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Abstract

Logical reasoning is a pivotal component in
the field of artificial intelligence. Proof plan-
ning, particularly in contexts requiring the val-
idation of explanation accuracy, continues to
present challenges. The recent advancement
of large language models (LLMs) has led to
significant progress in natural language proof
planning, evolving from one-stage generators
to more complex three-stage systems that in-
clude additional searchers or verifiers. While
these assisted methods improve the quality of
generated results, they also introduce increased
search efforts and computational costs. Fur-
thermore, the generative process itself remains
underexplored. In this study, we propose a
stepwise decoding approach augmented by con-
trastive learning to address two common errors
encountered during the LLM generator’s decod-
ing process. We fine-tune the language model
using both vanilla and enhanced hard negatives
to mitigate these decoding errors. Empirical re-
sults demonstrate the effectiveness of our strat-
egy. Additionally, our further analysis reveals
that even larger LLMs still struggle to generate
rigorous logical chains.

1 Introduction

Logical reasoning underpins the comprehension
of human cognition and intelligence in ma-
chines (Goel et al., 2017). Large Language Models
(LLMs) like GPT (Brown et al., 2020; Ouyang
et al., 2022) and PaLM (Chowdhery et al., 2022;
Anil et al.,, 2023) have pioneered using natu-
ral language as a platform for logical reasoning,
complementing the traditional use of formal lan-
guages (Kazemi et al., 2022; Creswell et al., 2022).
The incorporation of natural language broadens
the scope of logical reasoning by allowing flexible
querying and tapping into the extensive implicit
knowledge encapsulated within LL.Ms.

In examining the capacity of LLMs for logical
reasoning, it is crucial to consider not only the ac-
curacy of their answers but also the correctness

of their explanations (Xu et al., 2023). Utiliz-
ing prompting methods such as in-context learn-
ing (Brown et al., 2020) and chain-of-thought (Wei
et al., 2022), LLMs have shown promising re-
sults across various deductive reasoning tasks in
question-answering formats (Weston et al., 2015;
Tafjord et al., 2021; Saparov and He, 2022; Han
et al., 2022). These approaches decompose the
final task goal by guiding the LLMs through inter-
mediate reasoning steps in a carefully constructed
context. However, providing correct explanations,
which covers completeness, redundancy, correct-
ness (Xu et al., 2023), emerges as a more daunting
challenge. This is particularly evident in tasks that
involve generating reasoning chains from premises
leading to a conclusion, known as proof genera-
tion (Clark et al., 2020; Dalvi et al., 2021). Unfor-
tunately, LLMs often fall short in creating concise
and exact proof trees, commonly producing super-
fluous or imprecise intermediate steps.

Previous studies have utilized LLMs to gener-
ate proof trees, employing a range of techniques
from holistic approaches (Qu et al., 2022) to in-
cremental steps (Tafjord et al., 2021; Sanyal et al.,
2022). Recent methods increasingly rely on post-
processing to enhance the quality of generated re-
sults, introducing verification- and search-based
systems (Hong et al., 2022; Yang et al., 2022).
However, as the methods become more complex,
there is a corresponding increase in search efforts
and computational costs. Conversely, there has
been insufficient focus on refining the generative
process itself. Current models exhibit proficiency
in selecting relevant premises but struggle to de-
duce intermediary conclusions, highlighting a defi-
ciency in their understanding of semantic nuances
during stepwise deductive reasoning.

Addressing this issue, we introduce a novel strat-
egy dubbed ConDec (Contrastive learning based
stepwise Decoding), designed to enhance the gen-
erative aspect of LL.Ms for deductive reasoning
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Method Stepwise Stepwise Direction Search Verifier Human-authored  Stage
Generation  Correction Benchmark
EntailmentWriter (Dalvi et al., 2021) — v 1
IRGR (Ribeiro et al., 2022) v — v v 2
SCSearch (Bostrom et al., 2022) v — v 2
MetGen (Hong et al., 2022) v both v v 2
ADGV (Sprague et al., 2022) 4 both v 4 v 3
NLProofs (Yang et al., 2022) v — v v v 3
ConDec v v — v 1

Table 1: Comparison of methods over natural language proof generation. Stepwise Correction means that if stepwise
generation is enhanced in training. Stage calculates if the method contains generation, verification, and search.

tasks. ConDec leverages carefully constructed hard
negatives — outputs that are deceivingly similar
in form yet differ semantically — to refine genera-
tion precision. These hard negatives can be sim-
ple sequence alterations or products of an intricate
sampling and reasoning process, aided by an ex-
ternal reasoner and checker. Intuitively, the hard
negatives are designed to solve decoding errors an-
alyzed in (Dalvi et al., 2021): repetition and invalid
entailment. Finetuning with these hard negatives
notably advances the LLMs’ proficiency in interme-
diate step and conclusion generation, culminating
in overall improved proof accuracy. The main con-
tributions of this study are threefold:

* We introduce ConDec, a stepwise decoding
with contrastive learning strategy that en-
hances stepwise generative quality in proof
generation tasks, and devise an automatic
method for hard negative generation involving
a reasoner and a checker;

* We conduct an extensive empirical analysis
on the Entailment benchmark, demonstrating
the effectiveness of the proposed method;

* We reveal that LLMs even equipped with
chain-of-thought strategies still struggle to
perform rigorous logical reasoning in natural
language proof generation tasks.

