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Abstract

We introduce CLASSER, a cross-lingual anno-
tation projection framework enhanced through
script similarity, to create fine-grained named
entity recognition (FgNER) datasets for low-
resource languages. Manual annotation for
named entity recognition (NER) is expensive,
and distant supervision often produces noisy
data that are often limited to high-resource
languages. CLASSER employs a two-stage
process: first projection of annotations from
high-resource NER datasets to target language
by using source-to-target parallel corpora and
a projection tool built on a multilingual en-
coder, then refining them by leveraging datasets
in script-similar languages. We apply this to
five low-resource Indian languages: Assamese,
Marathi, Nepali, Sanskrit, and Bodo, a vulnera-
ble language. The resulting dataset comprises
1.8M sentences, 2.6M entity mentions and
24.7TM tokens. Through rigorous analyses, the
effectiveness of our method and the high qual-
ity of the resulting dataset are ascertained with
F1 score improvements of 26% in Marathi and
46% in Sanskrit over the current state-of-the-art.
We further extend our analyses to zero-shot and
cross-lingual settings, systematically investigat-
ing the impact of script similarity and multilin-
gualism on cross-lingual FgNER performance.
The dataset is publicly available at hugging-
face.co/datasets/prachuryyalITG/CLASSER.

1 Introduction

Structured knowledge extraction from unstructured
text underpins countless downstream applications,
such as recommendation systems, knowledge-
base construction, relation extraction, and beyond.
Named Entity Recognition (NER), which identifies
and classifies mentions of persons, locations, orga-
nizations, etc. has evolved from early rule-based
systems (Rau, 1991) through the collective con-
tributions in the dedicated events (Grishman and
Sundheim, 1996; Chinchor et al., 1998; Satoshi,
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Figure 1: Illustration of CLASSER Framework

2000; Tjong Kim Sang, 2002; Doddington et al.,
2004; Santos et al., 2006) to powerful neural ar-
chitectures today (Zhang et al., 2019; Zhou et al.,
2023). Yet, conventional coarse-grained categories
in NER often fall short when applications demand
more specific distinctions, e.g., “Scientist” from
generic ‘“Person” or “Clothing” from generic “Prod-
uct” (Choi et al., 2018). The type and granularity
of fine-grained entities differ depending on the do-
main and application requirements. Early efforts
in fine-grained named entity recognition (FgNER)
contributed hierarchical type systems (Sekine and
Nobata, 2004), distant-supervision pipelines (Ling
and Weld, 2012; Yosef et al., 2012), contextual
embedding techniques (Gillick et al., 2014), and
noise-aware neural architectures capable of predict-
ing hundreds of labels (Murty et al., 2017). Al-
though noise is reduced in FgNER resources by
applying language-specific heuristics (Abhishek
et al., 2019), expensive manual annotation yields
higher reliability and improved annotation quality
(Ding et al., 2021).

While coarse-grained NER for Indian languages
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has seen considerable progress, fine-grained NER
(FgNER) only began to emerge recently. The Multi-
COoNER2! shared task at SemEval-2023 introduced
FgNER datasets for Hindi and Bengali via trans-
lated English annotations (Fetahu et al., 2023a),
and the TAFSIL? initiative mined Wikidata and
Wikipedia links to generate noisy FgNER data for
six additional Indian languages (Kaushik et al.,
2025). Despite these advances, comprehensive and
high-quality fine-grained resources remain scarce
for most low-resource Indian languages.

To address this gap, we present CLASSER:
Cross-lingual Annotation Projection framework en-
hanced through Script Similarity for Fine-grained
Named Entity Recognition. As illustrated in Fig-
ure 1, in Stage 1, we project English MultiCoNER2
annotations to the target language using BPCC par-
allel corpora (Gala et al., 2023) and a multilin-
gual encoder-based annotation projection and word
alignment tool (Dou and Neubig, 2021; Garcia-
Ferrero et al., 2022). In stage 2, we introduce
a confidence-score-based cross-lingual refinement
method that utilizes an auxiliary NER model fine-
tuned on script-similar languages. For example, al-
though Hindi (Indo-European language) and Bodo
(Sino-Tibetan language) are typologically distinct,
their shared Devanagari script allows us to signif-
icantly enhance the Bodo FgNER annotations us-
ing the available MultiCoNER?2 FgNER dataset in
Hindi. Figure 1 shows an example of annotation re-
finement from projected entity type B-ArtWork to B-
WrittenWork based on the FgNER dataset in auxil-
iary language. We apply the CLASSER framework
to generate FgNER dataset in five low-resource
languages, including Assamese (as), Marathi (mr),
Nepali (ne), Sanskrit (sa), along with a vulnerable
language Bodo (brx) (UNESCO, 2017).

Our contributions can be summarized as follows:

1. Development of CLASSER framework for
cross-lingual annotation projection with script-
similarity-based refinement to create high-quality
FgNER datasets.

2. Construction of a large-scale FgNER dataset
comprising of 1.8M sentences, 2.6M entity men-
tions, and 24.7M tokens for five low-resource
Indian languages: Assamese (as), Bodo (brx),
Marathi (mr), Nepali (ne), and Sanskrit (sa).

3. Creation of a high-quality human-annotated
test set consisting of 1000 sentences for each lan-

"https://multiconer.github.io/
Zhttps://huggingface.co/datasets/prachuryyalITG/TAFSIL

guage with inter-annotator agreement (k) above
0.86.

