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Abstract

Question answering in low-resource languages
faces critical challenges when models en-
counter questions beyond their knowledge
boundaries, often producing confident but in-
correct answers. We propose Knowledge-
Enhanced Reinforcement Learning for Ques-
tion Answering (KERLQA), a novel approach
that combines knowledge graph integration
with reinforcement learning to enable prin-
cipled abstention decisions. Unlike existing
refusal-tuned methods that make binary deci-
sions based solely on internal confidence, KER-
LQA implements a three-way decision process:
answer with internal knowledge, answer with
external knowledge assistance, or abstain. Us-
ing a composite reward function that jointly op-
timizes for correctness, appropriate abstention,
and efficient knowledge utilization, we train
policies via PPO and DPO with dynamic cali-
bration for low-resource settings. Experiments
on CommonsenseQA and OpenBookQA across
English and four South African languages show
KERLQA achieves improved F1 scores, with
up to 6.2 point improvements in low-resource
languages. Our analysis reveals that KERLQA
reduces false positive abstention rates by 30%
while expanding the boundary of answerable
questions through external knowledge integra-
tion.

1 Introduction

Question answering in low-resource languages
presents unique challenges for language models,
including limited training data, scarce knowledge
resources, and complex cross-lingual transfer is-
sues (Samuel et al., 2024; Chen et al., 2023). These
challenges are prevalent for languages with distinct
linguistic structures and cultural contexts that differ
from high-resource languages like English (Ogun-
depo et al., 2022). A question answering model
that abstains when it does not have the necessary
knowledge would be preferable, particularly in low-
resource settings where knowledge gaps are more

prevalent.

Recent advances in knowledge-enhanced ques-
tion answering have shown promise for low-
resource languages through external knowledge in-
tegration (Yasunaga et al., 2021; Zhang et al., 2022).
However, these approaches lack mechanisms for
handling uncertainty and determining when to ab-
stain from answering, leading to potential halluci-
nations when models encounter questions beyond
their knowledge boundaries.

In this paper, we introduce Knowledge-
Enhanced Reinforcement Learning for Question
Answering (KERLQA), which combines graph
neural network-based knowledge integration with
reinforcement learning to enable abstention deci-
sions. Our approach uses a GNN architecture for
joint reasoning over question context and relevant
knowledge sources, augmented with reinforcement
learning techniques, specifically Proximal Policy
Optimization (PPO) (Schulman et al., 2017) and
Direct Preference Optimization (DPO) (Rafailov
et al., 2023), to optimize decision-making behavior.

A key innovation in KERLQA is how it funda-
mentally reformulates the abstention problem com-
pared to existing refusal-tuned approaches. While
previous methods like honesty-SFT (Yang et al.,
2024) and preference-based tuning (Cheng et al.,
2024) frame abstention as a binary decision based
solely on internal model confidence, KERLQA in-
troduces a three-way decision process: answer us-
ing internal knowledge, answer with knowledge
graph assistance, or abstain entirely. This approach
addresses an important limitation of existing meth-
ods, which is their inability to expand their knowl-
edge boundaries beyond what was learned during
pre-training. By dynamically integrating external
knowledge through reinforcement learning, KER-
LQA can both sharpen the boundary of what it
knows and expand that boundary when reliable
external information is available.

Our approach is particularly significant for lan-
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guages with diverse morphological structures, as
it enables effective knowledge transfer while re-
specting language-specific reasoning patterns. By
integrating reinforcement learning with knowledge
enhancement, KERLQA learns to calibrate its con-
fidence across languages, addressing the problem
of overconfident hallucinations in low-resource set-
tings through a principled abstention mechanism.

We demonstrate KERLQA’s effectiveness on
English and four low-resource South African lan-
guages (isiZulu, isiXhosa, Sepedi, and SeSotho),
using the multilingual mT5 language model. Our
experimental results show that KERLQA consis-
tently outperforms both knowledge augmentation
without abstention and existing approaches to QA
with an abstention mechanism, with improvements
of up to 5.3 percentage points in low-resource set-
tings. The statistical significance of these improve-
ments (p < 0.01) confirms the robustness of our
approach.

Our main contributions are: (1) We introduce
a novel three-way decision process for question
answering that fundamentally differs from existing
binary abstention approaches by incorporating ex-
ternal knowledge in the decision; (2) We develop a
composite reward function and dynamic calibration
mechanism that addresses abstention bias in low-
resource languages; (3) We provide comprehensive
evaluation using precision, recall, and F1 metrics
across five languages, demonstrating significant im-
provements over state-of-the-art methods; (4) We
provide detailed error analysis revealing distinct
patterns across languages, with insights into knowl-
edge gaps and abstention behaviors in low-resource
settings.

2 Related Work

Our work intersects with knowledge-enhanced
question answering and reinforcement learning for
NLP tasks, particularly in low-resource language
contexts.