2 Related Work

2.1 Logical Reasoning with Natural Language

Logical reasoning is an important ability to re-
alize human-level cognition and intelligence in
Al (Nunes, 2012). Early research of logical rea-
soning uses formal language to represent knowl-
edge and conducts symbolic reasoning (Muggleton
and De Raedt, 1994). Recent research uses pre-
trained language models for logical reasoning in

the form of natural language to alleviate the repre-
sentation challenge with formal language (Musen
and Van der Lei, 1988).

Among the logical reasoning over natural lan-
guage (Yang et al., 2023), deductive reasoning
covers aspects including hypothesis classification,
proof generation, proof generation with incomplete
information, and implication enumeration. Sev-
eral tasks have been proposed to evaluate these
reasoning abilities. Specifically, hypothesis clas-
sification is conducted over RuleTaker with trans-
formers (Clark et al., 2020). Proof generation pro-
viding rationals along with the predicted answer
for emulating formal reasoning is further proposed
to increase the explanability (Saha et al., 2020).
ProofWriter (Tafjord et al., 2021) produces a de-
ductive chain of reasoning over proof generation
and implication enumeration with an iterative gen-
erating style. To enhance the chain of reasoning for
multi-step premises, EntailmentWriter tests trans-
formers’ explainability in the form of entailment
trees over EntailmentBank (Dalvi et al., 2021).

2.2 Proof Generation

Methods for finetuning language models for proof
generation vary in the proof direction, infer-
ence with or without hypothesis, and whether
search or verification is involved. One line of re-
search is inference without a hypothesis available.
FaiRR (Sanyal et al., 2022) breaks proof gener-
ation into three steps: rule selection, fact selec-
tion, and knowledge composition. MetGen (Hong
et al., 2022) iteratively generates the entailment
tree by conducting a single-step entailment with
separate modules and a reasoning controller. SC-
Search (Bostrom et al., 2022) decomposes the de-
ductive reasoning task into separate steps coor-
dinated by a search procedure, producing a tree
of intermediate conclusions that faithfully reflects
the system’s reasoning process. ADGV (Sprague
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Task Description
P Input
The sun will be the star that appears the

Hypothesis h: prighrest to the earth:

sentl: the sun is the star that is closest
to earth

sent2: the four planets farthest from the
sun are made of gas

sent3: far means great in distance

sentd: furthest / farthest means greatest
/ most / highest in distance

sent5: to be in the sun means to be in
the sunlight

sent6: appear is similar to apparent
sent7: brightness means amount of light

Facts C:

sent13: a source of
something produces light

Output

h: the sun will be the starthat
appears the brightest to the
int2: as the stars become
closer, the light of the stars
will appear brighter

Proof tree (T):

sentl: the sun is the star that
is closest to earth

sent11: as a source of light
becomes closer, the light will
appear brighter

intl: stars are a
source of light

T

sent16: a star
produces light

Stepwise Decoding with Contrastive Learning (ConDec)

Input x for 2nd step generation:

Stepwise output step,:

$hypothesis $=the sun will be the
star thatappears the brightest to

[ Encoder H Decoder ]

intl & sentll -> int2: as the stars become
closer, the light of the stars will appear brighter;

the earth;

Sfacts$=sentl:thesunisthe star —> MQ @ H —+ Vanilla hard negative step,:
thatis closestto earth sent2:the . . .
four..; [ Projection layer ] intl & sentll -> int2: as a source of light
$partial_proof$=sent13 & sent16 becomes closer , the light will appear brighter;
-> intl: stars areasource of light G
zx & Enhanced hard negative step,:
K‘ _ ;@ sentll & sentl -> int2: the sun will be the star
Zg Zs.» that appear the brightest to the earth;

Figure 1: Architecture of the stepwise decoding with contrastive learning over hard negatives. The hard negatives
are constructed by vanilla and enhanced strategies. Vanilla strategy means simple conclusion substitution. The
enhanced strategy uses a reasoner and a checker to generate hard negatives.

et al., 2022) proposes to abductively infer a premise
given another premise and a conclusion, as well
as to search over two fingers interleaving deduc-
tive (forward-chaining) and abductive (backward-
chaining) inferences.

Another line of work is with the hypothesis avail-
able. IBR (Qu et al., 2022) enhances the inter-
pretability of reasoning procedures by predicting
nodes and edges in the proof tree iteratively back-
ward from the question, as well as increasing ef-
ficiency and accuracy by simplifying the interme-
diate process of reasoning. IRGR (Ribeiro et al.,
2022) explains a given hypothesis by iteratively
searching for suitable premises, constructing a sin-
gle entailment step at a time. NLProofs (Yang et al.,
2022) trains an independent verifier to check the
validity of the proof steps to improve decoding ac-
curacy. Our work follows this line and we focus
on stepwise decoding correction on the generator
itself. A comparison of our method with other ap-
proaches with LL.Ms is presented in Table 1.