4. Our rigorous analyses establish the effective-
ness of the proposed method and the good quality
of the generated dataset, which has achieved 26%
and 46% improvement in F1 scores over equal-
sized TAFSIL (Kaushik et al., 2025) datasets in
Marathi and Sanskrit, respectively.

5. Zero-shot and cross-lingual analysis to ex-
amine the influence of multilingualism and script
similarities on cross-lingual FgNER performance.

2 Related Works

Sekine et al. (2002) first introduced fine-grained
entity classification with 150 entity types in a multi-
level hierarchy. Subsequent FgNER resources
vary widely in entity type granularity: ACE (52
types) (Doddington et al., 2004), BBN (93 types)
(Weischedel and Brunstein, 2005), HYENA (505
types) (Yosef et al., 2012), FIGER (113 types)
(Ling and Weld, 2012), and OntoNotes (88 types)
(Gillick et al., 2014). Large-scale resources like
WikiSense (Chang et al., 2009), FINET (Del Corro
et al., 2015), TypeNet (Murty et al., 2017), and
UFET (Choi et al., 2018) proposed thousands of
entity types. Abhishek et al. (2019) improved qual-
ity with language-specific heuristics and refined
selections, whereas Ding et al. (2021) provides a
large, manually annotated dataset covering 66 fine-
grained types.

Early Indian-language NER began with
IJCNLP-2008 for Hindi, Bengali, Oriya, Telugu,
and Urdu (Singh, 2008), and further enhanced by
Gali et al. (2008), Saha et al. (2008), Gupta and
Bhattacharyya (2010), Ekbal and Saha (2011),
Bhagavatula et al. (2012), and Devi et al. (2014).
Al-Rfou et al. (2015) and Pan et al. (2017)
extended coverage to many languages, including a
few Indian languages. Manually annotated corpora
include NER in Bengali (Ekbal et al., 2008), Tel-
ugu (Reddy et al., 2018), Maithili (Priyadarshi and
Saha, 2021), Hindi (Venkataramana et al., 2022),
Assamese (Pathak et al., 2022), Marathi (Litake
et al.,, 2022), Nepali (Niraula and Chapagain,
2022), Bishnupriya Manipuri (Jimmy et al., 2023),
Bodo (Narzary et al., 2024) etc.

Yarowsky and Ngai (2001) pioneered projection
via parallel corpora, but zero-shot transfer struggles
with typological distance (Karthikeyan et al., 2020;
Wu and Dredze, 2019), and cross-lingual encoders
(Pires et al., 2019; Conneau et al., 2020) have not
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closed the gap yet (Ruder et al., 2021). Mhaske
et al. (2023) used Samanantar corpora (Ramesh
et al., 2022) and word alignment (Ruder et al.,
2021; OCH and NEY, 2003) to project English
NER to eleven Indian languages. More broadly,
projection-based translation was used to generate
NER resources across various languages (Mayhew
et al., 2017; Ugawa et al., 2018; Jain et al., 2019;
Yang et al., 2022; Liu et al., 2021; Lancheros et al.,
2024), and utilization of script similarity boosted
low-resource translation, Parts-of-Speech tagging,
and NER (Aepli and Sennrich, 2022; Patil et al.,
2022; Blaschke et al., 2023; Brahma et al., 2023).

MultiCoNER-1 (Malmasi et al., 2022) and Multi-
CoNER?2 (Fetahu et al., 2023b) produced Hindi and
Bengali datasets via translated English annotations,
which were further improved by SemEval-2023
shared-task participating teams (Ma et al., 2023a,b;
Tan et al., 2023; Garcia-Ferrero et al., 2023). Re-
cently, Kaushik et al. (2025) applied distant su-
pervision to create noisy FgNER datasets for six
Indian languages across four taxonomies. Despite
these advances, high-quality multilingual FgNER
resources for most Indian languages remain scarce.

3 Methodology

3.1 CLASSER Framework

The proposed framework CLASSER adopts a two-
stage approach that incorporates three distinct cate-
gories of languages (Figure 1). The high-resource
source language (src) provides both an annotated
FgNER dataset and parallel corpora comprising
sentence pairs aligned with the target language
(tgt). The source language, however, differs no-
tably from the target language in terms of grammat-
ical structure and script. In contrast, an auxiliary
language (aux) is characterized by the availability
of an annotated FgNER dataset written in a script
similar to that of the target language, but it lacks
corresponding parallel sentence pairs with the tar-
get language For a language [, the FgNER dataset
D, = {( ,yl(}C )}, consists of N samples
where each sentence s is paired with its correspond-
ing annotation sequence y. For the source language
src, we possess both FgNER dataset Dy, and a
parallel corpus having source—to—target language
aligned-sentence pairs, P = {(s sres tgt)} 1
The auxiliary language provides only the FgNER
dataset Dg,,, sharing its script with tgt but offer-
ing no additional parallel data.

Algorithm 1 Algorithm for CLASSER Framework
Symbols:

e )M Pretrained multilingual encoder.

e N: Number of sentences per dataset.

e y: List containing FgNER annotations for each
token of sentence s.

oD = {(sl(k), yl(k))}fy:l: FgNER dataset of size
N in language (.

e src,tgt, aux: Source, Target and Auxiliary lan-
guages respectively.

o P = {(sgﬁl, s§§2 )}HY_,: Parallel corpora.

o A(sgpc, Stgt): Annotation alignment service pro-
duces a mapping map.