2.1 Knowledge-Enhanced Question
Answering

Recent advancements in question answering have
focused on augmenting language models with ex-
ternal knowledge sources. Yasunaga et al. (2021)
introduced QA-GNN, which uses graph neural
networks to reason over knowledge graphs for
QA tasks, while Zhang et al. (2022) proposed
GreaseLM to enhance language models with graph-

based reasoning. Other approaches include GSC
(Wang et al., 2022), QAT (Park et al., 2023), and
FiTs (Ye et al., 2023), which address challenges in
fusing representations from pre-trained language
models and knowledge graphs.

Jiang et al. (2022) revealed that relation features
from commonsense knowledge graphs are the pri-
mary contributors to improving reasoning capacity
in pre-trained language models. While these meth-
ods show promising results, they face challenges in
fully utilizing external knowledge graphs and ad-
dressing the modality gap between text and knowl-
edge graphs. Our work builds upon these insights
but uniquely combines knowledge enhancement
with reinforcement learning, particularly focusing
on low-resource languages where knowledge pro-
jection requires careful handling. Importantly, our
two-stage pruning mechanism and adaptive knowl-
edge utilization (learned via reinforcement learn-
ing) address the robustness challenges that arise
when knowledge sources are imperfect or incom-
plete.

2.2 Reinforcement Learning in NLP

Reinforcement Learning has been increasingly
applied to question answering tasks with large
language models. Recent work has focused on
Reinforcement Learning from Human Feedback
(RLHF) to align model outputs with human prefer-
ences (Ouyang et al., 2022). Two key approaches in
this area are Proximal Policy Optimization (PPO)
(Schulman et al., 2017), which optimizes a surro-
gate objective function that prevents large policy
updates, and Direct Preference Optimization (DPO)
(Rafailov et al., 2023), which learns directly from
pairwise preference comparisons.

In the context of abstention mechanisms, sev-
eral approaches have been developed: Yang et al.
(2023) used fine-tuning with “I don’t know” re-
sponses, Zhang et al. (2024) proposed R-Tuning
with rejection sampling for edge cases, Cheng et al.
(2024) used DPO to learn abstention behavior im-
plicitly, while Liang et al. (2024) used PPO with a
hallucination-focused reward model to determine
knowledge boundaries.

Our work differs from these approaches in two
fundamental ways: (1) while prior methods rely
solely on the model’s internal knowledge, KER-
LQA dynamically integrates external knowledge
through graph reasoning; and (2) KERLQA’s ab-
stention mechanism is trained to consider both an-
swer correctness and knowledge source utilization,
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learning when to rely on internal knowledge, when
to leverage external knowledge, and when neither
is sufficient.

Recent research has shown that models often
exhibit biased abstention patterns in low-resource
settings (Brahman et al., 2024), typically over-
refusing or under-refusing based on surface fea-
tures rather than true knowledge boundaries. Our
work addresses these challenges through a novel
approach that dynamically adapts abstention thresh-
olds based on language-specific features and knowl-
edge availability, producing more calibrated refusal
behavior across diverse linguistic contexts. Impor-
tantly, our framework is designed to be robust to
variations in knowledge source quality: when exter-
nal knowledge is noisy or incomplete, the RL com-
ponent learns to reduce reliance on external sources
and increase appropriate abstention, making the ap-
proach practical for real-world deployments where
perfect knowledge bases are unavailable.

3 KERLQA

3.1 Problem Formulation

Given a question ¢ and a set of candidate answers
A = {ai,...,a,}, our goal is to learn a policy
7p(a|s) that either selects an answer from A or opts
to abstain. The state s is defined as a combination
of the textual representation and the knowledge
graph context. We model this task as a Markov
Decision Process (MDP) with:

* State Space S: The concatenation of the ques-
tion encoding, candidate answer encodings,
and the knowledge graph state.

* Action Space A: The extended set A’ = AU
{“I don’t know”’}.

* Reward Function r(s,a): A composite re-
ward considering answer correctness, the ap-
propriateness of abstaining, and the efficiency
of external knowledge utilization.

¢ Transition Function: Deterministic, as each
question is processed independently.

3.2 Model Architecture

KERLQA combines GNN-based knowledge inte-
gration with reinforcement learning for abstention
decisions. Figure 1 gives a schematic overview of
the architecture. The architecture consists of the
following steps:

Text Encoding We encode the question ¢ and
answer candidates {a; } using the pre-trained mT5
encoder, producing dense representations h, and

Input
Question + Answer Candidates

mT5 Encoder

Knowledge Retrieval

Abﬁjoint Graph (:onstructiorﬂqf

GNN Processing
{ Output (Answer/IDK) }7

Figure 1: KERLQA architecture. The model pro-
cesses inputs through both language model encoding
and knowledge retrieval for graph construction, inte-
grated through a graph neural network architecture. Re-
inforcement learning is used to adapt the decision mak-
ing behavior.

RL Module
(PPO/DPO)

{ha, }:

hq = mTSenc(Q)> hai = mTSenc(ai)- (1)

Knowledge Retrieval We query the knowledge
base for triples where the subject or object matches
entities in g or {a;}.