3 Problem Formulation

Following the task definition in Yang et al. (2022),
the proof generation task is to derive a proof tree T’
given a hypothesis h and a set of supporting facts
C = {senty,sentg,...,sent, }. The proof tree T’
is represented as a tuple 7' = (h, C,U, S). C is

a subset of the facts {sent;} € C, denoting leaf
nodes on the tree 7. U = {inty,inty, ..., int,, }
denotes the intermediate nodes on the tree. The
intermediate nodes are deduced during the reason-
ing process. Each intermediate node represents an
intermediate conclusion. The intermediate nodes
are internal tree nodes. On top of the tree, h is the
root node as well as the final conclusion needs to
be proved.

The structure of the tree is denoted by reason-
ing steps S = {step,, steps, ..., step, }. Each in-
ternal tree node corresponds to a reasoning step
step;, € S with int; € U as the conclusion and
its children as premises, i.e., sent; & int; — ints,
representing that intermediate node ints is the con-
clusion of leaf node sent; and intermediate node
int;. The premise of a reasoning step can be from
leaf nodes or intermediate nodes. Under the step-
wise generation setting, intermediate nodes and
proof steps up to the current step are added to given
facts as input to generate new intermediate nodes
for the next step.

4 Approach
4.1 Stepwise Decoding with Contrastive
Learning

With stepwise training, subtrees are sampled on the
original entire proof graph. The decoding goal can
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be the intermediate node or the final hypothesis of
the subtree, depending on the sampling strategy. As
analyzed in (Dalvi et al., 2021), there are decoding
errors leading to inaccurate proof step generation,
finally leading to entire proof generation failure.
An overview is presented in Figure 1.

To address the problem, we adopt a contrastive
learning technique to improve the stepwise decod-
ing quality. Learning with contrasting positive and
negative pairs can improve the generalization abil-
ity of conditional text generations (Lee et al., 2020;
An et al., 2022). Inspired by this, we construct neg-
ative decoding samples to improve the reasoning
ability of the generator.

The goal of the generator is to output a
stepwise reasoning step step(-z)

j
(53 50 5(2 ), s §(LZ)) with length L conditioned on the

with tokens

input text sequence z(¥) = (~§') i*g), ...). The in-
put text sequence is a concatenation of contexts
from hypothesis h facts C, and previous steps
{step(f), . step } 1 is the index of instances in
a batch. The ﬁnetumng loss is to maximize the con-
ditional log-likelihood log py(step;|z) for a given

. 0) @)V .
N observations {(z', step;”) _ } as follows:

N
= logpo(step|2?), (1)

Lrire(0)
i=1
L
(@) (@)1 — )
(51 7-"73[, ’.’E ) Hp (Sl ’8<lv )7 ( )
=1

hi” = g(5”, M®;0), M@ = f(2;0), (3)
where f, g denote the encoder and the decoder
respectively. M) is the concatenation of the
hidden representations of the source tokens ().
H@ is the concatenation of the hidden states
m' h(LZ)] at the decoder output.

With a linear projection layer, the hidden states
M® and H® of the encoder and decoder are
mapped onto the latent embedding space:

z) = AvgPool(ReLU(W 10 M@ + by05)),
“)

z() = Angool(ReLU(mejH(i) + bproj))-
&)
The semantic similarity sim between them can be
calculated by distance with a dot or cosine func-
tion. A contrastive loss maximizes the similarity

between the pair of source sequence and target se-
quence while minimizing the similarity between
the negative pairs as follows:

Econt (0) -

N
Z log

=Y, wesexp(sim(a,2M)/r)

exp(szm(zx ,zs )/T) (6)

where S is the set of negative samples in the same
batch and 7 is the temperature parameter.

4.2 Training with Hard Negative

Though stepwise generation improves over a single-
shot generation (training over the entire proof tree
and the decoding goal is a hypothesis), it still has
typical errors (Dalvi et al., 2021): 1) repetition(the
entailed conclusion simply repeats one of the input
sentences); 2) invalid entailment(the entailed con-
clusion does not follow from input sentences). To
improve the decoding quality, we design two types
of hard negatives for these errors and finetune the
model with these hard negatives.

The hard negative sequence %y) is con-
structed based on the gold proof step sequence
stepy). With the hard negative sequences, the de-
coding loss becomes:

Econt—hard (9) =

iv: log exp(szm(zm ,zs )/T)

i=1 Zzg%s U™y exp(szm(zé),zg))/ﬂ’

(N
where Zgl) is the projected hidden state of hard
negatives. The final loss for finetuning is:

L= ﬁMLE + aﬁcontfharda (8)
« is a weighted parameter.

4.2.1 Vanilla Hard Negative

Vanilla hard negatives are constructed based on sub-
stitution, which mimics the form of gold stepwise
proofs, to address the repetition error. we randomly
select one of the premises in a proof step step;
and replace the conclusion with its context. For
example in Figure 1, the vanilla hard negative is
constructed by replacing the gold standard conclu-
sion with the context of input node sentl 1.