® j;4¢: Initial annotation sequence for s4;.

o M,.: Multilingual encoder fine-tuned on D, .
® Dauz(j) = Mauz(Stgt)[j]: The annotation proba-
bility distribution for jth token in s;4th sentence
after refinement using M,

® ;¢ Auxiliary annotation sequence Syg;.

max

e p'%T(j): Maximum probability of yt(gz for jth
token.

o 7: Confidence Threshold.

e Refinement function:

il () 2 7

and ytgt a @t(f;ta

otherwise.

f (ygza yg]g) -

gty omervise.
o Final refined annotation: gjg}z =7 (gjg}z, yg]z)
. DZ;; = {(5§§2>?3t(§2 )}Y_,: Final refined target
FgNER dataset of size V.
Algorithm:

1: for each (sgpc, Stgt) € P do
2:  Compute embeddings:
Esrc = M(Ssrc), Etgt = M(Stgt)
3:  Obtain alignment mapping:
map = -A(Ssra Stgt) USing Esrc & Etgt
for each token j in s44; do

Project annotation: ygz = yg’,f,i“” ')

end for

Obtain auxiliary predictions:

Vj in Stgt: Pauz (.7) = Maux(stgt)[ﬂ
8:  for each token j in s do

A A

9: Refine annotation: yt(;z =f (yt(gz,yt(;z)

10:  end for
11:  Update (S¢gt, Utge) to D:getf
12: end for

Stage 1 (Annotation Projection):

As per the Algorithm 1, we first fine-tune a pre-
trained multilingual encoder M on parallel corpora
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P so that it learns to produce contextual embed-
dings Egc = M(s4c) and Eyyy = M (s44¢) for
source and target languages, respectively. For each
parallel pair (sgrc, Stgt) € P, a word alignment ser-
vice A(Sgre, stgt) leverages Eg,.. and E; g to yield
a mapping map from source-sentence tokens to
target-sentence tokens based on the FgNER dataset
in the source language (D). We then transfer

each source annotation sequence ysrc to the target

sentence by setting yg}g = ylmar” 0D for every

token j in the target sentence s;4. This produces
an initial annotation sequence 7, for each target
sentence, which may be noisy due to alignment
errors, script mismatches, or syntactic divergences.

Stage 2 (Annotation Refinement):

To correct such projection noise, we exploit the
observation that many named entities retain nearly
identical orthographic forms when expressed in the
same script, even across grammatically distinct lan-
guages. The semantics of entities are already cap-
tured by a pre-trained multilingual encoder during
fine-tuning on a language written using the similar
script. Although other factors, such as typologi-
cal differences between languages play a role in
various NLP tasks, we have found that leveraging
shared script characteristics is highly effective for
the FgNER task. We therefore introduce a refine-
ment stage driven by an auxiliary language (aux)
whose writing system matches that of the target
language. A multilingual encoder model M, is
fine-tuned on the auxiliary FgNER dataset D, .
When applied to each target sentence s;4, for every
token j, Mg, outputs a discrete probability distri-
bution pauz(j) = Mauz(Stge)[j] and an auxiliary
annotation sequence fj;4¢. The maximum probabil-
ity of the auxiliary annotation yggg for the jth token
is denoted as p[%* (7).
We then apply a refinement function:

ytgt7 lfpau:r ( ) >T

and ¢ ytgt £ Z)t(;u

otherwise.

~(7)
ytgt?

where T is a confidence threshold. For every to-

ken j, the refinement function selectively replaces

the initial projected label Qt(;z with the auxiliary la-

bel yt(] )

confident (i.e. p

only when the auxiliary annotation is both
mar(5) > 1) and disagrees With

auxr
the initially projected annotation (i.e. yt ot 7& yt

The result is the final refined annotation gt(;g for

each token 7, i.e. yfgz f (yﬁgzy ?/,Sg%)

Finally, aggregation of all sentence—annotation
pairs (sglg?, yt(jt) ) produces the fully refined target-
language dataset of size N:

k) —(k)\\N
D;getf = {(Sl(tgt)> nggt)) k=1
3.2 Implementation of CLASSER framework

MultiCoNER2 (Fetahu et al., 2023a), a
SemEval-2023 shared task (Fetahu et al.,
2023b), provides 33 fine-grained entity types
across 12 languages (including English, Hindi,
Bengali). In our setup, the source language (src) is
English; target languages (tgt) are Assamese (as),
Bodo (brx), Marathi (mr), Nepali (ne), and Sanskrit
(sa); auxiliary languages (aux) are Bengali (bn)
and Hindi (hi). Assamese and Bengali use the
Bengali-Assamese script, whereas Hindi, Bodo,
Marathi, Nepali, and Sanskrit use Devanagari.
We employ BPCC (Gala et al., 2023) as parallel
corpora (P), augmenting the smaller Bodo data
with Islam et al. (2018a,b). Following (Garcia-
Ferrero et al., 2022), we adopted AWESoME align
(Dou and Neubig, 2021) as A, fine-tuned on the
English MultiCoNER2 dataset (Ds,.). The Hindi
and Bengali MultiCoNER?2 datasets serve as D,
and we fine-tune IndicBERTv2 (Doddapaneni
et al., 2022) as M and M,,,,.. IndicBERTV2 is the
only encoder pre-trained on all src, tgt, and aux
languages. Based on language-specific evaluations
(Figure 4, 5), we set the confidence threshold
7=0.85. Following the Algorithm 1, the CLASSER
framework is implemented with the mentioned
details, and the dataset is created.