Joint Knowledge Graph Construction We
build a heterogeneous graph (Yasunaga et al., 2021)
combining text nodes, knowledge nodes, and a
global context node. The graph Gy consists of
nodes Vi and edges Eyyr, where:

VW = Viext U Vimowledge U {Z}, (2)

with text nodes Viex: representing question and an-
swer embeddings, knowledge nodes Vinowledge CON-
structed from retrieved knowledge triples, and a
context node z for global information aggregation.
Edges Ey are added between nodes directly re-
lated by a knowledge triple, between nodes repre-
senting the same entity, and between z and all other
nodes.

For low-resource languages, we propose a two-
stage knowledge pruning mechanism (see Ap-
pendix E for details):

* Static pruning: Filter triples based on cross-
lingual alignment confidence 7, = 0.35 +
04-rg.

* Dynamic pruning: Select top-k relevant
triples based on semantic similarity to the
question.
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GNN  Processing Information propagates
through 3 GNN message passing layers, refining
node representations by incorporating neigh-
borhood information. We follow the QA-GNN
architecture (Yasunaga et al., 2021):

AU+ = GNN(hq(}Z), () u e N(v)}), 3)
where N (v) denotes the neighbors of node v.

RL Policy Network The key innovation in KER-
LQA is the RL-trained policy network 7y that in-
tegrates the aggregated GNN encoding hx ¢ and
outputs a probability distribution over the extended
action space A’ = {aq, ..., an, “T don’t know”}.

mp(a|s) = softmax (MLP([hq; ha; th])). 4)

Output Action Selection The answer to question
q is predicted by selecting arg maxqe 4’ mg(als).

Detailed model hyperparamters are given in Ap-
pendix B.

3.3 RL Decision Process

We use RL for classification rather than gener-
ation as in LLM post-training. Unlike existing
refusal-tuned approaches that make binary deci-
sions (answer or abstain) based solely on internal
confidence, KERLQA implements a three-way de-
cision process:

* Direct answering, when h, and h, provide
sufficient signal (high internal confidence).

* Knowledge-enhanced answering, when ex-
ternal knowledge from z increases confidence
above threshold.

¢ Informed abstention, when neither internal
nor external knowledge is sufficient.

This framing allows us to directly optimize the
abstention-accuracy trade-off through a composite
reward function while maintaining computational
efficiency.

Reward Design The terms in our reward func-
tion correspond to the three-way decision process:

r(s,a) =a - ¥[correct answer]
+ (1 - W¥[abstain when unanswerable]
— fo - ¥[abstain when answerable]
4)
+ 71 - W¥[used KG appropriately]
— 72 - W¥[used KG unnecessarily]

The reward function explicitly rewards appro-
priate knowledge utilization (v terms) alongside

correct answering and calibrated abstention. The
hyperparameters were set through a grid search
on the English validation set (see Appendix B for
details). We set « = 1.5, 81 = 0.7, 5o = 0.5,
v1 = 0.6, and 2 = 0.4

Language-Adaptive Calibration We observe an
abstention bias in low-resource languages. To ad-
dress this, we adjust 32 based on language resource
level rp:

527[; =y (1 +0.5- (1 — Tﬁ)) 6)

This increases the penalty for unnecessary ab-
stention as resources decrease, counteracting over-
conservative behavior. Details are given in Ap-
pendix D.

3.4 Reinforcement Learning Training

We implement two RL algorithms. PPO maximizes
the clipped objective:

Lppo(0) = E[min(r,(0) Aq, clip(ri(6),1 — €, 1 + e)A%
where 74(0) is the ratio of the new to old policy
probabilities, A; is the advantage estimate com-
puted using temporal-difference methods, and € is
a clipping parameter (set via grid search on val-
idation data), with ¢ = 0.2 and a learning rate
5% 107,

For the DPO objective we construct preference
pairs where correct answers or appropriate absten-
tions are preferred. For each question where the
baseline mT5 answered correctly, the correct an-
swer is marked as the “chosen" action and the oth-
ers as “rejected." For questions where the baseline
failed, the abstention action (i.e., “I don’t know’")
is marked as “chosen.” Although the DPO formu-
lation does not explicitly incorporate a term for
KG usage, the preference pairs are derived from
baseline performance that includes KG integration.
Consequently, if incorporating KG information im-
proves performance, the resulting preference pairs
will indirectly favour actions that use the KG appro-
priately. Conversely, if KG usage is unnecessary,
the model will learn to minimize its use. The DPO
objective is then:

Lpro(0) = ~Ellog(a(ro(z,y™) —re(z,y7)l, (®)

where y* is the preferred action and y~ is a re-
jected option.

An end-to-end example of the model training
process is given in Appendix A.
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English isiZulu isiXhosa Sepedi SeSotho

Method R P F1 R P F1 R P F1 R P F1 R P F1

mT5 67.1 671 67.1 57.1 571 571 558 558 558 562 562 562 551 551 551
mT5+QA-GNN 703 703 703 619 619 619 585 585 585 600 600 600 579 579 579
Honesty-SFT 582 821 68.1 473 732 575 451 708 551 468 715 56.6 449 693 545
R-Tuning 59.1 805 682 487 719 581 462 693 554 475 701 56.6 458 682 548
1dk-DPO 603 837 70.1 502 754 603 478 72.1 575 49.1 738 590 473 715 569
Self-Aware PPO 61.8 852 716 515 778 620 489 745 59.1 503 762 606 487 739 587
RLQA (PPO) 594 839 69.5 48.1 743 584 457 712 557 472 728 573 453 704 551
RLQA (DPO) 60.7 841 705 49.8 751 599 471 720 570 485 735 584 469 718 567
KERLQA (PPO) 69.3 88.7 778 562 819 667 523 785 628 548 803 651 518 772 62.0
KERLQA (DPO) 685 879 770 557 812 66.1 514 771 61.7 541 798 645 509 763 6l1.1

Table 1: Results on CommonsenseQA across languages. R: Recall, P: Precision, F1: Fl-score. Models without
abstention capability have R=P=F1. KERLQA achieves the best F1 scores across all languages.

