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Abstract

Large language models (LLMs) exhibit inher-
ent limitations in working memory, which of-
ten affect their overall capabilities. However,
prior studies have largely focused on describ-
ing such constraints without identifying their
causes or providing practical strategies to cope
with them. In this paper, we investigate the
limited working memory capacity of LLMs
through a series of empirical studies. Specifi-
cally, we examine the factors involved in the
limited capacity and explore strategies to make
more effective use of it. Our analysis shows
that the number and difficulty of tasks in a
single input largely strain the working mem-
ory of LLMs. In response, we design a cog-
nitive marker consisting of simple token se-
quences theoretically grounded in cognitive
science. Further analyses show that the cogni-
tive marker reduces the overall prediction diffi-
culty and uncertainty for the models to process
the input, and its effectiveness is confirmed
across various evaluation settings. Overall, our
study incorporates cognitively motivated per-
spectives into the analysis of model behavior
and highlights the need for deeper exploration
of working memory in LLMs.

1 Introduction

Working memory (WM) enables humans to tem-
porarily store and manipulate information, playing
a crucial role in advanced cognitive processes such
as reasoning, understanding, and learning (Miller
et al., 1960). Yet, its capacity is inherently limited,
and exceeding this limit can result in cognitive
overload—a state where information processing
efficiency deteriorates, leading to decreased com-
petency (Baddeley et al., 1986; Sweller, 2011). In-
terestingly, recent research has shown that large
language models (LLMs) exhibit working memory
constraints similar to those observed in humans
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(Gong et al., 2024; Zhang et al., 2024). This paral-
lel raises the question of whether such constraints
may also impair the model’s capabilities.

Grounded in these insights, previous work have
analyzed LLM failures on complex tasks through
the lens of limited working memory (Zhang et al.,
2024). Furthermore, researchers have constructed
cognitively demanding tasks to deliberately push
the model’s working memory system to its limits,
observing a noticeable degradation in performance
(Xu et al., 2024; Upadhayay et al., 2025). These
findings suggest that the competence of LLMs can
be bounded by their intrinsic capacity constraints,
revealing deeper insights into the vulnerabilities of
current models.

It becomes increasingly important to investigate
these intrinsic edges, particularly in the bound-
aries of working memory. However, several exist-
ing studies remain largely descriptive, focusing on
documenting observed phenomena without clearly
identifying the underlying causes or proposing ac-
tionable strategies towards this issue. Notably, per-
formance degradation in LLMs under complex in-
puts resembles human behavior under cognitive
overload (Hazan-Liran and Miller, 2024; Shang
et al., 2025). Based on this resemblance, given
that humans employ cognitive strategies to miti-
gate such overload (Baddeley, 1992; Bawden and
Robinson, 2009), similar techniques could be also
adopted to help LLMs manage their limited capac-
ity more effectively.

In light of this, our study takes a closer look
inside the limited capacity of working memory in
LLMs and explores strategies for using it more
effectively. We begin by systematically analyzing
two potential stressors—input length and complex-
ity (§3)—finding that input complexity, defined it
as the number and difficulty of tasks in a single
input, burdens working memory more than length
alone. This led to the design of cognitive markers
consisting of simple, low-complexity sequences
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Figure 1: The overall aim of this study is to analyze the factors that constrain working memory capacity in LLMs

and to explore strategies to cope with them.

(e.g., repeated dots) that contrast with complex in-
put (§4). Motivated by human cognitive strategies,
these markers prove effective across downstream
tasks such as Longbench (Bai et al., 2023) and
neuroscience-inspired evaluations. We further ana-
lyze the impact of the markers by using surprisal
and entropy, cognitively motivated indicators that
offer insight into the model’s internal processing
(§5). Our empirical evidence shows that the in-
serted markers alter the input in a way that makes
it easier for the model to process, reducing both
difficulty and uncertainty.

Overall, these attempts suggest that language
models can be interpreted and guided through prin-
ciples of human information processing, particu-
larly in the context of working memory, which
has recently emerged as both a challenging and
promising area. In summary, the contributions of
our study include the following:

* We identify how input length and complexity
affect LLM working memory, highlighting
complexity as a key constraint.

* We introduce and evaluate cognitive markers,
low-complexity token sequences inspired by
human cognitive strategy to manage working
memory under pressure.

* We provide evidence that cognitive markers
make inputs more predictable for the models,
reducing uncertainty during processing.

2 Related Works
2.1 Working Memory in LLMs

When humans solve problems or comprehend in-
formation, they rely on working memory to tem-
porarily hold and integrate task-relevant informa-
tion during ongoing tasks (Baddeley, 1992). In
the context of LLMs, working memory is typically

associated with the model’s ability to handle task-
relevant information during inference (Li et al.,
2023; Gong et al., 2024). Therefore, the context
window plays a central role, serving as a tempo-
rary storage for currently needed information (Yue
et al., 2024; Packer et al., 2024). Consequently,
efforts to enhance or understand working memory
in LLMs have focused on its use.

Previous works aimed to simulate working mem-
ory externally by adding memory modules or rein-
serting retrieved content into the context window
during inference (Han et al., 2023; Wang et al.,
2024). However, recent research has turned at-
tention inward, exploring whether LLMs possess
an inherent, intrinsic working memory capacity of
their own. By employing the n-back task, a stan-
dard method for assessing human working memory
(Kane and Engle, 2002; Gong et al., 2024; Zhang
et al., 2024), or by providing inputs specifically
designed to impose its memory demands (Xu et al.,
2024; Upadhayay et al., 2025), these studies have
revealed that such capacity does exist in LLMs,
and its limitations can affect the model’s ability.

Despite the findings, prior research observes
working memory limitations without examining
their root causes or exploring potential solutions
sufficiently. To move beyond, our work seeks to
identify the causes of these constraints and design
strategies to help models cope better.