3.3 CLASSER Dataset

As shown in Table 1, the created CLASSER dataset
consists of more than 157 thousand sentences, 222
thousand entity mentions, and 2.2 million tokens in
each of the five low-resource Indian languages. Af-
ter the creation of the dataset through the proposed
method, 1000 sentences are randomly selected for
human annotation. From the rest of the dataset,
10% 1is considered as the development set and the
remaining as the training set.

3.4 Gold dataset

Two volunteer annotators per language, having a
minimum education of an undergraduate degree,
were chosen based on their mother tongue. For
Sanskrit, the annotations were done by professional
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Train set Development set Test set
Lng Sent Ent Token Sent Ent Token Sent Ent Token IAA(k)
as | 140,257 204,611 1,972,697 | 15,585 15,763 219,114 | 1000 1,407 14,270 0.901
brx | 212,835 302,713 2,958,455 | 23,649 33,808 329,145 | 1000 1,423 14,082 0.875
mr | 611,902 889,217 8,135,813 | 67,990 97,943 948,020 | 1000 1,443 13,996 0.887
ne | 414,561 617,957 5,531,683 | 46,062 64,098 642,489 | 1000 1,436 14,142 0.882
sa | 265,114 378,287 3,488,871 | 29,458 40,589 377,306 | 1000 1,412 12,925 0.861

Table 1: CLASSER dataset statistics. Lng means language, and Sent, Ent and Token means number of Sentences,
Entities and Tokens respectively. IAA (k) gives the inter-annotator agreement.

Lng | Dataset Tokens Ent Tp
CLASSER 2,206,081 221,781 33
s Naamapadam! | 122413 5,045 3
AsNER? 98,623 34,963 5
WikiANN? 7,632 1,418 3
by | CLASSER 3,301,682 337,944 33
Bodo NER* 2,797,101 641,604 5
CLASSER 9,097,829 988,603 33
TAFSIL>t 3,628,450 174,861 33
mr Naamapadam1 6,086,136 529,000 3
MahaNER® 231,959 27,300 7
WikiANN? 123,556 18,756 3
CLASSER 6,188,314 683,491 33
e EverestNER’ 616,706 24,587 5
OurNepali® 16,225 11,183 4
WikiANN? 14,535 2,326 3
CLASSER 3,879,102 420,288 33
sa | TAFSIL>t 479,185 23,372 33
WikiANN? 2,255 115 3

Table 2: Comparison of CLASSER dataset with some
publicly available NER datasets in low-resource Indian
languages: "Mhaske et al. (2023), ZPathak et al. (2022),
3Rahimi et al. (2019), *Narzary et al. (2024), Kaushik
et al. (2025) (: MultiCoNER?2 taxonomy), SLitake et al.
(2022), "Niraula and Chapagain (2022), and 8Singh et al.
(2019). Abbreviations: Lng: language, Ent: number of
entity mentions, Tp: number of entity types.

Sanskrit teachers. Annotators were first briefed on
entity types with examples, then instructed to per-
form the task on 1000 sentences in two stages: de-
tecting relevant entity mentions and assigning types
from a given list using the BRAT tool (Stenetorp
etal., 2012). With two annotators per language, one
annotator’s work was treated as the gold standard,
and inter-annotator agreement (IAA) was measured
against it. The quality of these gold datasets can
be ascertained based on a high Cohen’s kappa co-
efficient (k) (Deleger et al., 2012), which is above
0.86 for each language (Table 1).

3.5 Comparison with public dataset

As shown in Table 2, CLASSER is the largest
NER dataset across all languages in terms of the
tokens compared to the publicly available datasets.
In fact, except for Bodo (brx), it is the largest
dataset in terms of the number of entities as well.
To the best of our knowledge, CLASSER is the
only FgNER dataset created through the entity
projection method for these five low-resource lan-
guages. In this paper, whenever comparative
analysis is done, the highest value or the best
result in the tables are shown in bold and the
second highest value or the second best result are
shown as underlined.

3.6 Entity type frequency distribution

As shown in Figure 2, a larger number of entity
mentions are detected for the fine types of Location
(e.g. HumanSettlement) and Person (e.g. Artist)
because the HumanSettlement includes the men-
tions of cities, provinces and countries, and the
Artist type includes the mentions of musicians, ac-
tors, directors, authors, etc. Whereas, very specific
fine types such as AerospaceManufacturer, Drink,
AnatomicalStructure, etc., are very scarce. Similar
trends can be observed across all five languages
(Figure 7 in Appendix).

4 Analysis & Results

4.1 Experimental Setup

The state-of-the-art approach for sequence label-
ing tasks involves fine-tuning pre-trained language
models (PLM) with the NER datasets (Venkatara-
mana et al., 2022; Litake et al., 2022; Mal-
masi et al., 2022; Mhaske et al., 2023; Fetahu
et al., 2023a; Tulajiang et al., 2025; del Moral-
Gonzélez et al., 2025). Similarly, we have fine-
tuned mBERT (bert-base-multilingual-cased) (De-
vlin et al., 2019), IndicBERTv2 (IndicBERTv2-
MLM-Sam-TLM) (Doddapaneni et al., 2022),
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Figure 2: Entity counts of CLASSER Bodo (brx) dataset.