English isiZulu isiXhosa Sepedi SeSotho

Method R P F1 R P F1 R P F1 R P F1 R P F1

mT5 782 782 782 578 57.8 578 569 569 569 573 573 573 563 563 563
mT5+QA-GNN 835 835 835 634 634 634 61.1 o611 61.1 613 613 613 588 588 58.8
Honesty-SFT 69.1 864 768 492 756 596 47.1 729 572 483 741 585 46.7 718 56.6
R-Tuning 703 851 77.0 50.8 743 603 484 718 57.8 495 727 589 479 705 570
1dk-DPO 71.8 873 788 523 77.1 623 497 742 595 509 753 60.7 49.1 734 588
Self-Aware PPO 732 889 803 537 792 640 510 76.1 61.1 521 775 623 504 756 605
RLQA (PPO) 70.5 872 780 503 76.1 606 478 734 579 49.0 748 592 472 727 572
RLQA (DPO) 719 878 79.1 519 770 620 492 741 59.1 504 756 60.5 487 739 587
KERLQA (PPO) 813 918 862 589 837 692 546 80.1 649 568 823 672 53.7 794 64.1
KERLQA (DPO) 804 91.1 855 583 830 685 538 792 641 561 816 665 529 786 633

Table 2: Results on OpenBookQA across languages. KERLQA consistently outperforms all baselines across all

metrics.

4 Experiments

4.1 Experimental Setup

Our approach is the first to combine knowledge en-
hancement with a RL-tuned abstention mechanism.
Our experiments therefore compared KERLQA
against two categories of baselines: (1) knowledge-
enhanced QA systems without abstention capa-
bilities, and (2) refusal-tuned approaches without
knowledge enhancement. We implement all meth-
ods using mT5-large (Xue et al., 2021) as the base
language model, ensuring consistency across eval-
uations. While larger models are available, mT5
models are still competitive and outperform LLMs
on many tasks for low-resource African languages
(Ojo et al., 2025; Adelani et al., 2025).
We compare the following models:
* mT5 Base multilingual T5-large model fine-
tuned on QA datasets.
* mT5+QA-GNN: Knowledge-enhanced model
with 3-layer GNN.
* RLOA: mT5 with RL-based abstention but
without knowledge enhancement.
* KERLQA: Full model combining GNN-based
knowledge integration with RL-based absten-

tion.

We also implement four recent refusal-tuned
methods as abstention baselines:

* Honesty-SFT (Yang et al., 2024) uses super-
vised fine-tuning on datasets with “I don’t
know” responses;

* R-Tuning (Zhang et al., 2024) employs rejec-
tion sampling to identify edge cases;

* Ildk-DPO (Cheng et al., 2024) uses preference
optimization to learn abstention behavior.

* Self-Aware PPO (Liang et al., 2024) uses rein-
forcement learning with hallucination-focused
rewards.

Since the papers of each of these approaches
used different benchmarks and evaluation metrics,
and our primary goal is to improve performance
on low-resource languages, we trained each of the
models on our datasets to enable consistent evalua-
tion.

4.2 Datasets and Evaluation

We evaluate on the CommonsenseQA (Talmor
et al., 2019) and OpenBookQA (Mihaylov et al.,
2018) datasets across English and four low-
resource South African languages. We use man-
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Method en za xh nso st

mT5 0.0 0.0 0.0 0.0 0.0
mT5+QA-GNN 0.0 0.0 0.0 0.0 0.0
Honesty-SFT 235 298 32,1 309 324
R-Tuning 228 284 307 296 312
Idk-DPO 23.1 289 313 302 31.8
Self-Aware PPO 223 281 305 294 31.1
RLQA (PPO) 252 318 339 327 342

RLQA (DPO) 241 30.6 328 319 335
KERLQA (PPO) 19.7 273 298 286 304
KERLQA (DPO) 194 276 302 29.1 3038

Table 3: Abstention rates (%) on CommonsenseQA on
English (en), isiZulu (zu), isiXhosa (xh), Sepedi (nso)
and SeSotho (st). KERLQA shows lower abstention
rates while maintaining higher precision.

ually translated test sets for isiZulu and Sepedi,
and machine translated test sets for isiXhosa and
SeSotho from Ralethe and Buys (2025). The ma-
chine translations were produced using Tencent’s
Multilingual Machine Translation System (Jiao
et al., 2022). The impact of machine translation
quality is evaluated in Appendix C.