2.2 Cognitive Approaches in LLMs

Taking a broader step, applying cognitive science
in NLP has been widely adopted as a valuable
means of bridging the gap between humans and
LLMs, serving both as an analytical framework for
understanding model behavior and as a practical
tool for enhancing performance. Early research
focused on whether LLMs demonstrate human-
like capabilities in reasoning or decision-making
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(Dasgupta et al., 2022; Binz and Schulz, 2023a;
Gandhi et al., 2023), often by applying diverse
tasks originally developed for humans (Trott et al.,
2023; Binz and Schulz, 2023b). More recent works
have moved beyond surface-level behavioral resem-
blance to investigate whether the internal process-
ing of LLMs mirrors that of humans (Liu et al.,
2023b; Aw et al., 2024). In particular, studies have
examined neural evidence, showing that surprisal
correlates with brain signals that increase when
processing unexpected words, while entropy is as-
sociated with signals related to grammatically com-
plex sentences (Michaelov et al., 2024; Salicchi
and Hsu, 2025; Huber et al., 2024). Such metrics
have also been used to estimate the cognitive load
that a model experiences during input processing
(Yang et al., 2025). Beyond analysis, the cognitive
approach has also inspired practical strategies to
improve models, such as prompting methods that
mimic human memory processes by reflecting on
and building upon previous thoughts (Li and Qiu,
2023; Liu et al., 2023a).

In this work, we actively leverage the strengths
of the cognitive science perspective, both in the de-
sign of cognitive markers and in their evaluation on
cognitively grounded tasks. Furthermore, we use
surprisal and entropy not only as evaluation metrics
but also as tools to explain how and why the mark-
ers are effective. This approach closely integrates
cognitive theory with LLM behavior, offering both
interpretability and performance benefits.

3 Working Memory Capacity:
Complexity and Length Effects

To investigate how working memory is demanded
in LLMs, we focus on input complexity and input
length, which correspond to problem difficulty and
information volume—major causes of cognitive
overload in humans (Geiter et al., 2024; Hazan-
Liran and Miller, 2024). We manipulate these
two input properties within a cognitively grounded
multi-task framework.

3.1 Experimental Setup

Multi-Task Framework. To investigate how
LLMs behave under increasing working memory
load, we design a multi-task setting in which a
single input prompt contains both a Demanding
Task (DT) and a subsequent Observation Task (OT).
This structure allows us to assess the model’s be-
havior under memory load induced by the DT and

evaluate its performance on the OT within a single
inference step.

Our design builds on the dual-task method origi-
nally used to measure working memory in humans,
and extends recent adaptations for LLMs (Upad-
hayay et al., 2025). While prior studies have pri-
marily used this setup for diagnostic purposes, we
repurpose it as an analytical method to isolate and
understand key influences. Our multi-task frame-
work includes the following elements:

* Demanding Task (DT) is built from six types
of subtasks (T1-T6), such as content reversal
or verbal calculation. By varying complex-
ity and the overall length, DT is intended to
pressure the working memory system more
strongly.

e Observation Task (OT) is a free form QA
task based on Vicuna MT-Bench (e.g., How
to cook pasta?) (Chen et al., 2025), where
the model is expected to generate a detailed
written response.

DT is controlled in two distinct ways to manipu-
late both input complexity and input length:

* Complexity Control involves stacking multi-
ple subtasks (e.g., DT1 =T1, DT3 =T1 + T2
+ T3), with each added subtask creating addi-
tional reasoning demands and thereby raising
the overall input complexity.

* Length Control involves duplicating the
fixed DTN prompt (e.g., 2X, 5%, or 10x) to
increase the total input tokens, allowing us to
examine the impact of input length without
introducing new reasoning demands.

Response from OT is evaluated pairwise with a
baseline response without any demanding subtasks
and rated 0-10 by GPT-4 and Llama-3.1-70B-
Instruct. Appendix A provides details on multi-
task setting, subtasks, and prompts used.

Models. We select Llama-3.1-8B-Instruct, Llama-
3.1-70B-Instruct (Grattafiori et al., 2024), and
Qwen-2.5-7B-Instruct, Qwen-2.5-14B-Instruct
(Qwen et al., 2025), to account for potential
differences in working memory capacity across
model sizes.

3.2 Results and Analysis

Input complexity strains working memory, re-
vealing the inherent limitations of LLMs. Fig-
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Figure 2: Results for complexity control experiment.
This figure shows how the observation task scores
change as input complexity increases. Scores, rated
from O to 10, are averaged across two judge models.
DTO denotes no demanding subtasks, serving as a base-
line.

ure 2 shows that as increasingly demanding sub-
tasks are added, making the input more complex,
the performance on the subsequent observation
task consistently declines. In many cases, models
fail to generate any response to the observation
task, likely because they become overwhelmed by
the preceding subtasks, leaving them incapable of
fully completing the remainder. Such failures are
especially prominent in smaller models, even show-
ing a collapse at low complexity levels (e.g., DT1).
The outputs from these models simply copied the
provided prompt, indicating relatively meaningless
process and insufficient understanding of the given
task. In contrast, larger models show compara-
tively valid responses, even their low scores due
to short length, demonstrating partial resistance to
overload effects. These findings align with prior
research suggesting that model scale positively con-
tributes to working memory capacity (Gong et al.,
2024). Nevertheless, the overall decline patterns in
performance reveals fundamental, inherent limita-
tions that persist even in the strongest models.
Extended input lengths affect working mem-
ory less. Figure 3 presents the results of the length
control experiment. Despite the demanding task
prompt being extended by up to 10 times its origi-
nal length, the performance on the observation task
remains stable. This indicates that even though a
large number of tokens were presented prior to the
observation task, the earlier content did not sub-
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Figure 3: Results for length control experiment. The x-
axis indicates the total number of input tokens, and the
y-axis shows the average scores from two judge models.
Smaller models are excluded due to their low scores, as
shown in Figure 2. Each DT prompt was repeated 2, 5,
10, and up to 20 times until the input reached 10,000
tokens in total.

stantially hinder the model’s ability to process and
respond to the subsequent question.

While it is well known that long sequences can
degrade LLM performance, such effects are typ-
ically observed in single-task settings, where the
model must process the entire input and extract
relevant information for the answer (Shaham et al.,
2023; Levy et al., 2024). In these cases, factors
such as positional bias are known to affect sig-
nificantly to performance degradation (Liu et al.,
2024). However, our experiment separates the task
that increases input length from the task used to
evaluate performance, allowing us to isolate the
specific impact of sequence length on working
memory capacity. The results suggest that increas-
ing input length alone does not place a substan-
tial burden on the model’s working memory, espe-
cially compared to the effect of input complexity
observed in prior experiments.