4.2.2 Enhanced Hard Negative

To increase the entailment quality over stepwise
proofs, we also propose to construct enhanced hard
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intl: starsare a
source of light

T

sent13: a source of
something produces light

sentl6: a star
produces light

1st step generation

int2: as the stars become closer, the
light of the stars will appear brighter
/ sentl11: as a source of light
intl: starsare a

’ becomes closer, the light will
source of light appear brighter

2nd step generation(Stepwise output step,)

premise
sampling

intl: starsare a
source of light

sent3: far means great in
distance

intl: starsare a
source of light

int2: stars are close to a source of light

sent3: far means 0

greatin distance

» Reasoner »

sentl1l: as a source of light
becomes closer, the light
will appear brighter

sentl: the sunis
the starthat is
closest to earth

sentl: the sunis
the starthat is
closest to earth

0.144

» Checker — ———————

int2: the sun will be the star that 0.968
appear the brightest to the earth o

sentl11: as a source of light
becomes closer, the light
will appear brighter

2nd step generation(Enhanced hard negative step,)

Figure 2: Enhanced hard negative construction is implemented by exploring the unseen combination of premises,
inferencing with the reasoner, and filtering with a score from the checker.

negatives by exploring unseen proof steps with a
reasoner and a checker. The reasoner is first trained
with proof steps step; € S in natural language
and then utilized to generate a conclusion given an
unseen combination of premises in the supporting
facts C'.

Given proof step step;, the premises and con-
clusion in natural language are denoted as set
{p1, p2, ...} and c. The premises are concatenated
as input and the conclusion is output for training
the reasoner.

Lyre(¢) = logpy(clpt, p2, -..), )]

After training, the reasoner can generate a conclu-
sion given an unseen combination of premises. The
premise combinations are first sampled from sup-
porting fact set. The sampled premises {p5, p3, ...}
and generated conclusion c¢® constructs an en-
hanced hard negative step. Details are presented
in Figure 2. In the example, for premises int/ and
sentl I in gold proof, randomly sample one premise
to substitute one of them and use the reasoner to
generate a new conclusion given the recombined
premises.

To improve the quality of the hard negatives
generated from the reasoner, we further adopt the
checker Vera (Liu et al., 2023) to score the hard
negatives and filter those with low scores. Vera is
finetuned over T5-11B with commonsense datasets.
The score from the checker indicates the extent of
the reasonableness of the deductive commonsense
knowledge generated by the reasoner:

score = sigmoid([pf, p3, ..., ¢];7), (10)

where the score is calculated with a sigmoid func-
tion after hidden layers .

5 Experiment

5.1 Dataset

EntailmentBank (Dalvi et al., 2021): Entailment
trees are made up of individual and multi-premise
textual entailment steps. EntailmentBank contains
1,840 multi-step entailment trees for accompanying
QA pairs. For the proof generation task, only the
hypothesis H and context set C' are used as inputs.
Each proof tree T contains an average of 6.6 nodes
and 2.7 entailment steps. Train/Validation/Test
splits are 1,313/187/340 respectively. Entailment-
Bank consists of three tasks as follows:

(1) Task 1 (no-distractor): C consists of exactly
the leaf nodes of the ground truth proof tree;

(2) Task 2 (distractor): C' consists of 15-20 dis-
tractor sentences besides the leaf nodes on the
ground truth proof tree;

(3) Task 3 (full-corpus): C' is a large corpus of
12K sentences derived from WorldTree V2 (Xie
et al., 2020), requiring the model to retrieve rele-
vant supporting facts from the corpus. For each
hypothesis, 25 supporting facts are retrieved. Fol-
lowing Dalvi et al. (2021), we evaluate the zero-
shot performance of the model from Task 2.

5.2 [Evaluation

Following Dalvi et al. (2021), we use the official
tools' to evaluate the generated entailment tree
T = (h,L,E,S) with the golden entailment tree

"https://github.com/allenai/entailment_bank
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Reasoner Enhanced Negative Filtered Negative
3819 Task 1 Task 2 Task 1 Task 2
’ 47,386 104,665 16,371 21,948

Table 2: Distribution of samples from training data,
constructed enhanced hard negatives and filtered hard
negatives on Task 1 and Task 2. In filtering, threshold
score is 0.9.

T* = (h, L*,E*,58%). These metrics evaluate the
correctness along 4 dimensions:

(1) Leaves (F1, AllCorrect): F1 measures the pre-
cision of leaf nodes of T" comparing to gold tree
T*. ALLCorrect=1 if F1=1, and ALLCorrect=1 if
Fil<1.

(2) Steps (F1, AllCorrect): F1 measures the preci-
sion of proof steps structurally correctness. Each
step contains an internal node v € T™ (aligned to
v € T'). The predicted step is correct if v and v are
perfectly aligned. For each tree, ALLCorrect=1 if
F1=1 otherwise 0.

(3) Intermediates (F1, AllCorrect): For the inter-
nal node v € T* (aligned to v € T'), the interme-
diate conclusion is correct if the BLEURT (Sellam
et al., 2020) score between u and v is greater than
0.28 (Dalvi et al., 2021). F1 and AllCorrect from
all intermediate conclusions in 7™ and 7" are calcu-
lated. ALLCorrect=1 if F1=1 otherwise 0.

(4) Overall (AllCorrect): The metric evaluates
whether leaves, steps, and intermediates are all
correct, AllCorret = 1 if and only if all the leaves,
steps, and intermediates are all correct.