We utilize ConceptNet (Speer et al., 2016)
as our primary knowledge source for knowledge-
enhanced models, with knowledge projected from
English to the South African languages using
LeNS-Align (Ralethe and Buys, 2025). This
yields approximately 670k triples per language
with human-evaluated accuracy exceeding 85%.

We evaluate the question answering using pre-
cision, recall and F1 score (harmonic mean of pre-
cisions and recall). In our setup precision is the
proportion of attempted questions answered cor-
rectly, and recall is the proportion of all questions
answered correctly (counting abstentions as incor-
rect). Additionally we compute the Abstention
Rate (AR), which is the proportion of questions
where the model abstains.

4.3 Main Results

Tables 1 and 2 present the main results on Common-
senseQA and OpenBookQA across all languages.
KERLQA consistently outperforms all baselines.
The improvement from mT5 to mT5+QA-GNN
confirms the effectiveness of knowledge integra-
tion, with average recall gains of 3.2% on Common-
senseQA and 5.3% on OpenBookQA. Comparing
RLQA with mT5 shows that RL-based abstention
alone provides modest improvements in precision
at the cost of recall. However, KERLQA’s combi-
nation of knowledge enhancement and RL-based
abstention achieves the best F1 scores across all

languages, demonstrating the synergistic benefit of
our approach.

Compared with other recent refusal-tuned ap-
proaches, our RLQA models perform better than
Honesty-SFT, comparable to R-Tuning and Idk-
PPO, and a bit lower than Self-Aware PPO. How-
ever by incorporating knowledge enhancement
KERLQA performs substantially better than Self-
Aware PPO. Additionally, Table 3 shows that
KERLQA achieves lower abstention rates than all
refusal-tuned baselines while maintaining higher
precision. This suggests that external knowledge
not only improves answer quality but also increases
model confidence in a calibrated manner. The per-
formance gap between English and low-resource
languages is smallest for KERLQA (11.1 F1 points)
compared to refusal-tuned baselines (average 13.8
F1 points), indicating that knowledge enhancement
particularly benefits low-resource settings.

To assess the reliability of our results, we per-
formed statistical significance testing using strati-
fied bootstrap resampling (Berg-Kirkpatrick et al.,
2012) with 10,000 iterations, stratifying by ques-
tion difficulty (based on baseline accuracy). Table 4
shows that all F1 score improvements of KERLQA
over the strongest baseline methods (mT5+QA-
GNN and Self-Aware PPO) are statistically sig-
nificant across all languages (p < 0.05). The dif-
ference between PPO and DPO variants of KER-
LQA is significant for English (p = 0.041) but
not for low-resource languages (p > 0.05), sug-
gesting both RL approaches are equally effective
in resource-constrained settings. Additionally, we
computed 95% confidence intervals for F1 scores
using the same bootstrap procedure as shown in
Table 5.

4.4 Performance on Answerable vs.
Unanswerable Questions

In order to analyse to what extend the model is able
to learn to leverage the KG knowledge to answer
questions related to knowledge in the KG, we parti-
tioned the test sets based on knowledge availability.
We categorize questions as KG-Answerable if: (1)
At least one entity from the question or correct an-
swer appears in the knowledge graph; and (2) A
path of length < 3 exists between question and an-
swer entities. This categorization was validated on
200 manually labeled examples with 91% accuracy.

Table 6 shows that KERLQA significantly out-
performs all baselines on KG-Answerable ques-
tions, with 11.2% higher recall than Self-Aware
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Comparison en zu xh avg(nso,st)
KERLQA vs mT5+QA-GNN <0.001*%*  <0.001**  0.002** 0.003**
KERLQA vs Self-Aware PPO 0.008%** 0.014* 0.021* 0.019*
KERLQA(PPO) vs KERLQA(DPO) 0.041%* 0.127 0.089 0.156

Table 4: p-values from bootstrap significance tests on CommonsenseQA. *: p < 0.05, **: p < 0.01. KERLQA
significantly outperforms all baselines. PPO vs DPO differences are only significant for English.

Method English F1 isiZulu F1

mT5+QA-GNN  70.3[69.8,70.8] 61.9[61.2, 62.6]
Self-Aware PPO  71.6 [71.1,72.1]  62.0[61.3, 62.7]
KERLQA (PPO) 77.8[77.3,78.3] 66.7 [66.0, 67.4]

Table 5: F1 scores with 95% confidence intervals on
CommonsenseQA. KERLQA’s improvements are well
outside the confidence intervals of baselines.

KG-Answerable KG-Unanswerable

Method R AR R AR
mT5+QA-GNN  78.2 0.0 513 0.0
Self-Aware PPO 71.5 183 438 312
RLQA (PPO) 70.8 197 421 35.8
KERLQA (PPO)  82.7 12.1 48.9 325

Table 6: Recall (R) and Abstention Rate (AR) on En-
glish CommonsenseQA split by knowledge availabil-
ity. KG-Answerable is the set of questions where rel-
evant knowledge exists in the KG (ConceptNet). KG-
Unanswerable is the set of questions requiring knowl-
edge not in the KG.