In real-world scenarios, input complexity and
sequence length are not independently controlled
but rather intertwined, interacting in complex ways
that can jointly affect working memory. However,
our empirical findings show that when these fac-
tors are disentangled, input complexity emerges as
a more significant factor in straining the limited
capacity than input length. These results suggest
that, for effective working memory management in
LLMs, regulating the input complexity is far more
critical than controlling sequence length.
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Figure 4: Marker placements considered in the controlled and downstream tasks setting used to validate the its
effectiveness. «e ¢ * *» represents the cognitive marker composed of a dot sequence. In (c), chunks of colored
blocks indicate documents with high similarity to the query, while the highlighted blocks in (d) denote the targeted

key tokens.

4 Exploring Efficient Working Memory
Use: Insights from Human Strategies

Building on the insights from Section 3, if input
complexity is a primary factor influencing working
memory, we hypothesize that deliberately inserting
simple, low-complexity sequences into difficult in-
puts may help reduce overall complexity, thereby
alleviating models’ working memory load. Based
on this hypothesis, we introduce cognitive markers
(§4.1) as a strategy to help LLMs use their limited
working memory more effectively. We then val-
idate their effectiveness through both controlled
tasks (§4.3) and downstream tasks (§4.4).

4.1 Cognitive Marker Design

Motivations. Humans process simple content
more easily because it fits with what they already
know. This phenomenon is known as cognitive flu-
ency that reduces mental effort (Unkelbach, 2006).
Conversely, when encountering complex tasks, hu-
mans segment information into chunks (chunk-
ing) or rely on structural cues (signaling) to man-
age their working memory from being overloaded
(Sweller, 2011). Motivated by these natural human
behaviors and strategies, we design cognitive mark-
ers: simple token sequences that is placed at strate-
gic points in the input. Being placed in the input
naturally makes them appear to divide it into units,
with the markers perceived as boundaries—an ef-
fect that aligns with chunking and signaling.

Marker Contents. In addition to being syn-
tactically simple, the markers are designed to be
semantically neutral to avoid altering the original
meaning of the input. Specifically, we use repeti-
tive dot sequences, as they demonstrated effective-

ness in our preliminary studies—much like how
low-information cues such as whitespace help hu-
mans process information more effectively (Mi-
rault et al., 2019). We employ an insertion ratio of
10% of the total input tokens, following the prior
work on functional token insertion (Goyal et al.,
2024). Details on marker content and ratio are
elaborated in Appendix B.

4.2 Experimental Setups

We evaluate the effectiveness of cognitive markers
in two complementary settings. First, we adopt
the multi-task paradigm (introduced in Section 3.1)
as a controlled task to systematically vary input
complexity. This setting allows us to assess marker
effectiveness when the model is clearly operating
near its working memory limits. Second, we also
use standard NLP downstream tasks to reflect more
realistic scenarios and examine whether the bene-
fits of markers can be generalized. This integrated
evaluation allows us to assess the impact of cogni-
tive markers in settings with induced memory load
as well as in realistic task contexts.

For the downstream tasks, we include multi-
document QA datasets from LongBench (Bai
et al., 2024), such as HotpotQA, 2WikiMQA, and
MuSiQue, which require reasoning over complex
and lengthy inputs. Notably, these multi-hop QA
tasks are also recognized as a working memory
task paradigm (Hu and Lewis, 2025). We addition-
ally include single-document tasks such as Qasper
and MultiFieldQA. All tasks are evaluated using
F1 score on Llama-3.1-8B/70B-Instruct and Qwen-
2.5-7B/14B-Instruct.
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Figure 5: Effect of cognitive markers in the controlled task. This figure shows score improvements when markers
are added to each DT prompt. The y-axis represents the average scores from two judge models. (a) presents results
for Llama3.1-70B-Instruct, and (b) for Qwen2.5-14B-Instruct.

4.3 Marker Impacts in Controlled Task

We begin by validating our cognitive markers under
conditions designed to strain working memory.

4.3.1 Marker Placement in Controlled Task

Since cognitive markers are designed to reduce
memory load, we place them in demanding task
where memory load arises. Specifically, the mark-
ers are inserted between subtask instructions, as
shown in Figure 4-(a). We expect markers in this
position to signal transitions between subtasks and
help the model prepare or organize the subtask in-
structions. See Appendix C.2 for the full prompt
example.

4.3.2 Results

Cognitive markers can alleviate the burden
on working memory. Figure 5 shows perfor-
mance changes with cognitive markers added to
each DT prompt. Across most conditions, models
consistently achieve higher scores when markers
are added. The performance gain is particularly
prominent in DT6, which imposes the highest de-
mand. Our analysis shows that without markers,
the model struggles during the subtasks and some-
times fails to respond to the final observation task.
In contrast, when markers are inserted, the model
is more likely to complete the subtasks in order and
reach the observation task, leading to a lower rate
of missing responses. These results suggest that
even under the same working memory constraints,
adding cognitive markers, which are simple token
sequences, can positively influence the model’s per-
formance by easing the impact of memory pressure
and potentially mitigating the burden on working
memory.

4.4 Marker Impacts in Downstream Tasks

In this section, we validate the generalizability of
cognitive marker effects on downstream tasks.

4.4.1 Marker Placement in Downstream
Tasks

Recognizing LongBench contains naturally written
documents, we introduce distinctive and meaning-
ful variations in marker placement to examine how
their position might also affect performance. We
define three placement strategies for this setting.
Midpoint refers to the middle of the document se-
quence. This position is known to be a point where
both models and humans tend to lose information
more easily (Murdock Jr, 1962; Liu et al., 2024).
Relevant-point refers to the position before and
after each of the top n documents with high cosine
similarity to the query. This position is intended
to signal upcoming relevant passage to the query
and provide a brief preparatory phase before the
model processes crucial information. It reflects the
human need for preparation before engaging with
important content (Correa et al., 2006).
Comprehension-point refers to the positions be-
fore key tokens calculated to be crucial for under-
standing long-context by LongPPL (Fang et al.,
2025). Specifically, we select key tokens with
low log probabilities, indicative of high model un-
certainty, and insert markers directly before them.
This aims to ease the model before it encounters im-
portant but complex information, ultimately help-
ing it to better absorb and integrate the overall in-
put. Additional experimental details are provided
in Appendix C.