5.3 Implementation Details

The optimizer is set as Adam (Kingma and Ba,
2014) for all the training. The average running
time is 18 hours for Task 1 and 24 hours for Task 2.
Experiments are conducted on A800.

Generator. We use Flan-T5-Large as the gen-
erator. Flan-T5-Large is a finetuned version of
T5-Large (Raffel et al., 2020) over a collection of
FLAN instructions (Chung et al., 2022; Longpre
et al.,, 2023). The generator is trained for 500
epochs on Task1 and 600 epochs on Task2. The
learning rate for the first-stage generator is le-4
and Se-5 for Task 1 and Task 2 respectively.

ConDec. The vanilla hard negatives are con-
structed by substituting the conclusion in the gold
proof step with a randomly selected premise node
context. For example, for sentl1 & sent24 -> int:

neptune orbits the sun in the solar system, the hard
negatives substitute conclusion neptune orbits the
sun in the solar system with the context of sentl ]
or sent24. The temperature 7 is set as 0.05 and «
is 0.1. The learning rate of the stepwise decoding
stage is the same as finetuning with original proof
trees. The MLE loss and contrastive loss are
alternatively trained for 10 epochs based on the
finetuned generator with MLE loss only.

Enhanced Hard Negatives. We use Flan-T5-
Large as an additional reasoner to generate unseen
proof steps based on labeled proof trees as hard
negatives. To train the reasoner, details of data
collection are presented in Appendix A.1. The rea-
soner is trained for 30 epochs with a learning rate
of le-4. We further apply Vera (Liu et al., 2023)
to filter unreasonable generated proof steps. De-
tails of stepwise proofs sampled for reasoner and
enhanced new negatives filtered by the checker are
presented in Table 2. To increase diversity, en-
hanced hard negatives and vanilla hard negatives
are jointly sampled for training.

6 Result Analysis
6.1 Main Results

The main results are presented in Table 3. By ana-
lyzing the results, we can find that:

Stepwise correction matters. Stepwise generation
methods (MetGen, NLProofs, ConDec) outperform
single-shot training (EntailmentWriter), even for
EntailmentWriter with a much larger parameter
size (11B). When comparing ConDec with three-
stage generation methods MetGen and NLProofs,
ConDec achieves comparable or even better perfor-
mance on Task 2 and Task 3. This shows that con-
trastive decoding with hard negatives can improve
language models’ reasoning ability, demonstrating
our methods’ effectiveness. While our research fo-
cuses on the generator, combining our method with
theirs may still improve the final accuracy and it is
worth exploring.

Enhanced hard negatives facilitate reasoning.
With enhanced hard negatives, we can find that the
ability of proof planning over three tasks is all im-
proved. Unlike vanilla negative construction, the
enhanced hard negatives contain harder or more
accurate conclusions given premises. Detailed eval-
uation of enhanced hard negatives is in Appendix
A.1. It further improves the training coverage over
reasoning steps, thus leading to better performance
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Task Method Leaves Steps Intermediates Overall
F1 AllCorrect F1  AllCorrect F1  AllCorrect AllCorrect
Task 1 EntailmentWriter 98.7 86.2 50.5 37.7 67.6 36.2 33.5
(no-distractor) EntailmentWriter (11B)  99.0 89.4 51.5 38.2 71.2 38.5 353
MetGen* 100.0 100.0 57.7 41.9 70.8 39.2 36.5
NLProofs* 97.8 90.1 55.6 423 72.4 40.6 38.9
ConDec 99.9 98.2 55.7 42.1 72.3 38.9 36.2
ConDec* 99.9 98.2 57.3 43.2 72.9 41.5 37.9
Task 2 EntailmentWriter 84.3 35.6 35.5 229 61.8 28.5 20.9
(distractor) EntailmentWriter (11B)  89.1 48.8 414 27.7 66.2 31.5 25.6
MetGen* 82.7 46.1 41.3 29.6 61.4 324 27.7
NLProofs* 90.3 58.8 472 344 70.2 37.8 33.3
ConDec 91.0 59.1 50.2 36.5 70.3 38.2 34.1
ConDec* 91.1 60.6 50.7 374 70.7 38.2 34.7
Task 3 EntailmentWriter 35.7 2.9 6.1 2.4 334 7.7 24
(full-corpus)  EntailmentWriter (11B)  39.9 3.8 7.4 2.9 35.9 7.1 2.9
MetGen* 34.8 8.7 9.8 8.6 36.6 20.4 8.6
NLProofs* 43.2 8.2 11.2 6.9 429 17.3 6.9
ConDec 433 8.2 11.1 6.5 434 18.0 6.5
ConDec* 44.7 94 11.7 71 423 17.7 71

Table 3: Main results on EntailmentBank with finetuning method. Methods with * are three-stage. ConDec denotes
finetuning with vanilla hard negatives and ConDec* denotes finetuning with combination of vanilla and enhanced
hard negatives. Best results are boldface and second-best results are underlined.

over proof planning.

ConDec is more efficient with distractors. Specif-
ically, contrastive learning with hard negatives
achieves obvious performance gain over Task 2
and Task 3 while deteriorating the performance on
Task 1. For Task 2 and Task 3, there are distractor
premises or full-corpus, which increases the chal-
lenges for rigorous reasoning. For Task 1, there is
no distractor. Adding hard negatives deviates the
generator from generating correct steps instead of
intermediate nodes.