MuRIL (muril-large-cased) (Khanuja et al., 2021)
and XLM-RoBERTa (XLM-RoBERTa-large) (Con-
neau et al., 2020) for fine-grained NER using the
Hugging Face Transformers library (Wolf et al.,
2020). The models were trained for six epochs with
a batch size of 64, utilizing AdamW optimization
(learning rate: Se-5, weight decay: 0.01). Training
was performed on an NVIDIA A100 GPU, with
evaluation based on SeqEval metrics, and the best
performance determined by the F1-score following
Golde et al. (2025); Ding et al. (2025).

To compare with the state-of-the-art noisy
FgNER dataset, following Kaushik et al. (2025),
we adopted the best-performing two variations
of DECENT (Sierra-Munera et al., 2023) to ac-
commodate Indian languages by changing its base
encoder from RoBERTa-large (Liu et al., 2019),
to XLM-RoBERTa-large (Conneau et al., 2020),
and IndicBERTv2-MLM-Sam-TLM (Doddapaneni
et al., 2022). The hyperparameters for DECENT-
based models are: learning rate for encoder = 5e-6,
learning rate for head = Se-4, dropout probability
for head = 0.5, epochs = 2, batch size = 16, negative
oversampling rate = 31, and prediction threshold =
0.9.

4.2 Comparison with SOTA baseline

To the best of our knowledge, the only existing
FgNER datasets in Indian languages are Multi-
CoNER2 (Fetahu et al., 2023a) for Hindi and
Bengali, and TAFSIL (Kaushik et al., 2025) for
Hindi, Marathi, Sanskrit, Tamil, Telugu, and Urdu.
Accordingly, we used the Marathi and Sanskrit
TAFSIL datasets in the MultiCoNER2 taxonomy

and fine-tuned DECENT model variants as de-
scribed in the previous section. As shown in Table
3, when tested on the TAFSIL test set, the mod-
els fine-tuned on CLASSER outperform models
fine-tuned on TAFSIL by a large margin. With the
subset of CLASSER train set having an equal num-
ber of entities as TAFSIL, the F1 scores improve
by about 22% for Marathi and 38% for Sanskrit, re-
spectively. Similarly, with the subset of CLASSER
train set having an equal number of sentences as
TAFSIL, the F1 scores improve by about 26% for
Marathi and 40% for Sanskrit, and using the entire
CLASSER dataset, gains rise to roughly 40% and
95%, respectively. These results demonstrate both
the effectiveness of our method and the high quality
of the generated CLASSER dataset.

4.3 Performance of PLMs on unseen
languages

Marathi (mr) and Nepali (ne) are the only lan-
guages among the five languages on which all
four PLMs (IndicBERTv2, mBERT, MuRIL, and
XLM-RoBERTa) are pre-trained (Table 7 in Ap-
pendix). Therefore, the performance of all the
fine-tuned models in Marathi and Nepali is supe-
rior (Table 4). Although mBERT was not pre-
trained on Assamese (as) and Sanskrit (sa), it
performs well after fine-tuning with CLASSER
dataset on these languages. This is due to the
script similarity between Assamese with Bengali
(Bengali-Assamese script) and between Sanskrit
with Hindi (Devanagari script). Similarly, although
mBERT, MuRIL, and XLM-RoBERTa are not pre-
trained in Bodo, the fine-tuned models could per-
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DECENT model with XLM-RoBERTa-large base encoder

Micro Macro
Lang | Dataset Sent Ent P R F1(1TA%) P R F1(1A%)
TAFSIL 126k 175k | 49.36 83.73 62.10 50.89 81.93 62.28
mr CLASSER 120k 175k | 72.85 80.12 76.32(23) | 73.45 79.13 75.61(21)
CLASSER 126k 183k | 76.12 80.97 78.28(26) | 73.42 82.19 77.56(25)
CLASSER 612k 989k | 82.66 91.74 86.98(40) | 84.40 91.78 87.94(41)
TAFSIL 18k 23k | 31.35 53.40 40.20 32.74 5329 40.56
< CLASSER 16k 23k | 52.54 59.03 55.04(37) | 53.29 58.66 55.84(38)
CLASSER 18k 25k | 56.14 60.03 58.02(44) | 57.25 60.99 59.06(46)
CLASSER 265k 378k | 77.21 81.69 79.38(97) | 78.60 80.89 79.93(97)
DECENT model with IndicBERTv2-MLM-Sam-TLM base encoder
Micro Macro
Lang | Dataset Sent Ent P R F1(1A%) P R F1(1A%)
TAFSIL 126k 175k | 48.57 82.81 61.23 49.33 81.49 61.46
mr CLASSER 120k 175k | 72.11 78.10 75.04(23) | 72.62 76.03 74.34(21)
CLASSER 126k 183k | 76.65 80.12 77.29(26) | 75.38 79.27 76.36(24)
CLASSER 612k 989k | 83.07 89.44 86.14(41) | 81.75 89.37 85.43(39)
TAFSIL 18k 23k | 32.74 56.03 41.03 3294 5596 41.47
< CLASSER 16k 23k | 56.29 60.66 57.82(40) | 56.27 60.71 57.33(38)
CLASSER 18k 25k | 59.70 61.60 60.64(48) | 59.34 61.50 60.36(46)
CLASSER 265k 378k | 79.52 78.94 79.01(93) | 78.09 81.49 80.81(95)

Table 3: Performance of different DECENT models fine-tuned on TAFSIL and CLASSER train sets and tested on
the TAFSIL test set. Abbreviations: Sent: Number of sentences, Ent: Number of entities.

form better due to their pre-training on the script-
similar language Hindi. MuRIL, pre-trained exclu-
sively on 16 Indian languages, outperforms other
PLMs. These results emphasize the importance
of language-specific pre-training and the effect of
script-similarity in fine-tuning, which are discussed
further in the following sections.