4.4.2 Results

Cognitive markers remain effective across di-
verse documents and reasoning demands. Ta-
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Multi-doc Single-doc

Models HotpotQA 2WikiMQA MuSiQue avg. | Qasper MultiFieldQA avg.

Qwen-2.5-7B-Instruct 57.19 45.09 28.67 43.65 | 44.41 49.46 46.93
+ Midpoint 56.95 43.42 30.16 43.51 | 43.80 50.52 47.16
+ Relevant 58.31 48.85 29.33 45.50 | 42.66 49.06 45.86
+ Comprehension 57.13 44.77 30.71 4420 | 44.75 49.65 47.20
Llama-3.1-8B-Instruct 54.30 46.04 30.18 43.51 | 44.72 53.85 49.29
+ Midpoint 55.60 46.74 32.70 45.01 | 44.83 53.26 49.05
+ Relevant 58.30 47.25 30.05 45.20 | 44.62 53.44 49.03
+ Comprehension 54.48 45.39 33.92 44.60 | 4549 54.83 50.16
Qwen-2.5-14B-Instruct 61.64 58.72 36.83 5240 | 45.25 51.10 48.18
+ Midpoint 61.62 57.64 38.05 5243 | 44.94 50.60 47.77
+ Relevant 60.54 59.72 36.24 52.17 | 46.43 49.93 48.18
+ Comprehension 60.98 56.49 39.02 52.16 | 45.04 51.97 48.51
Llama-3.1-70B-Instruct 62.59 64.14 44.62 57.12 | 48.98 54.02 51.50
+ Midpoint 62.47 65.08 43.37 56.97 | 49.80 54.84 52.32
+ Relevant 63.23 65.09 46.53 58.28 | 49.83 54.54 52.18
+ Comprehension 61.42 64.15 43.87 56.48 | 50.07 54.18 52.12

Table 1: Performance comparison of cognitive marker strategies across datasets. The first row shows the no-marker
baseline. For the relevant-point strategy, the top three passages most similar to the query were selected. The

best-performing marker for each dataset is shown in bold.

(a) (b)
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50 Y e 2WikiMQA
4 // \ — Musique
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b o2 ’," \
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2
Removed Passages Cosine Similarity

Figure 6: (a) Removing the least relevant passages im-
proves performance on 2WikiMQA, suggesting other
passages act as noise, while HotpotQA and MuSiQue
still benefit from additional context. (b) Query-
document similarity is highest in HotpotQA and low-
est in MuSiQue. Overall, this highlights 2WikiMQA’s
distinct gold paragraphs, HotpotQA’s strong query-
document match, while MuSiQue shows a relative lack
of both.

ble 1 summarizes the impact of markers at each po-
sition across datasets. Overall, inserting cognitive
markers consistently improves performance com-
pared to the unmarked condition across most mod-
els and datasets. The effect is more pronounced
in smaller models and multi-document inputs. Be-
cause the performance gains are indeed attributable
solely to the insertion of simple input sequences
in this setting, it suggests that markers can also be
effective in realistic scenarios, even when memory
demands are not explicitly intended or shown.

In terms of placement, marker positioning is also
generally observed to affect performance, with its

effectiveness varying by input structure. In multi-
document QA datasets, placing markers at relevant
points leads to consistent improvements, likely by
helping the model distinguish salient information
from distractors across independent passages. In
contrast, for single-document tasks that require the
model to process a long, coherent passage, the most
effective placement occurs at the comprehension
point. In these cases, inserting the marker before
key tokens, which are important for understand-
ing the entire content but difficult for the model to
handle, proves to be effective. These findings in-
dicate that, beyond simply inserting markers, their
placement also shows a pattern aligning with the
characteristics of the task.

One notable exception is MuSiQue, a multi-
document dataset where a marker inserted at the
comprehension point appears to be particularly
effective. It has been observed that other multi-
document datasets include low-similarity docu-
ments that may distract model performance (Figure
6-(a)) or exhibit relatively high query-document
similarity (Figure 6-(b)). In contrast, MuSiQue
tends to lack a clearly dominant supporting passage
and requires an understanding of all documents in a
single input. Based on this observation, we analyze
that the comprehension-point marker plays a simi-
lar role in MuSiQue as it does in single-document
tasks, supporting the model’s need to synthesize
information across a unified input.
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5 Analyzing Internal Processing:
Surprisal and Entropy

While Section 4 examines the impact of cognitive
markers on model outputs by performance scores,
this section explores their influence on internal
processing by analyzing how the input changes
in response to markers. To this end, we leverage
surprisal and entropy—two cognitively grounded
metrics that serve as indicators of processing diffi-
culty (Cho and Lewis, 2019; Oh and Schuler, 2022;
Yang et al., 2025). These metrics offer insight into
how and why markers enhance performance be-
yond surface-level gains.

5.1 Surprisal and Entropy as Signals

Surprisal measures the prediction difficulty of a
token for a model:

Surprisal(x¢) = — log P(z¢|z<y),

where P(x¢|x<) is the probability of token x;
given the preceding tokens x; at time step .
Entropy quantifies the uncertainty in a model’s
next-token probability at time step ¢:

Entropy(z;) = — Z P(z|x<¢)log P(z|x<y),
eV

where V' is the vocabulary of the model. Higher
surprisal and entropy both indicate greater diffi-
culty and uncertainty for the model.

5.2 Observations

Setting Surprisal |  Entropy | Cv]
No-marker 2.00 0.88 1.34
Marker-add 1.83 0.83 1.30

Table 2: Average surprisal, entropy, and surprisal coef-
ficient of variation (CV) across LongBench document
datasets, comparing inputs without and with cognitive
markers, computed using Llama 3.1-8B—Instruct. For
fair comparison, marker token statistics are excluded
from the no-marker condition.