Predicting intermediate node is still challenging.
ConDec achieves the best performance mostly over
leave or step accuracy. The contrastive loss helps
the generator discriminate between premises and
finds semantically correlated premises to deduce a
conclusion. However, deductive reasoning is still
challenging as the improvement over intermediates
is not as obvious as that on leaves or steps.

6.2 Computational Cost Analysis

ConDec’s design can reduce the inference cost with
a one-stage process during inference as shown in
Table 4. We provide a concrete comparison using
the validation set for Task 2, with the same model
size (Flan-T5-Large), on an A800 GPU. It clearly
shows that ConDec can significantly improve time
efficiency compared to two and three-stage meth-
ods (NLProofs).

Method Stage Time(s) Improvement
ConDec generator 294 -
NLProofs generator+search 430 31.6%
NLProofs generator+search+verity 544 46.0%

Table 4: Computation time comparison(percentage re-
duction). Time denotes the inference time. NLProofs
requires additional search and verification for predic-
tion.

6.3 Ablation Study

Results of the ablation study on Task 2 test split are
presented in Table 5.

Backbone model. The results indicate that
LLaMA-3.2-1B fails to adequately differentiate be-
tween input premises and output reasoning proof
steps. As a decoder model focused on next-word
prediction, LLaMA simply predicts proof steps as
the next sentence following the premises. With
stepwise training, the presence of intermediate or
hypothesis nodes can confuse the model regarding
when to stop generating output, as a subtree with
an intermediate node is a subsequence of the en-
tire tree that includes the hypothesis node. This
is why LLaMA tends to produce shorter outputs
when trained in a stepwise manner.

Moreover, the results for LLaMA are signifi-
cantly lower than those for Flan-T5-Large, despite
the latter’s smaller size. Natural proof generation is
fundamentally a sequence-to-sequence task. Distin-
guishing between input and output is crucial, as the
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Method Leaves Steps Intermediates Overall
F1  AllCorrect F1  AllCorrect F1  AllCorrect AllCorrect
LLaMA-3.2-1B (1.2B, w/o stepwise) 19.5 53 6.4 2.9 13.9 5.3 2.7
LLaMA-3.2-1B (1.2B, stepwise) 15.6 35 4.1 32 9.9 5.0 32
Flan-T5-Large (0.8B, stepwise) 90.7 58.8 49.2 36.2 69.6 36.8 335
+ contrastive loss 90.9 60.3 49.5 35.9 69.4 37.1 324
+ contrastive loss, vanilla hard 91.0 59.1 50.2 36.5 70.3 38.2 34.1
+ contrastive loss, vanilla and enhanced hard 91.1 60.6 50.7 374 70.7 38.2 34.7
Flan-T5-XL (3B, stepwise) 90.9 57.1 50.2 36.5 68.8 35.9 33.8
Table 5: Ablation study results on EntailmentBank test set in Task 2.
Method Leaves Steps Intermediates Overall
F1 AllCorrect  F1 AllCorrect  F1 AllCorrect  AllCorrect

ConDec* 92.4 63.1 55.3 45.5 72.8 43.9 41.2
GPT3 (5-shot) 64.2 15.3 17.6 12.3 53.6 223 12.3
GPT3.5-turbo (5-shot) 61.9 9.0 16.9 43 51.9 15.1 3.74
GPT4 (5-shot) 78.1 32.6 30.2 22.5 63.9 30.8 21.9
GPT4 (SI) 79.1 30.0 24.3 14.0 65.4 32.1 13.9
GPT4 (CoT) 79.0 33.7 30.9 22.5 64.7 31.6 22.5
GPT40-mini (5-shot) 63.1 18.2 20.0 13.9 54.5 24.1 13.9
ol-mini (5-shot) 72.5 27.3 28.6 139 50.9 18.7 11.8
ol-preview (5-shot) 84.0 433 38.7 28.0 67.8 33.7 21.9

Table 6: Results on EntailmentBank validation set in Task 2 with finetuning and prompting methods. GPT3.5 is
GPT3.5-turbo-0613. GPT4 is GPT4-0613. GPT40-mini is gpt-40-mini-2024-07-18. ol-mini is ol-mini-2024-09-12.

ol-preview is ol-preview-2024-09-12.

encoder-decoder architecture of Flan-T5 processes
different texts. A case study comparing LLaMA
and Flan-T5 is presented in the Appendix A.6.
Model size. For the model size, we also try Flan-
T5-XL (3B). Stepwise training over Flan-T5-Large
provides a strong baseline. Though much larger
in model size, Flan-T5-XL achieves similar per-
formance over the metrics. It shows that proof
planning requires a higher level of understanding
of deductive reasoning over multi-hops.

Negative sample. ConDec without hard negatives
improves the leave accuracy while decreasing the
step accuracy, leading to a slight drop in the overall
performance. Adding vanilla or enhanced hard neg-
atives can generally improve over all the metrics.