4.4 Cross-lingual zero-shot analysis

We have performed cross-lingual zero-shot anal-
ysis for every single language pair. As shown in
Figure 3, the models are fine-tuned on datasets of
respective languages and tested on the test set of
other languages. Zero-shot performance of mBERT
model is quite poor across all the languages. A sim-
ilar trend is observed in the case of XLM-RoBERTa
on unseen languages during its pre-training. How-
ever, there is an improvement in the case of MuRIL
because of its pre-training on 16 Indian languages.
The impact of pre-training of an encoder is im-
minent through the zero-shot performance of In-
dicBERTvV2. Since IndicBERTV2 is pre-trained
on all five languages, its zero-shot performance is
superior to other PLMs. Whereas, fine-tuning on
Bodo (brx) significantly improved the performance

of mBERT, XILM-RoBERTa, and MuRIL over their
zero-shot performances. These emphasize that due
to script similarity, PLMs can perform better after
fine-tuning on an unseen language. But, without
fine-tuning with language-specific datasets, the pre-
trained knowledge cannot capture the intricacies of
an unseen language.

4.5 Multilingualism

We have extended our analysis to evaluate the mul-
tilingual aspect of the FgNER task. We constructed
a balanced allS set, comprising an equal number
of samples from all five languages. As seen in
Figure 3, there are significant improvements in ev-
ery encoder model when fine-tuned with all the
languages and tested on test sets of individual lan-
guages. In fact, for a vulnerable language like
Bodo (brx), multilingual fine-tuning can be very
beneficial. These results also suggest the necessity
of language-specific pre-training and task-specific
fine-tuning.

4.6 Ablation study

As already seen in different analyses, the script sim-
ilarity of the language plays a major role in FgNER
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Assamese (as)

Micro Macro
P R F1 P R F1
IB | 71.10 71.50 71.30 | 62.33 63.67 63.11
mB | 66.09 68.30 67.18 | 64.12 61.48 63.13
MR | 74.88 75.62 75.25 | 73.91 70.54 72.44
XL | 71.35 73.63 72.47 | 69.50 69.42 69.46

Bodo (brx)

Micro Macro
P R F1 P R F1
IB | 70.61 72.64 71.61 | 69.53 68.58 68.98
mB | 68.75 71.03 69.87 | 68.65 68.23 68.59
MR | 73.83 76.37 75.08 | 74.76 73.73 74.08
XL | 71.60 73.77 72.67 | 73.28 71.66 72.60

Marathi (mr)

Micro Macro
P R F1 P R F1
IB | 74.38 76.49 75.42 | 70.67 71.89 71.22
mB | 74.83 76.28 75.55 | 69.81 71.57 70.82
MR | 79.24 81.00 80.11 | 75.94 77.59 76.83
XL | 78.58 78.85 78.71 | 73.55 75.36 74.41

Nepali (ne)

Micro Macro
P R F1 P R F1
IB | 73.80 75.24 74.52 | 71.52 70.50 71.02
mB | 74.33 75.52 74.92 | 73.40 72.40 72.91
MR | 76.92 79.50 78.19 | 75.34 76.37 75.88
XL | 74.93 78.80 76.82 | 73.32 75.95 74.14

SanskKrit (sa)

Micro Macro
P R F1 P R F1
IB | 73.45 75.02 74.23 | 72.96 72.17 72.58
mB | 70.26 72.25 71.24 | 71.41 69.24 70.35
MR | 77.62 78.99 78.30 | 77.61 76.57 77.04
XL | 7541 77.50 76.44 | 74.79 74.17 74.49

Table 4: Performance of different models fine-tuned on
CLASSER dataset. Abbreviations: IB: IndicBERTv2,

mB: mBERT, MR: MuRIL, XL: XLM-RoBERTa.

task. The intuition of cross-lingual refinement af-
ter annotation projection is based on this property.
The performance of fine-tuned MuRIL models in
terms of micro-F1 scores are shown in Table 5. For
Assamese (as), refinement using Bengali (bn) is the
most effective, since both of these languages use
the Bengali-Assamese script. Similarly, for Bodo
(brx), Marathi (mr), Nepali (ne) and Sanskrit (sa),
refinement using Hindi (hi) is the most effective
due to the shared Devanagari script. But refinement
using both hi+bn gives the best result across all the

n Zero-shot performance (F1) of fine-tuned mBERT [}
CRECEIAEE 3.89 |37.92 12.45 ]
R 009 IEEIM 2244 2360 1005 @
= 818 = 651 [NEES 2859 IEU=
2 7NN 5038 71.90 VAN S
2 11.57 | 5.58 BEIEEN 71.24 s
2all5- 60.32  63.56 68.66 71 .36 67.33 S
i ‘ 0 &
as brx mr ne sa

Test Languages

Zero-shot performance (F1) of fine-tuned XLM-RoBERTa
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ne- IRYA 58.65 76.82 il
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mr- 66.34 80.11 6693 60.88
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1
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o
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—
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Performance Score
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as- 71.30 | 51.17 63.19 ]
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69.33
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mr- 58.22

ne- 59.20
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Figure 3: Zero-shot performance (micro F1) of
fine-tuned mBERT, MuRIL, XILM-RoBERTa and In-
dicBERTVv2 models on different test languages. The
all5 set includes samples from all five languages.

languages. These improvements are highest for
extremely low-resource languages Assamese (as),
Bodo (brx), and Sanskrit (sa).