PPO. KERLQA shows more conservative absten-
tion on KG-Answerable questions (12.1%) com-
pared to baselines, indicating effective knowledge
utilization. On KG-Unanswerable questions, all
RL-based methods show similar recall, but KER-
LQA has lower abstention rates, suggesting better
calibration of internal knowledge boundaries.

4.5 Error Analysis
4.5.1 Analysis Methodology

We conducted a comprehensive error analysis on
500 randomly sampled errors from each language-
dataset combination (5,000 total). For each error,
two annotators independently categorized it into
one of three types:

1. Knowledge Gap: The required information
is not present in either the model’s parameters
or the knowledge graph
Reasoning Failure: The information exists
but the model fails to make correct inferences
Abstention Error: The model abstains when
it could have answered correctly (false posi-
tive) or attempts an incorrect answer when it

should abstain (false negative)
Inter-annotator agreement was high (Cohen’s s
= (0.83). Disagreements were resolved through dis-
cussion. An example of the error analysis process
is given in Figure 2.

4.5.2 Error Distribution Analysis

Table 7 presents our the error analysis results.
Knowledge gaps increase monotonically with de-
creasing language resources (22% — 34% on Com-
monsenseQA); Reasoning failures show slight in-
verse correlation with resources, possibly due to
increased abstention filtering out complex cases.
False positive abstentions are 2 to 3 times higher
in low-resource languages despite dynamic cali-
bration. False negatives remain relatively stable
across languages, suggesting consistent confidence
calibration for clearly wrong answers.

4.5.3 Qualitative Comparison with

Refusal-Tuned Approaches

To understand how KERLQA differs from pure
refusal-tuned methods, we manually analyzed
100 questions where KERLQA succeeds but Self-
Aware PPO fails, categorizing them as follows:

* Explicit knowledge retrieval (42%): Ques-
tions requiring specific facts present in Con-
ceptNet but not in model parameters. Ex-
ample: “What material are mosaics typically
made from?” — KERLQA retrieves (mosaic,
made_of, tile);

¢ Confidence transformation (31%): Cases
where Self-Aware PPO correctly identifies un-
certainty and abstains, but KERLQA finds
supporting evidence to answer correctly; and

* Multi-hop reasoning (27 %): Questions re-
quiring inference across multiple knowledge
triples that neither model’s parameters nor sin-
gle facts can answer.

This analysis confirms that KERLQA'’s three-
way decision process enables qualitatively differ-
ent behavior compared to binary abstention mecha-
nisms.
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English isiZulu isiXhosa Sepedi SeSotho
Error Type CS OB CS OB CS OB CS OB CS OB
Knowledge Gap 2% 18% 30% 27% 32% 29% 31% 28% 34% 30%
Reasoning Failures 21% 25% 20% 23% 19% 21% 19% 22% 18% 20%
Abstention Errors
False Positive 5% 6% 11% 9% 13% 10% 12% 10% 14% 11%
False Negative 3% 4% 7% 6% 7% 7% 8% 6% 7% 7%

Table 7: Error distribution across languages and datasets (CS: CommonsenseQA, OB: OpenBookQA). Percentages
are relative to total questions. False Positive: unnecessary abstention; False Negative: failed abstention.

Input Question: "Which African country was formerly known as Upper Volta?”

kKnowledge Retrieval: (Upper Volta, related_to, French West Africa), (Burkina Faso, is_a, Country)

Error Types

Meodel Processing

1. Knowledge Gap ‘

1. ldentify key terms: "African country”, "farmerly”, "Upper Volta"

2. Reasoning Failure ‘

2, Match retrieved knowledge: "Upper Volta related to French West Africa”

3. Abstention Error

Knowledge Gap

Reasoning Failure 4, Attempt to infer relationship between Upper Volta and Burkina Faso (Reasoning Failure)

3. Search for connection between Upper Volta and current countries (Knowledge Gap) |

&, Consider abstention (Canfidence check: Low confidence due to missing link)

r Potential Abstention Em

Model Qutput: "I don't know" (Abstained)

Error Analysis: Knowledge Gap (Missing link between Upper Volta and Burkina Faso)
Reasoning Failure (Unable to infer relationship), Potential Abstention Error (Could have guessed)

Figure 2: Error analysis illustrating the process of how KERLQA handles the question “Which African country was

formerly known as Upper Volta?”

5 Conclusion

We introduced Knowledge-Enhanced Reinforce-
ment Learning for Question Answering (KER-
LQA), a novel approach designed to improve ques-
tion answering performance in low-resource lan-
guages. By integrating external knowledge sources
with reinforcement learning techniques and imple-
menting language-specific calibration mechanisms,
KERLQA demonstrates significant advancements
in addressing the challenges posed by limited lan-
guage resources. Our evaluation across English
and four South African languages shows that KER-
LQA consistently outperforms existing baseline
models and state-of-the-art QA systems, with par-
ticularly notable improvements in low-resource set-
tings. The incorporation of reinforcement learning
enables making more informed decisions about
knowledge utilization and abstention, while our dy-
namic reward calibration mechanism effectively
addresses the abstention bias observed in low-
resource languages. Our comparison with recent

refusal-tuned approaches demonstrates that while
teaching models when to abstain is valuable, com-
bining abstention learning with dynamic knowl-
edge integration delivers substantially better perfor-
mance, establishing a new paradigm for developing
trustworthy multilingual question answering sys-
tems.
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Limitations

