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Abstract

The pervasiveness of large language models
(LLMs) in enterprise settings has also brought
forth a significant amount of risks associated
with their usage. Guardrails technologies aim
to mitigate this risk by filtering LLMs’ in-
put/output text through various detectors. How-
ever, developing and maintaining robust de-
tectors has many challenges, one of which is
the difficulty in acquiring production-quality la-
beled data on real LLM outputs before deploy-
ment. In this work, we propose STAR, a simple
yet intuitive solution to generate production-
like labeled data for LLMs’ guardrails develop-
ment. STAR is based on two key ideas: (i) using
self-automated back-querying to synthetically
generate data, paired with (ii) a sparse human-
in-the-loop clustering technique to label the
data. The aim of self-automated back-querying
is to construct a parallel corpus roughly rep-
resentative of the original dataset and resem-
bling real LLM output. We then infuse existing
datasets with our synthetically generated ex-
amples to produce robust training data for our
detectors. We test our technique on one of the
most difficult and nuanced detectors: the iden-
tification of health-advice in LLM output, and
demonstrate improvement versus other solu-
tions. Our detector is able to outperform GPT-
40 by up to 3.48%, despite having 400x less
parameters.

1 Introduction

The advancement of large language models (LLMs)
has brought about impressive capabilities in a wide
variety of natural language tasks (OpenAl et al.,
2024; Dubey et al., 2024). However, the fact that
these models are pre-trained on massive text cor-
pora inevitably results in the generation of some
undesirable outputs that may be misleading and/or
factually incorrect. Many prominent LLMs have
methods in place to safeguard their interactions
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with users (Rebedea et al., 2023; Inan et al., 2023;
Markov et al., 2023; Salem et al., 2023; Dong
et al., 2024), but developing guardrails technol-
ogy that can effectively minimize LLMs’ usage
risks remains an open challenge. Additionally, con-
ventional techniques typically involve a nontrivial
human component, whether for crafting/curating
specific datasets for the task or for performing red-
teaming.

One prominent challenge in constructing ef-
fective and robust guardrails is obtaining high-
quality production data. This is because there ex-
ists a significant distribution shift between open-
source fine-tuning (FT) datasets, which are typi-
cally human-curated, and the data that is actually
encountered during inference, which is generated
from LLMs (Achintalwar et al., 2024; Koh et al.,
2021; Huang et al., 2021; Taori et al., 2020). Ad-
ditionally, only a select few corporations have ac-
cess to large-scale production datasets containing
LLMs’ prompts and responses, but given their pro-
prietary nature, it is impossible to utilize them for
guardrails development. This scarcity is exacer-
bated in domains such as healthcare or finance, due
to privacy concerns and the involvement of critical
decision-making within the data (Park et al., 2021;
Liu et al., 2023; Du et al., 2024). As guardrails
technology is ultimately targeting LLM outputs,
there is a need for production-quality data to bridge
the inherent distribution shift. While there have
been considerable efforts to construct various LLM
risk benchmark datasets (Ganguli et al., 2022;
Mazumder et al., 2023; Ji et al., 2023; Wang et al.,
2024), there is still a nontrivial human cost, and
manually constructing benchmarks for each partic-
ular risk category is not scalable.

Towards addressing this problem, we intro-
duce STAR: Self-auTomated bAck-queRying, a
simple yet intuitive framework for synthetic gener-
ation of real-world production data. Inspired by the
concept of backtranslation (Sennrich et al., 2016),
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STAR uses an initial set of proprietary annotated
data and generates a completely new set of data.
STAR works by (i) generating a prompt for each
given input text, then (ii) feeding the prompts back
to an LLM, (iii) using the generated text as the
new text, and (iv) performing a sparse human-in-
the-loop labeling scheme, making minimal use of
human feedback to effectively produce labeled syn-
thetic data. Our framework is highly modular, mak-
ing no restrictions on the type of guardrails task,
the type of input data, or even the LLM which is
used for the text generation.

STAR allows for the automated creation of syn-
thetic datasets used for guardrails fine-tuning. Un-
like proprietary production data, STAR generates
the data necessary to develop detector models for
various guardrails tasks without actually access-
ing any real-world task data. We demonstrate the
effectiveness of STAR by applying it to the task
of identifying health-advice in LLMs’ responses,
showing that a lightweight detector model fine-
tuned on STAR data can outperform GPT-40 by
up to 3.48% despite our detector model having
400x fewer parameters. Additionally, our detector
exhibits a more balanced behavior during inference,
with the smallest difference between precision and
recall at just 2.14% (compared to 13.85% for GPT-
40).