For the selection of the best confidence thresh-
old 7 in the cross-lingual refinement stage of
CLASSER method, we conducted experiments
with four empirically selected values 0.75, 0.80,
0.85, 0.90 for all the languages. In Figure 4, the
performances of fine-tuned MuRIL on Assamese
(as), Marathi (mr), and Nepali (ne) are shown. A
similar trend is observed across other languages
(Figure 5 in Appendix), and hence, based on the
experiments, finally 7 is set to be 0.85 for all the
languages.

4.7 Error Analysis

FgNER is very crucial because an entity mention’s
type may vary significantly depending on the con-
text within a sentence. Therefore, we have analyzed
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ne | 70.01 73.10(4) 77.05(10) 78.19(12)
sa | 65.14 67.12(3) 76.87(18) 78.30(20)

Table 5: Ablation study: The impact of refinement using
Bengali (& bn) and Hindi (6 hi) on the initial annota-
tion projection (Stg 1). The performance of fine-tuned
MuRIL models in terms of micro-F1 scores are shown
with percentage improvements.

Performance (micro F1) vs. T

821
T g0 ne 80,11 79,63
e —e— as
O
E 781 —— mr "1
876 & 75,25
[+
= 74%2 s 3.93
S
5 72
5 71
70
0.70 075 0.80 0.85 0.90 095

T

Figure 4: Impact of confidence score threshold (7) on
the performance of MuRIL fine-tuned on CLASSER
dataset for Assamese (as), Marathi (mr), & Nepali (ne).

the errors on the test set in two different approaches.
First, the details of entity errors in terms of the per-
centage of predicted entities are shown in Table 6.
The common errors that occur include the boundary
error (such as “Little Mermaid” is marked as Visual-
Work instead of “The Little Mermaid”), entity type
mismatch error (e.g. “Sneezing” is categorized as
Disease instead of Symptom) and spurious errors
(such as “purple” is marked as an entity whereas the
entity type color is not defined in MultiCoNER2
taxonomy). Entity boundary mismatch errors are
highest in Assamese (as), entity type mismatch er-
rors and spurious entity errors occur the most in
Bodo (brx) and Sanskrit (sa), respectively.

Moreover, we have analyzed the often co-
predicted fine-grained types. From Table 6, we
have selected Bodo (brx) for this analysis as this
language has the highest percentage of mismatch
entity types. As shown in Figure 6 in Appendix, the
fine types of Artist, Athlete, Politician, and Scientist
are sometimes confused with OtherPER. Similarly,
WrittenWork is sometimes confused with Visual-
Work. Apart from such closely related fine entity
types, most of the other fine entity types are learned
by the models without much confusion.

Stgl & bn @ hi @ hi+bn as brx mr ne sa
as | 63.11 74.48(18) 67.43(7) 75.25(19) BM | 13.67 | 9.27 | 1037 | 8.23 | 9.82
brx | 61.82 63.90(3) 73.84(19) 75.08(21) ET | 1375 | 1440 | 1144 | 12.35 | 11.32
mr | 71.08 73.26(3) 78.85(11) 80.11(13) SP | 241 | 267 | 242 | 244 | 427

Table 6: Entity errors on test set in terms of the per-
centage of predicted entities for different languages fine-
tuned on MuRIL. Abbreviations: BM: Boundary Mis-
match, ET: Entity Type Mismatch, SP: Spurious Entity.

5 Conclusion & Future Works

We introduce CLASSER, a cross-lingual
annotation-projection framework that leverages
script similarity to create high-quality FgNER
dataset. The generated CLASSER dataset com-
prises of 1.8M sentences, 2.6M entity mentions,
and 24.7M tokens covering five low-resource
languages (Assamese, Bodo, Marathi, Nepali, and
Sanskrit). Extensive experiments confirm its qual-
ity, and zero-shot cross-lingual analyses reveal the
importance of language-specific pre-training and
task-specific fine-tuning. Given the availability of
MultiCoNER?2 FgNER resources in Bengali, Hindi,
and Farsi, CLASSER can be readily extended to
other Indian languages (e.g., Maithili, Konkani,
Dogri, Bhojpuri, Chhattisgarhi, Bishnupriya
Manipuri, Urdu, Kashmiri, Sindhi etc.). We expect
the CLASSER framework, the generated dataset,
and fine-tuned models will significantly advance
FgNER across Indian languages and facilitate
further developments in multilingual research.

Limitations

Despite encouraging initial results, this study has
limitations that require further exploration. First,
the proposed cross-lingual refinement stage relies
primarily on resources in languages with similar
scripts, for which its direct applicability and scala-
bility to languages with significantly different syn-
tactic structures remain an open question for future
research. Second, the generated dataset may in-
herit biases or specificities from the source FgNER
dataset. Third, the dataset’s volume and quality
depend on the availability of parallel corpora and
the choice of annotation projection tools and multi-
lingual encoders. Assessment of different combi-
nations of these resources remains essential. More-
over, while a confidence score of 0.85 yielded the
best results among the four tested empirical val-
ues (0.75, 0.80, 0.85, 0.90), a more systematic and
theoretically grounded analysis is needed. Finally,
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evaluating Large Language Models (LLMs) on the
FgNER task, both in a zero-shot setting and fine-
tuned on the CLASSER dataset, remains under-
explored.