While KERLQA demonstrates promising results
for question answering in low-resource languages,
there are some limitations. The model’s reliance
on projected knowledge bases from English to low-
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resource languages introduces potential errors in
the knowledge representation. Limited coverage in
the knowledge bases will also directly influence the
model’s performance. In order to evaluate on some
of the languages we relied on the machine transla-
tions of CommonsenseQA and OpenbookQA. As
such, the accuracy of the translations potentially
had an impact on our reported results.
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A KERLQA: End-to-End Process

Here we give an end-to-end description of KER-
LQA, illustrating the flow of information using an
example question.
Let’s consider an example question in isiZulu:
q: “‘lyiphi indlela yokuhamba ebaluleke
kakhulu eNingizimu Afrika?”
(English: “What is the most impor-
tant mode of transportation in South
Africa?”)
A = {aq: “Izimoto”, ay : “lzitimela”, as: “Izin-
diza”, as: “Amabhasi”, a5: “Angazi’}
(English: Cars, Trains, Airplanes, Buses, I don’t
know)
1. Input Processing: The question q and answer
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set A are tokenized and encoded using mT5’s
tokenizer.
. Knowledge Retrieval: KERLQA queries
external knowledge bases (e.g., Concept-
Net, DBpedia) to retrieve relevant knowledge
triplets. For example:
* k1: (South Africa, has_transportation,
cars)
* ko: (South Africa, has_transportation,
trains)
* k3: (cars, used_for, commuting)

3. Joint Graph Construction: KERLQA con-

structs a working graph Gy = (Viy, Ew) as
follows:
¢ Nodes (Viy):

— vg: Derived from encoding the ques-
tion.

— g, Derived from encoding each an-
swer option.

- Uk, Constructed from the retrieved
knowledge triples (e.g., k1, ko, k3).

— z: A dedicated context node that ag-
gregates global information.

* Edges (Ew):

— Edges are added between nodes that
are directly related by a knowledge
triple (e.g., an edge between vy, and
Vg, )-

— Additional edges are inserted be-
tween nodes representing the same
entity (e.g., between v, and a rele-
vant v, ).

— The context node z is connected to
all other nodes to facilitate global in-
formation propagation.

4. Node Relevance Scoring: For each node v in

a subset Vg (e.g., relevant to the question),
KERLQA computes a relevance score:

po = Fread ( fene ([10x1(2); tex(v)]) ),

where 2z is the QA context node.

. Graph Neural Network Processing: The
graph is processed through L layers of mes-
sage passing using a GNN architecture in-
spired by QA-GNN. In our implementation,
we use a 3-layer GNN where each node’s rep-
resentation is updated as:

(D = GRU(hﬁ, AGG(

{ReLU(W/ Bl +bL) 1 u € N(v)})>,
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10.

11.

with AGG being an aggregation function (e.g.,
mean pooling), and W, b’. learnable parame-
ters.

Answer Scoring: KERLQA computes a
score for each answer option:

score(a;) = MLP([hq; ha,; hKGD’

where hg and h,, are the final representations
of the question and answer a;, and hx ¢ is the
aggregated representation of the knowledge
graph nodes.

Policy Decision: The RL policy my(als) de-
termines the probability of selecting each an-
swer:

7T9(a|8) = softmax(W[hq; ha; th] + b)
Action Selection: An answer is selected

based on the policy probabilities. Let’s say
the model chooses ao: “Izitimela” (Trains).

. Reward Calculation: Assuming a9 is the

correct answer, the reward is calculated:

r = « - ¥]correct] + 1 - W[used KG and needed]

Learning Update:
» For PPO, the objective function is opti-
mized:

Lppo(0) = E[min(ry(0) Ay, clip(re(0),

1-— €, 1+ G)At)}
)
e For DPO, the loss function is:

Lppo (0) =-E [log (U (TG (wa achosen)

—rg(z, arejected)) ) }
(10)

where the chosen action is either the cor-
rect answer or “I don’t know” (if the
baseline failed), and arejected TEPrESents
other answer options. Although the DPO
formulation does not explicitly include
a term for KG usage, the preference
pairs are derived from a baseline that
integrates KG information, thereby in-
directly incorporating KG effects.
Model Update: The model parameters ¢ are
updated based on the gradient of the loss func-
tion:

gnew = eold —-n- V@L(g),

where 7 is the learning rate.



B Hyperparameter Tuning

B.1 Reward Function Parameters

The PPO reward function in KERLQA combines
multiple indicator functions, each with their own
hyperparameter. We conducted extensive grid
search over these parameters using the English
CommonsenseQA validation set. The search
ranges were:
* o € {0.5,1.0,1.5,2.0}: Weight for correct
answers
* 51 € {0.3,0.5,0.7,1.0}: Weight for appro-
priate abstention
* By € {0.3,0.5,0.7,1.0}: Penalty for unnec-
essary abstention
v € {0.2,0.4,0.6,0.8}: Weight for appro-
priate KB use
* v9 € {0.2,0.4,0.6,0.8}: Penalty for unnec-
essary KB use
The optimal hyperparameters were o« = 1.5,
51 = 0.7, ,32 = 0.5, Y1 = 0.6, and Yo = 0.4. For
low-resource languages, we dynamically adjusted
B2 as described in §3.3.