The contributions of this work are as follows:

(1) a framework to generate data in the style of an
LLM’s outputs.

(2) a semi-automatic sparse human-in-the-loop an-
notation scheme to label the synthetically generated
data.

(3) a two-stage fine-tuning setup to better adapt
language models towards the STAR data, where
the first stage incorporates a mix of STAR data and
open-source datasets, and the second stage uses
purely synthetic STAR data.

In Section 2, we review contemporary ap-
proaches and techniques. In Section 3, we describe
the STAR framework in detail. In Section 4, we
detail the datasets used for our task. In Section 5,
we showcase the benefits of STAR generated data
for health-advice identification. Finally, in Sec-
tion 6, we describe future work and planned im-
provements. Note that we may refer to synthetic
data and STAR data interchangeably throughout
this paper, but both terms reference the synthetic
data generated through our STAR framework.

2 Related Work

2.1 Prompt Generation

Prior research has utilized many techniques to gen-
erate appropriate prompts or queries from text.
One interesting line focuses on inverting LLM
outputs with minimal access to supplemental in-
formation, using just the next-token probabilities
or even just the outputs of the user queries them-
selves (Morris et al., 2024; Zhang et al., 2024).
Numerous approaches also exist for soft prompt
generation, which involve fine-tuning continuous
vectors prepended to the LLM inputs (Wang et al.,
2022; Li and Liang, 2021). Recent interest has
been towards approaches to optimize and gener-
ate discrete, interpretable prompts that contain the
words themselves, as opposed to just vectors (Deng
et al., 2022; Wen et al., 2023). Different from the
preceding approaches, our STAR framework does
not require specialized fine-tuning for the prompt
generation step, demonstrating its utility as a frame-
work even without prompt generation specializa-
tion. Furthermore, given the modular nature of
STAR, we believe that our framework is comple-
mentary to any prompt generation approach, allow-
ing a user to substitute the query generation stage
with a more specialized query generation module
if desired.

2.2 Question Generation

There have been various approaches to gener-
ate questions from input texts. Differently from
prompt generation, these methods focus on ques-
tion generation (Du et al., 2017), rather than prompt
inversion or prompt learning. Prior work has fo-
cused on validating summary quality with ques-
tions (Wang et al., 2020), generating question-
answer pairs (Krishna and Lyyer, 2019), automatic
question generation for event-extraction (Liu et al.,
2020), or using templates or knowledge graphs to
aid in question generation (Gaur et al., 2022; Ku-
mar et al., 2019; Reddy et al., 2017; Fabbri et al.,
2020). Unlike prior work, our approach consid-
ers both query generation and the corresponding
output generation, in a manner akin to backtrans-
lation. Additionally, it is possible to complement
the STAR framework with a more optimized query
generation scheme, such that it works in tandem
with prior work.
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2.3 Synthetic Data Generation

Synthetic data generation remains a pertinent and
useful capability of present-day LLMs (Long et al.,
2024; Kruschwitz and Schmidhuber, 2024). Main-
stream techniques for LLMs mainly focus on a
variety of prompt-engineering techniques such as
creating roleplay (Li et al., 2023), defining task
specifications or taxonomies (Yoo et al., 2021; Su-
dalairaj et al., 2024), knowledge graphs (Xu et al.,
2024), feedback (Ye et al., 2022), and in-context
learning examples (Wang et al., 2023; Li et al.,
2024). Our approach differs in that we are optimiz-
ing to match the LLM outputs’ distribution, rather
than data quality itself. This is because we consider
data generation for the application of guardrails de-
velopment, and such erroneous or dirty samples
are texts that could realistically be generated by an
LLM during inference. As a result, including some
imperfect samples allows our detector model to be
even more robust.

2.4 Guardrails Development

In recent years, guardrails development for LLMs
has been a prominent subfield within natural lan-
guage processing (Dong et al., 2024). There
have been a variety of different approaches to
implementing guardrails, from using lightweight
detector models (Achintalwar et al., 2024), tax-
onomies and/or red-teaming with LLMs (Inan
et al., 2023; Markov et al., 2023), human pro-
grammable guardrails (Rebedea et al., 2023), to
query-modification and fusion models (Yuan et al.,
2024; Xiang et al., 2024). Our approach is also
one method for guardrails development, but in-
stead of model architecture optimizations, taxon-
omy creation, or runtime inference input/output
rewriting or modifications, we focus more on the
data creation step, namely generating high-quality
production-like data that can be used to make ro-
bust datasets for creating guardrails models. In
this sense, we are less focused on an actual model
framework and more on how to provide the tools
(i.e. data) necessary to help facilitate guardrails
development.

