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Abstract

Relational reasoning lies at the core of many
NLP tasks, drawing on complementary signals
from text and graphs. While prior research
has investigated how to leverage this dual com-
plementarity, a detailed and systematic under-
standing of text-graph interplay and its effect
on hybrid models remains underexplored. We
take an analysis-driven approach to investigate
text–graph representation complementarity via
a unified architecture that supports knowledge
co-distillation (CoD). We explore five tasks in-
volving relational reasoning that differ in how
text and graph structures encode the informa-
tion needed to solve that task. By tracking how
these dual representations evolve during train-
ing, we uncover interpretable patterns of align-
ment and divergence, and provide insights into
when and why their integration is beneficial.1

1 Introduction

Incorporating modalities beyond the surface form
of the text has shown promise for several challeng-
ing natural language processing (NLP) tasks. This
is particularly true for relational reasoning based
tasks where the objective is to understand or infer
the semantic relationships within the input (Nastase
et al., 2015). Examples of such tasks are relation ex-
traction (Zhang et al., 2018b; Christopoulou et al.,
2019; Guo et al., 2020), knowledge base question
answering (KBQA) (Tian et al., 2024; Feng and He,
2025; Gao et al., 2025), and structured document
interpretation or reasoning (Yao et al., 2018; Wang
et al., 2023; Chen et al., 2025).

A common and effective way to encode rela-
tional structure is through graphs (Yao et al., 2018;
Lee et al., 2023; Lin et al., 2025; Gururaja et al.,
2023; Dutt et al., 2022), where nodes represent tex-

* Work done while the author was a student at Carnegie
Mellon University.

1Our code is available at https://github.com/
zhenwu0831/R2_COD

tual units and edges encode relationships, like se-
mantic links or ontological structure. This explicit
representation of structured information enables
models to leverage signals that are complementary
to or explicitly absent from the text.

While many tasks utilize this text-graph repre-
sentation to improve performance, how they com-
plement each other remains underexplored. Some
systematic reviews (Stanton et al., 2021) observe
that models fail to effectively integrate data from
distinct modalities. This raises important open
questions: How do text and graph representations
relate to each other during learning? Do they con-
verge toward similar representations, or diverge to
encode distinct signals? And under what conditions
is their integration most beneficial?

To address these questions, we adopt an analysis-
oriented approach and introduce a unified frame-
work for characterizing the alignment and comple-
mentarity between text and graph representations
across tasks. We inspect how these dual repre-
sentations relate and evolve with knowledge co-
distillation (CoD) (Yao et al., 2024), an architec-
tural framework that can generalize across a range
of tasks where both text and graph inputs are avail-
able. We conduct this analysis across a diverse
suite of five tasks involving relational reasoning
spanning fine-grained, localized reasoning between
entity pairs to multi-entity inference. To this end:

• We systematically analyze how text and graph
representations complement each other under
knowledge co-distillation (CoD) across five rela-
tional reasoning tasks.

• We identify consistent patterns ranging from
complementarity to alignment and characterize
how these patterns differ across tasks.

• We provide practical insights to inform the ef-
fective use of CoD.
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2 Related work

Text–graph integration in NLP: Graphs have
long played an important role in NLP, tradition-
ally used to capture structure in tasks such as
syntactic parsing, information retrieval, text min-
ing, and encode semantic representation through
knowledge graphs, linguistic frameworks, and
other semantic networks. Graph Neural Networks
(GNNs) (Scarselli et al., 2009) and their variants
such as Graph Convolutional Neural Networks
(GCNs) (Bruna et al., 2014) and Graph Atten-
tion (GAT) layers (Veličković et al., 2018) have
become the de-facto way to integrate text and graph
representations across a variety of tasks.

In text classification, graphs have been used to
jointly model word and document relations (Yao
et al., 2018) and to enhance transformers with struc-
tured information (Lin et al., 2021). Knowledge
graphs provide support for reasoning and informa-
tion retrieval for QA (Sun et al., 2018; Yasunaga
et al., 2022; Lin et al., 2025). For document un-
derstanding, graph-based methods have been ap-
plied to paragraph recognition (Wang et al., 2022;
Liu et al., 2022b), information extraction (Lee
et al., 2023), and layout or structure analysis (Wang
et al., 2023; Chen et al., 2025). More recently,
such approaches have also been used to detect AI-
generated content (Valdez-Valenzuela et al., 2025).

While text–graph integration has been widely
used for performance gains, little is known about
how their representations relate during learning.
We analyze this relationship and how it is shaped
by task characteristics and learning objectives.