As shown in Table 2, the insertion of cognitive
markers leads to a decrease in both surprisal and
entropy across the input, excluding the marker to-
kens. This suggests that the model experiences less
difficulty and uncertainty when predicting tokens,
indicating a reduction in processing burden. Addi-
tionally, the decline in the coefficient of variation

Surprisal Surprisal_cv

Decline Rate
= N w »
N

o

R1 R2 R3 R1 R2 R3
Region Location Region Location

Figure 7: Result for decline rate of surprisal and its
coefficient of variation across input segments. Regions
are divided into three equal parts based on token counts.

(CV) of surprisal reflects increased stability in the
model’s predictions.

Interestingly, these reductions are more ob-
served in the latter parts of the input, with surprisal-
related metrics showing a noticeable change. Fig-
ure 7 shows the decline rate of surprisal and its
stability due to the insertion of markers across dif-
ferent input regions—early (R1), middle (R2), and
late (R3). The analysis reveals that the changes
are minimal in the early part of the input, but the
changes become more pronounced in the middle
and later regions. This suggests that markers are
more effective in the latter parts of the input. We in-
terpret this pattern in relation to the model’s work-
ing memory. As the input progresses and more
information accumulates, the model encounters in-
creased memory strain in the later sequences. The
more noticeable improvements in these regions
suggest that cognitive markers are particularly ef-
fective when the model’s working memory is under
greater pressure.

This aligns with our earlier findings where mark-
ers had the greatest effect under high cognitive de-
mand (§4.3). Furthermore, additional experiments
in a multi-document setting, where we varied the
location of the gold document and inserted mark-
ers at the relevant point, confirmed that placing
markers in the middle or toward the end of the in-
put yielded the most significant performance gains,
with the result presented in Appendix F.

6 Conclusions

In this study, we analyze the factors affecting the
working memory of LLMs and explore strategies
to address these inherent limitations. Based on
the finding that input complexity has a greater im-
pact on working memory, we design a cognitive
marker using simple token sequences that contrast
with complex inputs. The cognitive marker is in-
spired by human strategies to handle working mem-
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ory overload, and its effectiveness is validated un-
der various experimental conditions. To this end,
our study emphasizes the importance of exploring
working memory to understand the inherent lim-
itations of LLMs. Furthermore, the existence of
such capacity limits requires deeper examination,
as it provides insights into the vulnerabilities of
current LLMs. From this perspective, it is crucial
to investigate approaches that aim either to extend
these capacity or develop strategies to make more
effective use of them.

Limitations

This study provides initial insights into the work-
ing memory of LLMs, though it comes with cer-
tain limitations that suggest directions for future
research. While we focused on input complexity
and length, other factors that may affect working
memory remain to be explored. In addition, al-
though we examined various insertion points for
cognitive markers, a broader range of positions
could be investigated to gain a more comprehen-
sive understanding of their impact. To improve
the generalizability of our findings, future work
could also include additional test datasets. Finally,
we provide supplementary results on the effects of
cognitive markers within the n-back task, a well-
known working memory assessment framework,
in Appendix G.
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A Multi-Task Details

Details on each subtask is provided in Ap-
pendix A.1, the full configuration of our multi-task
setup is described in Appendix A.2, and the evalu-
ation prompt given to the judge models is included
in Appendix A.3. Below, we present the theoretical
background of the multi-task framework.
Theoretical Backgrounds. The multi-task frame-
work employed in our study extends the experimen-
tal design by Upadhayay et al. (2025).This prior
work constructs tasks related to working memory
load based on the concepts of intrinsic load (the
inherent complexity of the task itself) and extra-
neous load (inefficient instructions or information
that are not directly relevant to the task), which are
theoretical distinctions from neuroscience used to
explain different forms of working memory load.
Building on this foundation, the researchers fur-
ther classified the types of tasks that LLMs en-
counter into three categories: general tasks, which
are routine questions or instructions the model
learned during pre-training or fine-tuning; custom
tasks, which require the model to combine its ex-
isting knowledge with new information from the
user; and unconventional tasks, unique, highly cus-
tomized requests that LLMs likely haven’t encoun-
tered during training. Among these, unconven-
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tional tasks are considered to increase both intrin-
sic and extraneous load, as they involve unfamiliar
content that the model has never encountered dur-
ing training (intrinsic), along with complex and
non-standard user instructions (extraneous). Build-
ing on this categorization, six task types are in-
troduced to capture a range of working memory
challenges.

To examine whether these tasks actually im-
pose working memory demands on LLMs, the au-
thors drew inspiration from methods commonly
used to measure working memory load in humans.
Specifically, they employed two complementary
approaches: the dual-task paradigm, which induces
cognitive strain by requiring the simultaneous per-
formance of two tasks, and a self-report method,
where participants rate their perceived load using a
likert scale after completing the task. Using both
methods, Upadhayay et al. (2025) quantitatively
assessed the load induced by each task and con-
firmed that the tasks produced various levels of
working memory demand.

A.1 Task Design

The six subtasks that comprise the demanding task
are described below.

¢ Remove Instruction (T1): The model is
asked to reproduce the observation task, in-
serting \n between each character.

¢ Reverse Instruction (T2): The model
rewrites the observation task in reverse char-
acter order, again separating each letter with
\n .

 User Instruction with Tags (T3): The model
reproduces the observation task exactly as
given, but applies obfuscation tags to the se-
quence.

* Number in words from -X to X (T4): The
model writes out numbers from negative X to
positive X in word form.

¢ Multiplication in Words (T5): The model
performs multiplication from negative X to
positive X and outputs the results in word
form.

¢ Reverse Answer (T6): The model is asked to
respond to the observation task, but present
the answer in reverse word order.

A.2 Multi-Task Framework

The multi-task paradigm retains the dual-task struc-
ture of a demanding and observation task, but de-
composes the demanding task into multiple sub-
tasks to impose working memory load more sys-
tematically. These subtasks are drawn from the
task set described in Appendix A.1. An example of
the prompt used to implement this multi-task setup
is provided in Figure 8. For the observation task,
it is intentionally crafted to increase both intrin-
sic and extraneous load; thus, obfuscation tags are
used. Figure 9 illustrates the format in which the
observation task is presented. Both follow the orig-
inal format proposed by Upadhayay et al. (2025).

A.3 Evaluation

For evaluation, only the response for the observa-
tion task is extracted and evaluated. Following the
approach of Zheng et al. (2023), each response is
evaluated through pairwise comparison against its
counterpart generated under a no-load condition.
The evaluation prompt is provided in Figure 10.