3 STAR

We describe the STAR framework, as seen in Fig-
ure 1, providing details on the data generation pro-
cedure (Section 3.1) and on the sparse human-in-
the-loop (sparse-HITL) labeling algorithm (Sec-
tion 3.2). Please refer to Appendix B for the
comprehensive list of hyperparameters used in the

Prompt

“What question did the user ask to generate the following
text:

{z:}

The user prompt is:"

Table 1: The prompt that we used to generate queries
in stage 1 of our STAR framework. Note that z; € X
represents one sample from our seed dataset.

STAR framework.
3.1 Data Generation

STAR generates synthetic production-quality data
via an automated back-querying procedure. Our
back-querying protocol works in two stages: (i)
query generation from the original texts, and (ii)
answer generation which produces new output
texts from our generated queries. Our base frame-
work utilizes LLaMA 3.1-8B as the LLM for both
stages (Dubey et al., 2024).

We take as input a seed dataset X =
{z1,...,2,}, where each z; is a text sample,
such as a sentence, a paragraph, or a document.
Since STAR supplies its own sparse-HITL labeling
scheme (Section 3.2), we remark that there is no
restriction that the seed dataset X’ be annotated. In
the query generation stage, we produce a query set
Q = {q1,...,qn} such that each query ¢; € Q
corresponds to the text x; € X, and is generated by
asking our LLM which question has the text x; as
a potential answer. The specific prompt template is
illustrated in Table 1.

In the answer generation stage, we use the set of
queries Q to generate synthetic data. For each
query ¢; € O, we prompt our LLM to gener-
ate a response ¥;, resulting in a synthetic dataset
Y ={vi1,...,yn}. This data is production-quality,
since each output y; is LLM-generated, and thus
distributed accordingly to what would be observed
in the wild. It is also possible to increase the
amount of synthetic data generated by simply feed-
ing the same set of queries Q through different
LLMs.

3.2 Sparse-HITL

Note that even if the original dataset X" contains la-
beled text, we cannot assume that the original label
for x; holds for the synthetically generated text y;
— the process does not guarantee complete equiva-
lence between x; and y;. Therefore, we propose
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Prompt
How can | prevent my game from displaying too
many Maplcons at a time?

What question did the user ask to generate the
following text:

It seems like there’s now some sort of internal limit
on how many Maplcons are displayed at a time.

Jhe user prompt is:

Output Text
To prevent the game from displaying too much
information on the screen at one time, use the
Maplcon::setLimit() function.

Synthetic Data Initial Model

_Labeled Data

)

Figure 1: An overview of the STAR schematic. (Top) For each data point, we first transform it into a query, and then
re-prompt an LLM with our formulated query to generate a new synthetic data point. We note that for our particular
implementation, the input LLM and the output LLM are the same. (Bottom) To label our synthetically generated
data, we first use an initial model to split the data by predicted label, and then within each split, cluster the samples
by their embeddings. Then, a human annotator labels only the cluster centroids, before then propagating this label

onto all cluster members.

the use of sparse-HITL to perform semi-automatic
annotation on our synthetic dataset ) without in-
curring high manual labor overhead. First, we use
an initial classification model M (Section 3.3) that
was fine-tuned towards the target classification task.
We then split ) according to their predicted labels,
as output by M. Within each group, we gener-
ate embeddings for each sample and then cluster
them based on their Euclidean distance. Finally,
we manually annotate only the cluster centroids,
then propagate this human-annotated label onto all
cluster members. In this manner, human annotation
is only needed for one data point per cluster, thus
limiting the number of manual annotations to the
total number of clusters.

For this work, we constructed M by taking
an off-the-shelf BART-Large model (Lewis et al.,
2020) and fine-tuning it towards the target task us-
ing open-source academic datasets (see Section 4).
We generate the embedding from our model M
(extracted from the last layer hidden state) and per-
form clustering using the k-means algorithm (Mac-
Queen, 1967), setting k = 20 as our default number
of clusters. As a result, for a binary classification
task, we only need to manually label 40 samples
(20 clusters per two labels), as opposed to annotat-

ing all samples in our dataset. In a trivial scenario,
where there are fewer samples than the number of
clusters, we simply annotate all individual points.

3.3 Embedding Model

Recall that our embedding model M is sourced
from a BART-Large model (Lewis et al., 2020)
which has been fine-tuned towards the task of
health-advice identification. To fine-tune M, we
construct our training dataset by combining 5 aca-
demic datasets spanning both advice and health-
advice recognition: NeedAdvice (Govindarajan
et al., 2020), AskParents (Govindarajan et al.,
2020), SemEval2019-Task9 (Negi et al., 2019),
Detecting-Health-Advice (Li et al., 2021), and
HealthE (Gatto et al., 2023). Details are provided
in Section 4 and Table 2.