7 Analysis of Closed-Source LLMs

In-context learning (ICL; Brown et al. 2020) and
CoT (Wei et al., 2022) have been widely used in
various reasoning tasks (Patel et al., 2021; Cobbe
et al., 2021; Fu et al., 2022; Xiong et al., 2023).
We apply 5-shot prompting and CoT to evaluate
how LLMs perform on the proof generation task.
The vanilla prompt method simply adopts a k-shot
in-context learning strategy. The CoT decomposes
the reasoning process into step-by-step generation.

Based on it, Select-inference(SI)(Creswell et al.,
2022) is a two-stage COT that decomposes each
reasoning step into a premise selection stage and
a conclusion inference state. Details of the CoT is
illustrated in Appendix A.2.2.

As shown in Table 6. Comparing different
LLMs, GPT4 generally outperforms GPT3 and
GPT3.5-turbo on all the metrics. One detailed
case study of GPT3.5-turbo and GPT4 with k-shot
prompting results is in Appendix A.2.1. It shows
that the GPT3.5-turbo tends to generate more irrel-
evant and inaccurate steps with simple imitation of
premises during inferencing new conclusions. In
contrast, GPT4 conducts deductive reasoning and
generates correct conclusions based on premises.
When accompanied by CoT, GPT4 achieves bet-
ter performance than the vanilla prompt. While
with SI, GPT4 makes more mistakes in the premise
selection stage.

Our ConDec* outperforms all closed-source
LLMs in all metrics. Although recent LLMs such
as ol-mini and ol-preview show improvements
in several metrics compared to their predecessors
(GPT-3.5-turbo and GPT-4), a substantial perfor-
mance gap remains when compared to finetuning-
based methods. Through stepwise training with
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curated datasets, these language models can better
capture the correlations between premises.

8 Conclusion

Logical reasoning is both challenging and funda-
mental in artificial intelligence. Proof generation
serves as a measure of the explanatory capabilities
of large language models in the context of logical
reasoning. To enhance stepwise deductive reason-
ing, we propose a decoding strategy augmented by
contrastive learning. The carefully designed hard
negatives address the typical errors encountered
during the decoding process. The experimental re-
sults across standard benchmarks demonstrate the
effectiveness of our method. Additionally, our anal-
ysis of larger LLMs reveals that they continue to
struggle with proof planning tasks.

Limitations

From the analysis of the paper, natural proof plan-
ning ability is still a challenging topic in evaluating
LLMs’ deductive reasoning ability. The current cu-
rated human-annotated dataset in our experiments
is of limited size to improve LLMs’ deductive rea-
soning ability. Knowledge from related corpora
such as cause and effect, logic reasoning can be fur-
ther applied to improve the proof generation ability
with pre-training or transfer learning.
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Threshold score  Accuracy(%)
0.7 36
0.8 50
0.9 60

Table 7: Human check accuracy on enhanced hard nega-
tives from reasoner and checker with different threshold
scores.

A Appendix

A.1 Details of Enhanced Hard Negatives

Training data of the reasoner is basically all the
proof steps in the training set. Each proof step
is converted into the form of natural language: 1)
premises are concatenated with conjunction “and”;
2) premises and conclusion are linked with “Be-
cause” and “Therefore”. The reasoner is trained
with 8,819 proof steps for both Task 1 and Task 2.

For each proof step step;, substitute one premise
from the the supporting fact set C' except the ones
in current proof step. Recombined proof premises
{p3, p5,...} are converted into natural language
form and used as input to the reasoner. The rea-
soner generates a new conclusion ¢® based on the

(@)

premises, forming a hard negative step jl .

The constructed hard negative %jw is then fil-
tered by the checker with a threshold score. To
determine the threshold score, three PhD students
from the CSE department are assigned with the
task to check the quality of 100 randomly selected
constructed hard negatives. Each hard negative is
first judged by Vera. The score from Vera indi-
cates the reasonableness of the hard negative. By
filtering the score with a threshold, we choose the
constructed negatives with high quality for further
training. The result of human checking over the fil-
tered negatives is shown in the table 7. We find that
with a threshold score of 0.9, 60% of the filtered
hard negatives are reasonable.

A.2 Prompting Methods
A.2.1 Case study for prompting

Result case from GPT?3.5-turbo and GPT4 on Task2
dev split with vanilla prompts is shown in Table 8.

A.2.2 Template for prompting

Prompting template for GPT4 with CoT is in Table
0.

A.3 Baseline Details

MetGen and NLProofs are three-stage methods.
MetGen divides single-step entailment into basic
logical operations. It reasons in both forward
deductive and backward abductive steps. A
controller finally selects promising steps among
the reasoning results. NLProofs uses a trained
verifier to guide the search process of proof
generation. The verifier scores the generation
expansion steps and finally, a proof tree is selected
according to the scores.

A.4 Discussion with RLET

RLET(Liu et al., 2022) is trained using cumulative
signals across the entire entailment tree, marking
the first introduction of reinforcement learning into
the entailment tree generation task. It employs a
one-stage generation method that does not involve
search or verification. RLET flexibly assigns re-
wards to each generated step and utilizes the overall
cumulative reward to optimize training based on
the full trajectory. In contrast, our approach and
previous methods (as listed in Table 1) rely on exact
matches of gold steps as training signals.

