaluations starts from a cold
reset, ensuring unbiased layouts and allowing fair
evaluation at the additional positions.
Metrics We execute each object pick-and-place
task 10 times and compute the average success
rate across trials as our evaluation metric. A task is
considered successful if the target object is released
inside the bin within the time limit. Additionally,
we use the official weights released by OpenVLA
in all our evaluations.

Figure 3: Success-rate heatmaps under default configu-
ration. The y-axis represents task names, and the x-axis
indicates the placement positions of the target objects.
Heatmap values denote the success rate over 10 repeated
trials. Successful attempts only occur when the target
item is placed in position 0 or 1.

Figure 4: Success-rate heatmaps for scenarios where
only the target object is present. The evaluation covers
six canonical and four new positions for the target ob-
ject. Even with distractors removed, successful attempts
occur exclusively when the target object is placed at
position 0 or 1.

3 Experiments

All of our evaluation results are shown in Figures 3
and 4. The results reveal that OpenVLA exhibits
extremely weak positional robustness.
Default configuration As shown in Figure 3, ev-
ery task exhibits non-zero success rates only at
regions 0 and 1—the two positions encountered
during pre-training. Even at these positions, the
success rate never exceeds 0.5. The complete ab-
sence of successes at regions 2–5 suggests that the
controller memorizes two fixed grasp trajectories
rather than learning to localize the object using
visual input.
Only target object in canonical positions configu-
ration As shown in Figures 3 and 4, the heatmaps
from the default configuration and the target-only
setting are nearly identical. This indicates that the
choice of grasp site is not influenced by the pres-
ence or absence of distractor objects.
Only target object in extended positions config-
uration As shown in Figure 4, when the target
object is placed at the four newly introduced po-
sitions, the success rate drops to zero. This con-
firms that OpenVLA’s policy lacks generalization
to spatial configurations beyond its narrow training
distribution.

4 Analysis

Figure 5 offers a microscopic view of the task
named “pick up the tomato sauce" under the ob-
ject only condition and “pick up the milk" under
default condition. Each column fixes the target
at a distinct region, while each row corresponds
to the arm’s first decisive motion after a cold re-
set. A striking regularity emerges: immediately
after the scene is rendered the policy drives the
end-effector to either canonical position 0 or 1, with
no intermediate search or corrective behaviour. The
branch chosen varies across episodes and appears
random, yet once committed the controller follows
a hard-coded, open-loop trajectory that was seem-
ingly over-optimised for the training distribution.

Because the grasp site is picked before any vi-
sual feedback is used to verify the target’s where-
abouts, success hinges purely on coincidence. If
the object happens to sit at the visited location—as
in the green-framed panels of the first and second
columns—the episode completes successfully; oth-
erwise the gripper closes on empty space, produc-
ing the red-framed failures shown in all other pan-
els. Crucially, this outcome is independent of the
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Figure 5: Behaviour of the learned policy on the “pick-up-the-tomato-sauce" task (Only target object in canonical
positions configuration) and the “pick-up-the-milk" task (Default configuration). Columns (a)–(c) place the tomato
sauce target object at positions 0, 1, and 4, respectively. Columns (d)–(f) place the milk target object at positions 0,
1, and 3, respectively. For both tasks, the first row shows episodes in which the arm moves to canonical position 0;
the second row shows episodes in which it moves to position 1. After every cold reset, the policy chooses one of
the two training positions (0 or 1) and ignores the actual scene—a choice unaffected by the presence or absence of
distractors, consistently demonstrating its reliance on memorized trajectories across different tasks.

presence or absence of distractors: the arm never
consults the broader scene once its initial choice is
made.

This behaviour explains both the 50% ceiling ob-
served at regions 0 and 1 and the zeros elsewhere.
By randomly oscillating between two memorised
coordinates, the controller self-imposes an upper
bound of one successful grasp every two attempts
in the best case, perfectly aligning with the peak
values in Figures 3 and 4. Equally importantly, re-
fusing to explore any novel location clarifies why
the four additional regions introduced in the ex-
tended object position setting record no successes.
Taken together, these episode-level observations
confirm that the headline performance of Open-
VLA derives from positional priors baked into the
training curriculum and a lack of positional robust-
ness.