3.4 Two-Stage Fine-Tuning

We implement fine-tuning in two stages in order to
gradually align our detector model to the guardrails
task at hand. The first stage of fine-tuning is done
on a combination of synthetic and open-source
datasets, where the synthetic dataset is generated
from a seed dataset. This synthetic data in the first
stage uses only seed examples that are negative,
i.e. do not violate our guardrails task. The motiva-
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tion here is that during inference, a vast majority
of samples will be irrelevant and not violate any
guardrails. Thus, we aim to increase the data cov-
erage in order to ensure that the detector model is
able to accurately classify any irrelevant samples
correctly as negatives, reducing the false positive
rate. Without this step, the model is more prone to
errors when it encounters irrelevant samples, since
otherwise they would never have been seen before
during fine-tuning.

After the first stage, the model has now seen a
wide range of inputs and knows roughly how to
deal with irrelevant samples. Then, in the second
stage, we continue to fine-tune the model, but on
purely synthetic data in order to tune its behavior on
relevant samples. In this stage, we use the largest
balanced portion of purely synthetic data. Note
that we use an off-the-shelf BART-Large architec-
ture (Lewis et al., 2020) as our detector model.
Unless otherwise stated, all open-source datasets
used for fine-tuning make use of all of their avail-
able splits (i.e. we combine their train, test, and
validation splits).

4 Datasets

While the STAR framework can be utilized to gen-
erate models addressing various LLM guardrails
tasks, in this work we focus specifically on health-
advice recognition, i.e. detecting whether a given
LLM output text contains health-advice. Note that
we define health-advice as follows: health-advice
(boolean) refers to any text that contains an explicit
recommendation or suggestion on a course of ac-
tions that a person should take. Importantly, this
guardrails task is not concerned with distinguishing
between helpful versus harmful advice, but simply
whether it is present. We formulate this problem
as a three-way classification problem, where our
labels are health-advice, not health-advice, and
general-content. The addition of a general-content
class helps introduce an additional layer of granu-
larity during fine-tuning, ensuring that the predic-
tions remain consistent for text that is not health-
related. However, during inference, we treat both
general-content and not health-advice equally as
part of the negative class. Results for this task are
evaluated on the gold-standard HeAL benchmark
dataset (Cheng et al., 2024).

To construct our fine-tuning dataset for stage
one, we first synthetically generate general-content

lhttps://doi .org/10.6084/m9.figshare. 27198735

samples using SemEval2019-Task9 (Negi et al.,
2019) as our seed dataset. We then perform semi-
automatic annotation using the sparse-HITL la-
beling scheme (as detailed in Section 3.2). We
combine this synthetic data with HealthE (Gatto
et al., 2023) and Detecting-Health-Advice (Li et al.,
2021), two health-advice datasets, to obtain the fi-
nal stage-one fine-tuning dataset. Note that for the
Detecting-Health-Advice dataset we combine both
the weak advice and strong advice labeled samples
into the single class health-advice.

The stage-two dataset is constructed from purely
synthetic examples generated by the STAR frame-
work. We combine both HealthE and Detecting-
Health-Advice, and extract all the positive samples
to use as our seed data points. After generation and
labeling, we select the maximal balanced subset of
this STAR data as the final stage-two fine-tuning
dataset.

5 Results & Discussion

5.1 Comparison with Vanilla FT

We compare and analyze both stages in our se-
quential FT strategy, and compare it with baseline
vanilla FT.
2-Stage FT We observe in Table 3 that our detector
model, paired with 2-stage FT, achieves state-of-
the-art performance, beating out GPT-40 by 3.48%
in terms of accuracy and 1.82% in terms of F1-
score. This performance is statistically signifi-
cant up to 90% confidence and is achieved despite
our detector model containing only 400M parame-
ters. This is in stark contrast with the 13B parame-
ters required for Mixtral-8x7B (Jiang et al., 2024),
70B parameters for LLaMA 3-70B-Instruct (Dubey
etal., 2024), and at least 175B for GPT-40 (OpenAl
et al., 2024). Additionally, our detector model not
only outperforms state-of-the-art but also exhibits
balanced behavior when encountering negative ver-
sus positive samples, evidenced by a difference of
just 2.16% between its precision and recall. Con-
versely, previous state-of-the-art models like GPT-
40 are overly critical and tend to predict the posi-
tive class more often, resulting in high recall but
low precision. This results in GPT-40 erroneously
flagging many irrelevant samples as health-advice.
In fact, GPT-40 exhibits the largest difference be-
tween precision and recall at 13.85%.
Furthermore, we note that our results also
demonstrate why we only use synthetic samples
corresponding to positive seeds in the second stage
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Dataset Statistics