Ethical considerations

The annotations were generated using the openly
accessible MultiCONER?2 dataset® and BPCC paral-
lel corpora* released under CC-BY-4.0° and CC0®
licenses. In addition to collecting data from multi-
ple domains, BPCC emphasizes geographically and
culturally relevant information about India sourced
from official Government of India websites. We
did not modify these datasets to correct for po-
tential biases and use them as-is. We have cited
all the sources of resources, tools, packages, and
models used in this work. The test-set annota-
tions were provided pro bono by volunteers pas-
sionate about creating a fine-grained named entity
recognition dataset for Indian languages. The an-
notators were clearly introduced to the task and
assisted appropriately during the annotation pro-
cess. These contributors received no financial
compensation and were informed in advance that
their annotations would be released publicly. Im-
portantly, none of the submitted annotations in-
clude any personal or identifying information. The
dataset created in this work is available at hugging-
face.co/datasets/prachuryyalITG/CLASSER under

an MIT license’.
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A Appendix

A.1 Selection of 7 value

Similar to Assamese (as), Marathi (mr), and Nepali
(ne) as shown in Figure 4, the trend is observed
for Bodo (brx) and Sanskrit (sa) as well (Figure 5).
Hence, based on the experiments, finally 7 is set to
be 0.85 for all the languages.

Performance (micro F1) vs. T

72,81

Performance (micro F1)

71.01

-
[=l=]
=
oS

0.75 0.80 0.85 0.90 0.95
T

Figure 5: Impact of confidence score threshold (7) on
the performance of MuRIL fine-tuned on CLASSER
dataset for Bodo (brx) & Sanskrit (sa).

A.2 Error Analysis

We examined the fine-grained types that are fre-
quently co-predicted. We focused this analysis on
the test set of Bodo (brx), as shown in Table 6, since
it exhibits the highest percentage of mismatch en-
tity types. As illustrated in Figure 6, fine types like
Artist, Athlete, Politician, and Scientist are often
confused with OtherPER, while WrittenWork is oc-
casionally mistaken for VisualWork. Beyond these
closely related categories, most other fine-grained
entity types are accurately learned by the models
with minimal confusion.

A.3 Pre-trained Language Models details

The details of encoder models used in this work,
i.e. bert-base-multilingual-cased® (Devlin et al.,
2019), IndicBERTv2-MLM-Sam-TLM® (Dodda-
paneni et al., 2022), muril-large-cased'? (Khanuja
etal., 2021) and XLM-RoBERTa-large!! (Conneau
et al., 2020) are shown in Table 7.

8https://huggingface.co/google-bert/bert-base-
multilingual-cased
*https://huggingface.co/ai4bharat/IndicBERTv2-MLM-
Sam-TLM
https://huggingface.co/google/muril-large-cased
https://huggingface.co/Facebook Al/xIm-roberta-large
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Model Para- | No. of Lan- | Indian languages covered
meters | guages

bert-base-multilingual-cased | 110M | 104 Bengali, Gujarati, Hindi, Kannada, Malay-

(Devlin et al., 2019) alam, Marathi, Nepali, Panjabi, Tamil, Tel-
ugu

IndicBERTv2-MLM-Sam-TLM| 278M | 26 Assamese, Bengali, Bodo, Dogri, Gu-

(Doddapaneni et al., 2022) jarati, Hindi, Kannada, Kashmiri, Konkani,
Maithili, Malayalam, Marathi, Manipuri,
Muna, Nepali, Oriya, Panjabi, Sanskrit,
Santali, Sindhi, Tamil, Telugu, Urdu

muril-large-cased 340M | 17 Assamese, Bengali, Gujarati, Hindi, Kan-

(Khanuja et al., 2021) nada, Malayalam, Marathi, Nepali, Oriya,
Punjabi, Sanskrit, Sindhi, Tamil, Telugu,
Urdu

XLM-RoBERTa-large 355M | 100 Assamese, Bengali, Gujarati, Hindi, Kan-

(Conneau et al., 2020)

nada, Malayalam, Marathi, Nepali, Oriya,
Panjabi, Tamil, Telugu, Urdu

Table 7: Details of multilingual encoder models used: size, languages pretrained on, Indian languages covered

Entity Confusion Matrix for Bodo (brx) language.

ArtWork
MusicalWork
Software
VisualWork
WrittenWork
Facility
HumanSettlement
OtherLOC

Station
AnatomicalStructure
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MedicalProcedure
Medication/Vaccine
Symptom
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CarManufacturer
MusicalGRP
PrivateCorp
PublicCorp
SportsGRP

Artist

Athlete
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OtherPER
Politician
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SportsManager
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Drink

Food

OtherPROD
Vehicle

True Entity
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Figure 6: Entity Confusion matrix of Bodo (brx) language.
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Entity Counts of CLASSER Assamese (as) train set
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Figure 7: Entity counts of CLASSER train sets of Assamese (as), Marathi (mr), Nepali (ne), and Sanskrit (sa).
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