5 Conclusion

In this work, we present a comprehensive eval-
uation protocol designed to assess the positional
robustness of VLAs, an essential yet underexplored
aspect of robustness in robots, and apply it to eval-
uate the robustness of OpenVLA—an open-source,
high-performing, and efficient model well suited
for real-world deployment. Our evaluation reveals
that OpenVLA’s positional robustness is extremely
weak.

Limitations

Our study evaluates only the positional robustness
of OpenVLA using our proposed protocol. Further-
more, all experiments are conducted in a simulated
environment, which may not fully capture the chal-
lenges of real-world deployment. In future work,
we plan to apply our protocol to a broader range
of VLA models and assess their robustness in real-
world.
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A Experimental Parameters

We used a consistent set of parameters for all evalu-
ation experiments to ensure the fairness and repro-
ducibility of our results. The detailed hyperparam-
eters and environmental settings are listed in Table
1.

Table 1: Evaluation Hyperparameters.

Parameter Value

Model Family openvla
Pretrained Checkpoint openvla/openvla-7b

-finetuned-libero-object
Task Suite libero_object
Trials per Task 10
Center Crop True
Image Resolution 256× 256 pixels
Random Seed 7
Wait Steps for Stabilization 10
Max Episode Steps 280

B Positional Coordinates

Our positional robustness evaluation used two sets
of positions: Canonical Positions and Extended Po-
sitions. The canonical positions are the six default
object placement regions defined in the LIBERO
task suite. The extended positions are four ad-
ditional regions we introduced to further test the
model’s generalization capabilities. All coordinates
are defined on the floor of the simulation environ-
ment. The specific coordinate ranges are detailed
in Table 2.

Table 2: Positional Coordinates for Target Object Place-
ment.

Position ID Type Coordinate Range (xmin, ymin, xmax, ymax)

0 Canonical (0.025, -0.125, 0.075, -0.075)
1 Canonical (-0.145, -0.265, -0.095, -0.215)
2 Canonical (-0.175, 0.035, -0.125, 0.085)
3 Canonical (0.075, -0.225, 0.125, -0.175)
4 Canonical (0.125, 0.005, 0.175, 0.055)
5 Canonical (-0.225, -0.105, -0.175, -0.055)

6 Extended (-0.24, -0.155, -0.19, -0.105)
7 Extended (0.18, -0.17, 0.23, -0.12)
8 Extended (0.14, 0.065, 0.19, 0.115)
9 Extended (-0.16, -0.195, -0.11, -0.145)

C Task Configuration Modification

We precisely controlled the initial position of ob-
jects in each evaluation scenario by modifying
the Behavior, Description, and Domain Language
(BDDL) files of the LIBERO environment.

• Default Configuration Evaluation: In this
evaluation, we kept all objects (one target and
five distractors). We changed the target’s posi-
tion by swapping its initial region with that of
a distractor object in the ‘(:init)’ block of the
BDDL file. For example, to place the target
object at Position 1, we changed its ‘(On ...)’
predicate from ‘floor_target_object_region’ to
‘floor_other_object_region_0’.

• Target-Only Evaluation: For this evaluation,
we first removed all distractor objects from the
‘(:objects)’ and ‘(:init)’ blocks of the BDDL
file. We then placed the single target object
at each of the 10 locations listed in Table 2 (6
canonical and 4 extended) and evaluated them
independently.

• Simulation Reset: To avoid any positional
bias from pre-saved initial states (.init files),
we did not use the ‘env.set_init_state()’ func-
tion in our experiments. Each trial began from
a "cold reset" of the simulation by calling
‘env.reset()’. This step ensures an unbiased
object layout and fair evaluation, especially
for the extended positions.
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