Dataset

Num. Samples  Health-Content  Health-Advice = General-Content
AskParents 9931 0 0 9931
NeedAdvice 7452 0 0 7452
Detecting-Health-Advice 10848 8100 2748 0
HealthE 5656 2256 3400 0
SemEval2019-Task9 9925 0 0 9925
Synthetic Stage 1 23298 10371 6150 6777
Synthetic Stage 2 1140 380 380 380
HeAL 402 161 241 0

Table 2: An overview of the datasets we use for health-advice identification, including their class label distribution

and number of samples.

Model Results

Accuracy (1)  Precision (1) Recall (1)  F1 (1)
Detector 2-Stage 85.07% 86.64% 88.80% 87.70%
Detector 1-Stage 82.34% 87.61% 82.16% 84.80%
Alternate 2-Stage 81.34% 85.78% 82.57% 84.14%
GPT-40* 81.59% 79.51% 93.36% 85.88%
LLaMA 3-70B-Instruct* 81.34% 85.78% 82.57% 84.14%
Mixtral-8x7B* 72.89% 79.15% 72.61% 75.74%

Table 3: Performance of our detector model as evaluated on the HeAL benchmark, compared with different baselines
as well as state-of-the-art models. Note that Alternate 2-Stage refers to when we instead use examples generated
from positive seeds in the first stage of fine-tuning, and those generated from negative seeds in the second stage. *
denotes zero-shot performance. The best-performing results are in bold.

of fine-tuning, as opposed to the first stage. From
Table 3, using positive seeds in the first stage and
negative seeds in the second stage (referred to in the
table as “Alternate 2-Stage”) degrade the detector
performance, achieving only 81.34% accuracy and
84.14% in F1-score. While these results are still
comparable with Llama-3-70B-Instruct, it exhibits
a drop of 3.73% accuracy and 3.56% in F1-score
compared to 2-stage FT.

1-Stage FT Interestingly, even the addition of just
synthetic irrelevant samples (general-content) ap-
pears to make a noticeable improvement, allowing
the detector model to better understand the real-
world data distribution. From Table 3, fine-tuning
with just the first stage is already enough to perform
comparably to state-of-the-art, reaching 82.34% ac-
curacy and 84.80% F1-score. Additionally, our
model exhibits a difference of 5.45% between pre-
cision and recall, significantly better than GPT-40
albeit worse than LLaMA 3-70B-Instruct. These
results demonstrate the need for 2-stage FT to bet-
ter improve the model performance and balance
out the model behavior even further.

Vanilla FT We compare the results of our detec-
tor model against a vanilla FT setup, where we
FT on the maximal balanced subset from purely

synthetic data (i.e. the dataset used for the sec-
ond stage of our FT scheme). Additionally, we
also compare our results with a BART-Large model
FT on only academic datasets, replacing the syn-
thetic general-content samples with the original
SemEval2019-Task9 seed dataset. As seen from
Table 4, vanilla FT using only synthetic data results
in a notable degradation in performance, achiev-
ing only 77.61% accuracy and 83.27% F1-score.
However, the high F1-score itself can be mislead-
ing in isolation, as it exhibits many of the negative
behaviors of GPT-40, resulting in very high recall
but poor precision (a difference of 17.53%). Fur-
thermore, we observe that replacing the synthetic
general-content examples with the original seed
dataset also degrades performance compared to 2-
stage FT, although it does outperform vanilla FT on
purely synthetic data, achieving 80.60% accuracy
and 83.19% F1-score, with a difference of 6.47%
between precision and recall.

5.2 Synthetic Data Quality

Another point of interest focuses on the quality of
the synthetic data. To gauge the noisiness of the
sparse-HITL labels, we randomly sampled two ex-
amples from each cluster, and then manually anno-
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Results

FT Setup

Accuracy (1) Precision (1) Recall (1)  F1 (1)
Synthetic Data Only 77.61% 75.42% 92.95% 83.27%
No Synthetic Data 80.60% 86.55% 80.08% 83.19%

Table 4: Performance of our detector model utilizing only vanilla FT. The best-performing results are in bold.