B.2 Model Hyperparameters

For the GNN component, we used a 3-layer archi-
tecture with hidden dimension 256 and dropout
rate 0.2. The message passing employed a Graph-
SAGE aggregation function with mean pooling.
For the PPO algorithm, we used a learning rate
of 5 x 107, clip parameter ¢ = 0.2, and 4 PPO
epochs per batch. For DPO, we used a learning
rate of 2 x 10~° and a reference model KL penalty
coefficient of 0.1. All models were trained for 15
epochs with early stopping based on validation per-
formance.

C Impact of Translation Quality on
Performance

While the main results reported in Table 1 and Ta-
ble 2 for isiZulu and Sepedi are based on manually
translated test sets, we also conducted experiments
using machine-translated versions to assess the im-
pact of translation quality on KERLQA'’s perfor-
mance. The comparison revealed notable differ-
ences.

The results in Table 8 demonstrate a consistent
pattern of higher performance for manually trans-
lated test sets compared to machine-translated ones
across both languages and datasets. These findings
underscore that manually curated datasets are im-
portant for accurately assessing model capabilities

in low-resource languages. However, when eval-
uating all models on the automatically translated
datasets for isiZulu and Sepedi, the same relative
trends in model performance still holds.

D Dynamic Reward Calibration Details

To address the observed abstention bias in low-
resource languages, we implement a dynamic re-
ward calibration approach that adjusts reward pa-
rameters based on language resource levels.

For each language £, we define a resource level
re € [0, 1] based on factors such as pre-training
data volume, number of speakers, and available
linguistic resources. In our implementation, we
assign Tenglish = 1.0, Tisizalw = 0.4, Tisixhosa = 0.3,
T'Sepedi = 0.2, and 7sesotho = 0.2.

We then define language-specific reward param-
eters as follows:

ar =« (11)
Pr.c =51 (12)
Bor=P2-(1405-(1—rg))  (13)
Y.L =M (14)
Yo.L = V2 (15)

This adjustment increases the penalty for un-
necessary abstention ((32) in lower-resource lan-
guages, counteracting the model’s tendency to be
overly conservative. The scaling factor of 0.5 was
determined through ablation studies, balancing im-
proved coverage against potential precision losses.

For example, with base # = 0.5, the language-
specific values become:

2, English = 0.5 (16)
Bajisizale = 0.5+ (1 +0.5- (1 —0.4)) = 0.65
(17)
52,isiXhosa =0.5- (1 +0.5- (1 - 03)) = 0.675
(18)
Ba2.sepedi = 0.5 (1 +0.5- (1 —0.2)) =0.7
(19)
B2,5es0tho = 0.5 - (1 +0.5- (1 —0.2)) =0.7
(20)

E Knowledge Graph Pruning Mechanism

Our knowledge graph pruning mechanism operates
in two stages:

Static pruning: During knowledge base projec-
tion, we filter triples based on cross-lingual align-
ment confidence. For each triple (h, r,t) projected
from English to target language £, we compute:
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Language Dataset Manual Translation
Accuracy Abstention

Machine Translation
Accuracy Abstention

isizulu CommonsenseQA 63.67 25.81 60.17 27.03
OpenBookQA 64.32 24.54 61.56 26.87
Sepedi CommonsenseQA 62.13 27.31 59.23 28.08
OpenBookQA 63.52 26.69 60.19 27.11

Table 8: Comparison of KERLQA (PPO) performance on manually translated and machine-translated test sets

Confstatic(h7 T, t) = alignconf(h)

) Q1)
-align ¢ (t) - releont(7)

where align_ represents alignment confidence
from LeNS-Align, and relyoys is relation type re-
liability. We discard triples below a threshold
7r = 0.35 + 0.4 - v, where 7, is the language
resource level.

Dynamic pruning: During question answering,
we further prune retrieved triples based on rele-
vance to the current question. For each retrieved
triple, we compute:

confyynamic (R, 7, t) = sim(hg, hy) - sim(hg, hy)
'Confstatic(hv T, t)
(22)

where sim is cosine similarity between question
embedding h, and entity embeddings hy,, hy. We
retain only the top-k triples, where k is determined
based on question complexity.

This two-stage pruning approach significantly
improves knowledge quality, especially for low-
resource languages, by removing potentially mis-
leading triples before they can influence the reason-
ing process.

Ablation Study Results: When disabling the
static pruning step, we observed a 2.1% drop in
accuracy for English and a 3.8-4.5% drop for low-
resource languages. When disabling dynamic prun-
ing, the accuracy decreased by 1.4% for English
and 2.3-3.1% for low-resource languages. This con-
firms the importance of both pruning stages, with
an even stronger impact in low-resource settings
where noise from knowledge projection is more
prevalent.
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