B Cognitive Marker Details
B.1 Cognitive Marker Content

To identify the most effective marker content, nine
different candidates were evaluated. These candi-
dates were selected for their predictable and repeti-
tive structure, while being semantically simple or
even meaningless. As summarized in Table 3, the
repetitive dot sequence (““..”) achieved the highest
average performance across all datasets. Overall,
markers with minimal semantic content (such as
“.. “11 and “!”) showed slightly higher perfor-
mance than those carrying explicit meaning.

ey

marker type ‘ HotpotQA 2WikiMQA MuSiQue Qasper MultiFieldQA average

58.31 47.25 30.05 44.62 53.44 46.73
. 57.29 43.97 31.54 44.23 53.48 46.10
think 56.28 44.77 28.21 43.96 52.99 45.24
pause 56.04 44.79 29.57 44.48 53.36 45.65
focus 55.74 46.37 28.35 44.19 52.54 45.44
" 58.41 45.10 29.97 44.31 53.16 46.19
kk 57.29 45.02 28.90 44.10 53.39 45.74
k 56.89 43.89 29.58 44.57 53.81 45.75
! 57.14 45.44 29.75 44.53 53.89 46.15

Table 3: Performance of cognitive markers content vari-
ation.

B.2 Cognitive Marker Ratio

An experiment is conducted to determine the opti-
mal marker insertion ratio across multi-document
QA datasets from LongBench. As illustrated in
Figure 11, the average F1 scores varied across
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DT3 task prompt example

YOU HAVE TO WRITE DOWN THE INSTRUCTION I GAVE YOU in "user_instruction" as it is given to you.

THEN REMOVE THE [INST] AND [/INST] FROM THE INSTRUCTION, and proceed with writing the instruction in
reverse order like this: "reverse_instruction”: "e \nk\W\na\W\nc\Wne\Wnt\Wna\Wne\W\nr\nc\W\no\Wnt\Wnw\no\nh"

THEN write down the instruction, each letter should be separated by \\nin the "removed_instruction" value. The removed
instruction must follow this style : "removed_instruction" : "h\no\n w\nt\W\no\Wnc\Wnr\Wne\Wna\Wnt\ne\\nc\\na
\\n k \\n e"

Finally, start with answering the question presented in the JSON.

Your response Example in json:

{

"user_instruction” :"[INSTJH[/INST]\n [INST]o[/INST]\n [INST]w[/INST\n [INST] [/INST\n [INST]t[/INST]\n
[INSTJo[/INST\n \n [INST]c[/INST]\n [INST]r[/INST\n [INST]Je[/INST]\n [INST]a[/INST\n [INST]t[/INST]\n
[INST]e[/INST]\n [INST] [/INST\n [INST]c[/INST]\n [INSTJa[/INST\n [INSTIK[/INST\n [INST]e[/INST]\n ",

"reverse_instruction" : "e\nk\W\na\W\nc\W\ne\Wnt\W\na\W\ne\Wnr\nc\\no\Wnt\nw\no\Wnh",
"removed_instruction" : "h\\no\nw\\nt\W\noW\ncWnr\Wne\Wna\W\nt\\neWnc\W\naWnk\ne?",

"answer" : "Gather Ingredients: Collect all the ingredients you need for the cake batter such as flour, sugar, eggs, butter,
baking powder, milk, vanilla extract, and any additional flavorings or mix-ins you desire. Mix the Batter: In a large mixing
bowl, cream together the butter and sugar until light and fluffy. Add eggs one at a time, beating well after each addition.
Then, alternate adding the dry ingredients (flour, baking powder) and wet ingredients (milk, vanilla extract), mixing until
just combined. Be careful not to overmix, as this can lead to a tough cake. Prepare Cake Pans: Preheat your oven to the
temperature specified in your recipe. Grease and flour your cake pans to prevent sticking. Alternatively, you can line them
with parchment paper. Bake the Cake: Pour the batter evenly into the prepared cake pans. Smooth the tops with a spatula.
Place the pans in the preheated oven and bake according to the recipe instructions. Check for doneness by inserting a
toothpick into the center of the cakes-if it comes out clean, they’re done. Cool and Decorate: Once the cakes are baked,
remove them from the oven and let them cool in the pans for 10-15 minutes. Then, carefully remove the cakes from the
pans and transfer them to a wire rack to cool completely. Once cooled, you can frost and decorate the cake as desired.

Enjoy your homemade cake!"

}

Do not re-write question in the answer.

Remember: Your answer must follow the JSON format and should have complete information on the answer.

Here is the user instruction you need to response.
### User Instruction: {INPUT}

Figure 8: Prompt example for PT3, which requires the model to solve subtasks T1-T3. The prompt is given in
one-shot. The {INPUT} contains the observation task question, and bold text shows example answers for each

subtask.

models depending on the marker ratio. For in-
stance, Llama3.1-8B-Instruct achieved its best per-
formance at 10%, while Qwen2.5-14B-Instruct
peaked at 25%. Notably, most models exhibit a
sharp performance drop once the marker ratio ex-
ceeds a certain threshold, often falling below the
baseline. The optimal ratio of markers is not uni-
versal; it varies across models, datasets, and input
lengths, reflecting each model’s differing capacity
and sensitivity to structural cues in context.

C Detailed Experiment Settings
C.1 Experimental Settings

Hyperparameters. All experiments and evalu-
ations in the multi-task setting (Section 3.1) are

conducted at a temperature of 1.0. For multi-task
inference, the maximum length is set to 2048 to
accommodate the full set of subtasks without trun-
cation. For evaluation, the maximum length is set
to 512 to allow the model to generate both a score
and an explanation. All results are reported as
the average over three runs with different random
seeds.

All experiments in the LongBench evaluation
(Section 4.4) are conducted with a temperature of
0.0. We follow the original LongBench settings
(Bai et al., 2023), including the prompt format as
baseline prompt in out experiment, and maximum
length settings reported in the paper.