In Task 3, the retrieved supporting facts may con-
tain noise and are longer than those in Task 1 and
Task 2. RLET’s focus on long-path proof training
provides it with an advantage over our method (and
previous methods listed in Table 1) in this task.
However, since the supporting facts are sourced
from a relevant corpus, they may deviate from the
training setting, particularly under zero-shot per-
formance conditions. As a result, RLET’s perfor-
mance is significantly lower than that of previous
methods in Task 1 and Task 2.

1705



Hypothesis: new york state has the least sunlight during december

Context:

sentl: precipitation is a kind of weather

sent2: daylight hours means time during which there is daylight

sent3: state means form

sent4: water is in the liquid state , called liquid water , for temperatures between 273 / 32 / 0 and
373/212/100k/f/c

sent5: united states is located in the northern hemisphere

sent9: when the seasons change from summer to fall / from summer to winter , the amount of
daylight will decrease

sent14: new york / new york state is a state located in the united states of america
sent15: winter has the least sunlight

sent22: the earth being tilted on its rotating axis causes seasons
sent23: december is during the winter in the northern hemisphere

Gold Proof: sent14 & sent5 -> intl: new york state is located in the northern hemisphere; intl &
sent23 -> int2: december is during the winter for new york state; int2 & sent15 -> hypothesis;

GPT3.5-turbo: sent23 & sent22 -> intl: December is during the winter in the northern hemisphere;
intl & sent9 -> int2: the amount of daylight will decrease during December; int2 & sentl15 -> int3:
December has the least sunlight; int3 & sent14 -> hypothesis;

GPT4: sent14 & sent5 -> intl: New York state is located in the northern hemisphere; intl & sent23
-> int2: December is during the winter in New York state; int2 & sent15 -> hypothesis;

Table 8: Case study of vanilla prompt with GPT3.5-turbo and GPT4.

Hypothesis: if a fossil of a bird cannot be identified then that kind of bird is probably extinct.
Context:

sentl: identifying is similar to determining.

sent2: if a fossil is of an organism that cannot be identified then that organism is probably extinct.
sent3: discovering something usually requires seeing that something.

sent4: a dinosaur is a kind of extinct animal.

sent5: fossils can be used as evidence for the ancient environment.

sent6: dead means not alive.

sent25: fossils can be used to study the history of organisms and environments on earth

Reasoning step by step and finally output the proof:

From sent13 & sent24, we can infer that a bird is a kind of organism (intl);

From intl & sent2, we can infer that if a fossil of a bird cannot be identified then that kind of bird
is probably extinct (hypothesis);

Proof: sent13 & sent24 -> intl: a bird is a kind of organism; intl & sent2 -> hypothesis;

Table 9: Prompting template of stepwise proof generation for GPT4 with COT.
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A.5 Selection of Enhanced Hard Negatives

Besides randomly selecting premises to construct
enhanced hard negatives, we also select according
to the top similarity score calculated with BM25
(Robertson et al., 2009). Results are presented in
Table 10. The results show that similar distracted
premises do not contribute to intermediate node
accuracy as much as random premises do. This is
because randomly selected premises can introduce
more diversity for the constructed hard negatives.

A.6 Case Study

We present a case study comparing the genera-
tion capabilities of LLaMA 3.2-1B and Flan-T5-
Large to illustrate the differences between encoder-
decoder and decoder-only LLLMs, as shown in Ta-
ble 11. The table indicates that LLaMA (without
stepwise training) generates longer proofs because
it is trained with complete proof chains. In con-
trast, LLaMA (with stepwise training) typically pro-
duces one-step proofs that conclude with either a
"hypothesis" or an "intermediate node," reflecting
the fact that both are endpoints in the sequences
used for stepwise training. Flan-T5-Large (with
stepwise training) strikes a balance between gener-
ating long and short proof chains due to its encoder-
decoder architecture. However, it still faces chal-
lenges in accurately selecting premises.
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Leaves Steps Intermediates Overall

Method  ©1 " liComrect  FI - AllCorrect F1  AllCorrect  AllCorrect
Random 91.0 606 507 374 707 382 347
BM25 908 603 503 368 688  37.9 347

Table 10: Ablation study of enhanced hard negative construction on EntailmentBank test set on Task 2.

Hypothesis: as the distance of the star to earth decreases, the star will appear brighter.
Context:

sentl: a star produces light and heat

sent2: far is the opposite of close

sent3: as the distance from an object increases , the force of gravity on that object will decrease
sent4: brightness means amount of light

sent5: if two or more things are in a relationship then those things impact each other

sent6: feature is synonymous with characteristic

sent25: moving away from the source increases the distance

Gold Proof: sentl & sentl3 ->intl: a star is a source of light; int] & sent21 & sent23 -> hypothesis;

LLaMA-3.1-1B(w/o stepwise): sentl13 & sentl -> intl: stars are a source of light; intl & sent21
-> int2: as the distance of a star to earth decreases, the star will appear brighter; int2 & sent7 ->
hypothesis;

LLaMA-3.1-1B(stepwise): sent21 & sent3 -> hypothesis;

Flan-T5-Large(stepwise): sentl & sentl13 -> intl: a star is a source of light and produces light;
sentl7 & intl & sent21 -> hypothesis;

Table 11: Case study of LLaMA and Flan-TS5.
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