Dataset Results

FP FN  Accuracy
Detecting-Health-Advice 5 0 87.50%
HealthE 3 1 90.00%
SemEval 0 0 100.00%

Table 5: Manual annotation of synthetic data label accu-
racy. Note that FP and FN stand for false positives and
false negatives, respectively.

Seed Type Results

Precision (1) Recall (1)  F1 (1)
Health-Advice 73.07% 81.98% 74.60%
General-Content 69.13% 83.72% 70.97%

Table 6: BERTScore similarities between the generated
STAR outputs and their corresponding seed examples.
We report the averages within each seed example type
for our results. The best performing scores are in bold.

tated all of these samples for label accuracy. From
Table 5, all datasets exhibit at least 87.50% accu-
racy, with only HealthE containing a false negative
sample. Most of the erroneously labeled samples
arise as false positives, where the text is indeed
health or medical-related but does not contain ex-
plicit advice.

As a quantitative metric, we evaluate the seman-
tic drift between the synthetic and seed examples
using BERTScore (Zhang* et al., 2020). a met-
ric designed to evaluate the quality of the gener-
ated text. As evidenced from Table 6, synthetic
data generated from health-advice samples exhibits
a slightly lower semantic drift than those gener-
ated from general-content samples, achieving a
BERTScore F1 of 74.60% as opposed to 70.97%.
This difference is expected: general-content sam-
ples are less focused on a particular topic and thus
are more likely to exhibit semantic drift from the
original seed example. This can be further seen
in Table 7, where we observe that the data gen-
erated from health-advice datasets tend to stay
within the health domain. Specifically, 71.24%
and 97.12% of the synthetically generated sam-
ples are labeled as health (either health-content

or health-advice) for Detecting-Health-Advice and
HealthE, respectively. It appears that the examples
generated from HealthE are more likely to also
stay as health-advice, with 54.32% of the synthetic
examples being labeled as health-advice (in keep-
ing with the original label), as opposed to 18.06%
for Detecting-Health-Advice. While it seems that
semantic drift can push seed examples from health-
advice to general-content, the same cannot be said
in reverse, with all examples generated from Se-
mEval still being labeled as general-content. From
a manual observation of the samples, the gener-
ated prompts are the main driving factor behind the
semantic drift between the synthetic and original
data points. We provide a concrete example of this
phenomenon in Table 8, which provides some ex-
amples of the original text x;, the LLM-provided
query g;, and the generated text y;.

However, as we discussed in our prior results,
some degree of semantic drift is desirable. We hy-
pothesize that this is because we expose the de-
tector model to a wider range of LLM outputs.
This wider distribution makes the detector better
equipped to handle irrelevant data points, which
compose a prominent part of the data it sees during
inference. Additionally, some amount of dirty data
also helps make the detector model robust, since
real production data may also be imperfect, given
that it is generated by LLMs. In these scenarios,
some prior exposure helps ensure the model is not
producing wildly inconsistent behavior on these
samples.

5.3 Discussion

Overall, we note that the datasets we construct with
the STAR framework enable the development of a
robust health-advice detector, with strong perfor-
mance gains on the HeAL benchmark compared to
GPT-40, the previous state-of-the-art. The benefits
of STAR data are fully utilized with our 2-stage
fine-tuning setup, enabling proper alignment of our
detector and outperforming 1-stage fine-tuning and
vanilla fine-tuning. Our analysis of the generated
data showed that there does exist a semantic drift
between synthetic and seed examples, but nonethe-
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Dataset

Synthetic Data Statistics

HC HA GC Health % HA % Cluster Size o
Detecting-Health-Advice 1461 496 790 71.24% 18.06% 62.41
HealthE 1455 1847 98 97.12% 54.32% 53.57
SemEval 0 0 9925 0.00% 0.00% 199.06

Table 7: Analysis of the synthetic data label distributions and cluster statistics. Note that HC, HA, and GC denote
health-content, health-advice, and general-content, respectively. Health % indicates the percentage of synthetic data
that is labeled as either HC or HA, while HA % indicates the percentage of synthetic data that is labeled as HA.
Finally, we also include the standard deviation of the cluster sizes within each split.

less it can still benefit fine-tuning of our detector
model.

6 Conclusion & Future Work

In this work, we present STAR: Self-auTomated
bAck-queRying, an intuitive and effective frame-
work for automating the generation of production-
quality synthetic data. =~ STAR functions by
transforming input texts into their corresponding
queries, and then feeding those queries into the
same or another LLM for text generation. We also
formulate and utilize a sparse human-in-the-loop
(sparse-HITL) clustering method to cluster the syn-
thetically generated data, and manually annotate
only the centroids (i.e. representative samples).
This scheme ensures minimal use of human labor
but maximizes the benefits, propagating the man-
ually annotated label onto all data points within
that cluster. We demonstrate the efficacy of our
approach on one of the most difficult guardrails
tasks, which is the identification of health-advice
in LLM outputs. Our results demonstrate that we
can beat even the largest contemporary LLMs, such
as GPT-40, by up to 3.48%, and outperform stan-
dard fine-tuning and alternative approaches on both
benchmark datasets and real-world production data
(see Appendix A).