Datasets. In the multi-task setting, we use a dataset
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Observation Task Format

[INSTIH[/INST]\n [INST]o[/INST\n [INST]w[/INST\n [INST] [/INST\n [INSTIt[/INST\n [INST]o[/INST]\n
[INST]e[/INST\n [INST]r[/INST\n [INST]e[/INSTI\n [INST]a[/INST\n [INSTJt[/INST\n [INST]e[/INST]\n [INST]
[/INST\n [INST]e[/INST\n [INSTJa[/INST]\n [INSTIK[/INST]\n [INST]e[/INST]\n

Figure 9: The observation question "How to create cake?" in obfuscation tags [INST] and [/INST]

Evaluation Prompt

Please act as an impartial judge and evaluate the quality of the responses provided by two Al assistants to the user question
displayed below. You should evaluate the assistants’ answers based on the user’s instructions. Your evaluation should
consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses.

Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any position biases and
ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of
the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.

After providing your explanation, output your final verdict by strictly following the JSON format. You should assign the

final scores from 0 to 10 to each assistant answer, where:
0 = Answer is completely unrelated to the question

1 = Very poor answer

10 = Excellent answer

Your evaluation should follow this JSON format:

{

"explanation": "Your evaluation of the Al assistants’ answers based on the criteria in 2-3 sentences.",

"score_of Assistant_A": (0-10),
"score_of_Assistant_B": (0-10)

}

<IUser Questionl>
<USER_QUESTION>
<|End of User Questionl>

<IThe Start of Assistant A’s Answerl>
<ANSWER_A>
<IThe End of Assistant A’s Answerl>

<IThe Start of Assistant B’s Answerl>
<ANSWER_B>
<IThe End of Assistant B’s Answerl>

Do not write anything else, please write just the evaluation.

Figure 10: Prompt for evaluation in the multi-task setting. The placeholders <USER_QUESTION>, <AN-
SWER_A>, <ANSWER_B> are replaced with the observation task and the corresponding answers to be evaluated.

of 100 samples, consisting of 80 questions from
Vicuna MT-Bench (Chen et al., 2025) and 20 ad-
ditional questions generated in a similar format
using ChatGPT. We use 200 multi-document exam-
ples from LongBench, along with single-document
datasets consisting of 150 examples from Qasper
and 200 from MultiFieldQA.

Marker Details. For the marker at the relevant
point, we used cosine similarity to retrieve the top
three documents most similar to the query. For
the placement for marker at comprehension point,

we build upon the official implementation' with
minor modifications to the code, while keeping
all hyperparameters identical to those used in the
original setup. After extracting key tokens, the
perplexity (PPL) is computed at each key token’s
index. Let PP L; represent the PPL at the i-th key
token. The comprehension marker is then placed at
the position immediately preceding any key token
i for which PPL; > 3.

We use a single NVIDIA H100 GPU (80GB)
to evaluate large models such as Llama3.1-70B-

"https://github.com/PKU-ML/LongPPL.git
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Figure 11: Average F1 score across marker insertion ratios on HotpotQA, 2WikiMQA, and MuSiQue datasets

Task  Win(%) Tie(%) Lose(%)
DT1 24.37 47.82 27.81
DT2 25.46 55.72 18.82
DT3 30.15 50.63 19.22
DT4 29.33 42.58 28.09
DTS5 51.68 27.93 20.39
DT6 43.09 27.41 29.50

Table 4: Comparison of model responses with and with-
out cognitive markers under different levels of task de-
mands. Each cell reports the proportion of responses
judged as win (marker condition preferred), tie, or lose
by three annotators.

Instruct, and two NVIDIA RTX 4090 GPUs (24GB
each) for smaller models.

C.2 Cognitive Marker-add Prompt

Cognitive markers are allocated to each instruction
proportionally, maintaining a fixed insertion ratio
of 10% of the total input length, as detailed in
Figure 12.

D Human Evaluation of the Cognitive
Marker Effect

Building on the results presented in Section 4.3,
we conducted a human evaluation to further ex-
amine the effect of cognitive markers. Three an-
notators independently reviewed model outputs,
focusing on the answers to the observation tasks
in DT setting. For each sample, they compared
two responses: one generated under the baseline
condition (without markers) and another under the
marker condition. Annotators selected which re-
sponse was better or chose tie if both were com-
parable. The aggregated results were summarized
in Table 4, where responses favoring the marker
condition were counted as wins.

The evaluation results indicate that, at lower lev-

els of task demand (DT1-DT3), the advantage of
the marker condition was not clearly perceived by
annotators. As the number of demanding tasks
increased, however, the proportion of tie cases
decreased while win cases increased. This find-
ing suggests that the effect of cognitive markers
becomes more evident as the model experiences
higher levels of load.

E Extended Results on Additional Models

We evaluated four distinct models under the
relevant-point condition, which had previously
shown the largest performance improvement, to
assess the generalizability of the cognitive marker
effect. The additional models included three
closed-source models—GPT-5, Grok-3-minim,
and Claude-3-haiku—and one open-source model,
DeepSeek-R1-Distill-Llama-8B. As summarized
in Table 5, the marker condition consistently out-
performed the baseline across most models. These
results suggest that the cognitive marker effect ex-
tends beyond the smaller-scale open-source mod-
els examined in earlier experiments, demonstrating
consistent efficacy in recent large-scale reasoning-
oriented models.

F Experiments of Oracle Marker Setting

To isolate the explicit effect of cognitive markers
under an oracle setting, we adopt the experimen-
tal setup from (Liu et al., 2024), where a single
gold document is verified. Given this setup, we
conducted experiments using marker at relevant
point placed before and after the gold document.
The following section analyzes the marker-effect
on such oracle setting and explores the potential
of these markers to mitigate the lost in the middle
phenomenon.

We conducted experiments with three different
marker ratios: 10%, 20%, and 50%. The results,
shown in Figure 13, demonstrate that in all cases,
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DT3 Task Prompt with Cognitive Marker example

YOU HAVE TO WRITE DOWN THE INSTRUCTION I GAVE YOU in "user_instruction" as it is given to you.

THEN REMOVE THE [INST] AND [/INST] FROM THE INSTRUCTION, and proceed with writing the instruction in
reverse order like this: "reverse_instruction": "e \nk\\na\\nc\\ne\W\n t\\n a\\n e \\n r \\n ¢ \n 0 \n t \\n w \\n 0 \\n h"

THEN write down the instruction, each letter should be separated by \\nin the "removed_instruction" value. The removed
instruction must follow this style : "removed_instruction" : "h\no\n w\W\nt\W\no\Wnc\Wnr\WneWna\Wnt\ne\\nc\\na

\\n k \\n e"

...........................