There are many avenues for future work, since
STAR is a highly modular framework that allows
for the development of each component in iso-
lation, before ultimately combining the methods.
Improving the query generation procedure to re-
duce semantic drift and mitigate the amount of
noisy samples is one avenue of research. Addition-
ally, further work can improve upon our generation
setup, whether it’s through the use of newer mod-
els (as they arrive) or specialized text generation
schema. Finally, while we demonstrated our re-
sults on a challenging guardrails task, showcasing
a wider variety of guardrails tasks would be ben-
eficial towards demonstrating the generalizability

and efficacy of our approach as well. Ultimately,
we are excited and hopeful that STAR can provide
the groundwork for future research into guardrails
development via synthetic data generation.

7 Limitations

Due to the scarcity of health-advice datasets, our
work is only focused on English text, rather than
multilingual data. Note that the purpose of our ob-
jective is critical, especially for users who do not
have adequate access to healthcare, since we do not
want users to be misled by LLMs. We recognize
that demonstrating the efficacy for non-English lan-
guages would be particularly desirable, and we
believe that the STAR framework can provide the
first step towards a comprehensive, generalizable
framework. This includes demonstration on mul-
tiple languages, as well as for multiple guardrail
applications (e.g. personally identifiable informa-
tion, self-harm, adult content, etc.).

Another aspect is that we conducted our exper-
iments utilizing the same LLM, namely LLaMA
3.1-8B, as both the query generator and answer gen-
erator. It would be interesting to observe whether
distinct LLMs for each would provide better re-
sults, or even utilizing a larger model for both. For
our experiments, we chose LLaMA 3.1-8B as it’s
the largest model that one can run (quantized) com-
fortably on relatively low compute requirements.

Finally, we did not make use of prompt engineer-
ing techniques for our prompt generator prompt.
Rather, we instead stuck with a single template
since we were more interested in demonstrating the
effectiveness of the overall framework, and whether
it holds promise as a baseline towards a compre-
hensive, generalizable framework. Additionally,
prompt engineering does incur manual labor and is
quite costly, whereas one of the benefits of STAR
itself was its low reliance on manual labor. Nev-
ertheless, we suspect that optimizing the prompt
template in Table 1 might lead to higher quality self-
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Input Data

STAR Synthetic Data

Back-Query

STAR Output

This product is used to treat mild to
moderate acne. It may be used in com-
bination with other acne treatments.
Check with your doctor or pharma-
cist first before combining acne treat-
ments. Salicylic acid belongs to a
class of drugs known as salicylates.
When applied to the skin, salicylic
acid may work by helping the skin to
shed dead cells from the top layer and
by decreasing redness and swelling
(inflammation). This decreases the
number of pimples that form and
speeds healing.

What is the best
diet for me?

Before you can begin any kind of diet,
you need to know what your goals are.
What do you want to achieve? Do
you want to lose 10 pounds, or do you
want to maintain your current weight?
Do you want a diet that will help you
feel better, or do you just want to lose
weight? Once you have decided on
your goals, you can start looking at
different diets. There are many dif-
ferent diets out there, and each one
has its own set of rules and guide-
lines. Some diets are very restric-
tive, while others are more lenient.
Some diets are designed to help you
lose weight quickly, while others are
designed to help maintain your cur-
rent weight. The best diet for you is
the one that will help you reach your
goals. If you want a diet to help you
lose 10 pounds quickly, then a diet
that is very restrictive may not be the
best choice for you.

It seems like there’s now some sort of
internal limit on how many Maplcons
are displayed at a time.

How can I pre-
vent my game
from displaying
too many Mapl-
cons at a time?

To prevent the game from displaying
too much information on the screen at
one time, use the Maplcon::setLimit()
function.

Thus, anti-stunting interventions
should include sanitation and hy-
gienic measures along with adequate
perinatal care and maternal and child
nutrition to further reduce childhood
stunting, ensuring long-term health
benefits for children not only in rural
Armenia but also in rural commu-
nities in other low/middle-income
countries.

What is the most
effective way to
reduce stunting in
children in rural
Armenia?

SBCC is a strategy used by the world.

Table 8: We compare the original seed examples with their generated prompts and corresponding synthetic
outputs. Note that for the last example, SBCC stands for Social and Behavior Change Communication, and is a
communication strategy to address individual change.

141



queries, which in turn lends itself towards higher
quality synthetic data.

8 Ethics Statement

In Appendix A, we did report some metrics on ac-
tual, real-world internal production data. However,
those models will not be released due to the sen-
sitive information that may be present within our
internal production data. Additionally, to safeguard
against exposing internal information, we use pub-
lic, open-source, and peer-reviewed datasets for
the data generation and evaluation of our STAR
framework, to ensure that the input data is as clean
as possible, and does not contain personal medical
records and other information. This means that all
datasets used in the STAR framework are openly
accessible and peer-reviewed — evaluations on inter-
nal data was only done to demonstrate the viability
of our approach when tested on actual data.

Note that our STAR framework is highly modu-
lar, and we hypothesize that it can be applied to a
wide variety of Al guardrailing tasks. Nevertheless,
just like there are inherent risks present in LLMs,
we recognize that no model is always safe, and
each model contains their own inherent risks. As
a result, we urge future users of the STAR frame-
work to validate that the results make sense and are
positive for their particular use case. For use cases
which don’t require the data to be distributed from
an LLM’s underlying distribution, then STAR may
not be fully utilized in that sense.

Finally, all of our detector models are
lightweight architectures (<500M parameters), rela-
tively speaking. Additionally, for the parts of STAR
that require LLM usage, we utilized these models
in a quantized 4-bit manner to further reduce our
total carbon emissions impact. Note that our en-
tire framework can be executed on a single GPU,
as we want STAR to be widely available and not
restricted due to excessive compute requirements.
Please refer to Appendix C for the full details.
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A Performance on Real Data

We recognize that given the significant distribu-
tion shift between fine-tuning data and real-world
production data, performance on task evaluation
benchmarks may not necessarily transfer over in
practice. Thus, we validate the performance of
our model on internal real-world production data,
numbering 5k samples. Of these Sk samples, 4642
are general-content, 350 are health-related (but not
advice), and only 8 are health-advice. Note that
this vastly skewed label distribution is actually nor-
mal, since health-advice composes a very minute
portion of all the real-world chatlogs.

From our results in Table 9, we see that our
best performing setup is just after one stage of
FT with a mixture of synthetic and academic data,
achieving by far the best false positive rate of just
0.70% (statistically significant to 99% confidence
compared to the next lowest rate at 2.46%), and an
accuracy of 99.24%. We posit that this is due to the
model seeing the widest range of samples, and thus
is more robust when encountering these samples
out in the real world. Interestingly, two stage FT
performs comparably with vanilla FT using only
synthetic data (with the difference in results not
statistically significant), suggesting that in the real-
world, it may be more beneficial to go directly
towards the LLM output distribution by directly FT
on purely synthetic data. Evidently, the benefits of
training on synthetic data cannot be understated,
as FT on purely academic data results in a notable
degradation in real-world performance, with its
error rate of 3.88% being statistically significant
(99% confidence) compared to the next highest rate
at 2.86%.

B Hyperparameters

For the STAR framework, we used the same hyper-
parameters for both query generation and output
generation. We set the minimum number of new
tokens to be 5, and a maximum amount of new
tokens to be 250. We sample with a temperature of
0.6, renormalize logits, and furthermore restrict a
no repeat n-gram size of 5.

All FT stages utilize the same hyperparameters,
which are relatively standard. We use a learning
rate of 2e-5, with a batch size of 16, FT for 5
epochs, and a weight decay regularization parame-
ter of 0.01.

C Software & Model Implementation

Our implementation is written in Python, using
PyTorch and Huggingface’s Transformers library.
Our framework is readily implementable on as little
as 1 V100 GPU with 32 GB of GPU memory. For
the larger LLMs, we load them for generation using
4-bit quantization. FT experiments and simulations
can be executed in just a few hours, and typically
less than half a day. As a result, we expect our
environmental and carbon emissions impact to be
relatively low-cost.

FT Strategy Results
Accuracy (1)  FPR ({)
Detector 2-Stage 97.14% 2.86%
Detector 1-Stage 99.24% 0.70%
Vanilla Academic 96.10% 3.88%
Vanilla Synthetic 97.54% 2.46%

Table 9: A comparison of performance on 5k samples
of real production data. Note that academic data refers
to the training dataset where we use the original seed
dataset instead of the synthetic data. Synthetic data
refers to using only STAR generated synthetic data.
Note that FPR stands for false positive rate. The best
performing results are in bold.
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