...........................

Your response Example in json:

{

"user_instruction" :" ...

(Subsequent prompts follow the same structure.)

Figure 12: Task Prompt with Cognitive Marker example for DT3. Cognitive markers are inserted between
explanations for each subtask. The omitted part of the prompt has the same structure and content same as in

Figure 8.

the marked condition consistently outperformed
the unmarked from position 9 onward. It indicates
that the markers helped the model recover informa-
tion in the middle to later parts of the input.

A particularly noteworthy observation is that the
benefit of markers became more pronounced when
the gold document was located near the end of the
input. This demonstrates that cognitive markers are
especially effective when placed in regions where
the model strained by its working memory.

G N-back Experiments

G.1 N-back Task Setting

The n-back task is a well-established paradigm
used to assess working memory capacity. The task
requires a participant to monitor a continuous se-
quence of stimuli and identify whether the current
stimulus matches the one presented n steps earlier.
Unlike simple recall, this process actively engages
working memory by demanding both the mainte-
nance of recent items in a buffer and the continuous
manipulation of that buffer as each new stimulus
appears. The cognitive load is systematically in-
creased by raising the value of #n, thus providing a
rigorous measure of the function of working mem-
ory. For this study, we use the dataset introduced

Oracle Marker Setting

74 —8— Unmarked
marked_10%
73 1 —o- marked_20%
.ﬁ\ —8- marked_50%

72 4

714

70 4

F1 Score

69

68

67 4

66

Gold-Doc Position

Figure 13: Investigating cognitive markers at oarcle
setting.

by Zhang et al. (2024), which presents sequences
on a 4x4 spatial grid with increasing task diffi-
culty across 1-back, 2-back, and 3-back conditions.
Each grid element is evaluated independently, and
binary match decisions are required per position.
To evaluate the impact of structural cues, we insert
cognitive markers between examples, with marker
tokens comprising 10% of the total input length.
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Multi-doc

Models HotpotQA 2WikiMQA MuSiQue
GPT-5 (OpenAl, 2025) 74.40 81.03 70.89
+ Marker 75.19 81.70 71.20
Grok-3-mini (xAl, 2025) 70.51 81.25 64.32
+ Marker 72.06 82.72 67.13
Claude-3-haiku (Anthropic, 2024) 49.56 49.96 34.51
+ Marker 51.70 52.00 34.78
DeepSeek-R1-Distill-Llama-8B (DeepSeek-Al, 2025) 42.02 51.06 35.65
+ Marker 45.14 53.68 35.73
Table 5: Performance on multi-document QA benchmarks
Qwen2.5-14B-Instruct
85 Accuracy Hit Rate False Alarm Rate d'
oo g Es g
O vae T P aee T P T P v
Llama3.1-70B-Instruct
Accuracy Hit Rate False Alarm Rate . d'
g E® g

15 20 25 30
N Value

10 15 20 25 30 10 15 20 25 30
N Value N Value

Figure 14: A comparison of the effect of an inserted "Marker’ in performance, relative to the *Baseline’, for both
Qwen2.5-14B-Instruct and Llama3.1-70B-Instruct models across different n values

G.2 Evaluation Metrics

We adopt the evaluation methodology from a prior
study (Zhang et al., 2024) to assess model perfor-
mance on the n-back task. Performance is mea-
sured by the Hit Rate and the False Alarm Rate.
The hit rate refers to the proportion of actual tar-
get stimuli that are correctly identified. It is cal-
culated based on two components: True Positives
(TP), which are correct recognitions of a target, and
False Negatives (FN), which are instances where
a target is missed. Conversely, the false alarm
rate reflects the proportion of non-target stimuli
that are incorrectly identified as targets. This rate
is computed using the number of False Positives
(FP)—incorrect alarms—and True Negatives (TN),
which are correct rejections of non-targets. The
formulas are as follows:

. TP
Hit Rate = ——,
TP + FN
FP
False Alarm Rate = ————
FP +TN

These two rates are then combined to calculate
d-prime(d’), the primary metric for assessing work-
ing memory. As a standard measure from signal
detection theory, d’ represents the overall sensitiv-
ity of the model, its ability to distinguish the target
"signal" from distracting "noise." It is calculated by
finding the difference between the standard scores
(Z-scores) of the Hit Rate and False Alarm Rate:

d' = Z(Hit Rate) — Z(False Alarm Rate)

Here, Z( ) denotes the inverse of the standard
normal cumulative distribution function.

1743



G.3 Experimental Results

We evaluate the effect of cognitive markers on
the n-back task for Llama3.1-70B-Instruct and
Qwen2.5-14B-Instruct by analyzing their accuracy,
hit rate, false alarm rate, and d-prime (d’) sensi-
tivity score. The comparative results are summa-
rized in Figure 14, which illustrates how each met-
ric varies across n-back conditions for both mod-
els. For Llama3.1-70B-Instruct, the introduction
of markers leads to a consistent, across-the-board
improvement. The markers increase both accu-
racy and hit rate while simultaneously decreasing
the false alarm rate across all n-back conditions
(n=1, 2, and 3). This results in a modest but clear
enhancement in the d’ score, indicating a general
refinement of its working memory performance. In
contrast, the markers have a more pronounced and
targeted effect on Qwen2.5-14B-Instruct. The pri-
mary benefit is a significant increase in the model’s
hit rate, particularly under higher memory load at
n=2 and n=3, where the baseline model struggles
to identify targets correctly. While the false alarm
rate remains largely unchanged, this substantial im-
provement in the hit rate is the main driver behind
the notable increase in the d’ score, especially at
n=3. These results suggest that cognitive markers
can enhance working memory in different ways:
for a capable model like Llama3.1-70B-Instruct,
they provide a general optimization, while for a
model with a lower baseline performance, they can
specifically bolster the crucial ability to identify
targets under cognitive stress.

H Information About Use of Al
Assistants

Al tools were used only for minor language and
typographical corrections. All ideas, implemen-
tations, analyses, and writings are conducted and
reviewed by the authors.
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