Knowledge distillation (KD): One of the earli-
est works in this space was of Buciluǎ et al. (2006),
i.e. a kind of model compression to facilitate ef-
ficient ensembling of complex classifiers. Hinton
et al. (2015) refined it to distill knowledge from
one model to another. Later, this type of directed,
teacher-student knowledge distillation (KD) has
seen usage in several NLP tasks (Sanh et al., 2019;
Sun et al., 2019; Liang et al., 2020; Liu et al.,
2022a). As opposed to distilling information from
one model to another, Zhang et al. (2018a) pro-
posed the idea of mutual learning where informa-
tion is shared between models. Finally, Tian et al.
(2020) introduced contrastive representational dis-
tillation, which later works (Sun et al., 2020; Fu
et al., 2021) showed is effective at refining KD-loss
for shared representational spaces.

Though KD is widely prevalent in NLP, its ef-

fectiveness in successfully compressing complex
tasks remains unclear. Stanton et al. (2021) argues
that a gap exists in our current understanding of
KD, evident in the difficulty in obtaining model
fidelity for certain types of teachers. Though it is
known that KD’s efficacy varies across models, the
reason remains unknown.

Representation analysis: Representation anal-
ysis examines the internal representations learned
by models to better understand how they encode
and process information. Subsequently, a variety of
tools have been developed for this purpose. These
range from traditional methods such as Principal
Component Analysis (PCA) (Ferrone and Zanzotto,
2020) and Canonical Correlation Analysis (CCA)
for dimensionality reduction and visualization, to
more targeted approaches such as classifier probes
to test whether specific linguistic properties are en-
coded in model representations (Belinkov, 2021;
Gupta et al., 2015). Recently, sparse autoencoders
(Gao et al., 2024; Cunningham et al., 2023; Ng
et al., 2011) have also been deployed for extracting
interpretable features from model representations.

To support our goal of analyzing how text and
graph representations are related during learn-
ing, we require lightweight, task-agnostic tools to
enable consistent and interpretable comparisons
across tasks. We thus adopt PCA and leverage
distance-based metrics to answer our questions.

3 Task suite and formulations

We propose a spectrum of how the relationship be-
tween the text and the graph representations can
vary as visualized in Figure 1. This spectrum
ranges from cases where text and graph encode
largely complementary information and preserve
distinct representations (left), to cases where they
tend to converge and form aligned representations
(right). In between, partial alignment refers to the
case where the representations become more sim-
ilar but do not fully converge. To cover this spec-
trum, we select five relational reasoning tasks with
diverse characteristics, such as 1) how explicitly
the graph models the relation or structure that the
task seeks to predict, 2) whether nodes have di-
rect correspondence to textual spans, and 3) the
scope of reasoning (e.g., local mention pairs versus
global graph structure). This diversity enables us
to examine how these variations shape text-graph
representation relations. We outline the goal, input
and output, an illustrated example, graph construc-

1629



Task Goal Input Output Example K-Type

ETRE Predict temporal
relation between
two events

Text passage
+ Syntactic
graph and
Time-aware
graph

Relation
label (e.g., BE-
FORE/AFTER)

In: Atlanta nineteen ninety-six. A bomb <E1> blast
</E1> shocks the Olympic games. One person is
killed. January nineteen ninety-seven. Atlanta again.
This time a bomb at an abortion clinic. More people
are <E2> hurt </E2>. Out: Event E1 took place
BEFORE Event E2.

Episodic

MLRE Predict semantic
relation between
entities

Text passage
+ Depen-
dency graph

Relation label
(e.g. sibling)

In: The <E1> wood </E1> is used as fuel and to
make posts for <E2> fences </E2>. Out: The relation
between E1 and E2: material used

Episodic

FU Predict token
relationships in
scanned forms

OCR tokens
with layout
info

Label over to-
ken pairs

We present an example in Figure 7 Episodic

RPP Predict reason-
ing path over the
KG for a ques-
tion.

Question
+ KG sub-
graph

Reasoning
Path

In: Question: What was Elie Wiesel’s father’s name?
KG: Elie Wiesel <E1> | <E1>
book.author.book_editions_published <E2>
| <E3> people.person.gender <E4> ...
Out: Reasoning Pattern Type: T2 — The answer is
located a single-hop away from the two constraints.
Entities ranked: <E6>, <E4>, ...

Static

KBQA
entity-
ranking

Extract answers
from a KG for a
question

Ranked list of
candidate enti-
ties

Table 1: For each task, we state the goal, the input/output format, an illustrative example, and the graph construction
method. We also distinguish between tasks grounded in episodic knowledge (context-dependent and document-
specific), and those involving static knowledge (holds independently of context) in the Knowledge(K)-Type column.

Complementarity Partial Alignment Alignment

G

T

Complementarity

G T

Partial Alignment

G T

Complete Alignment

ETRE MLRE

RPP

FU

KBQA entity-ranking

Figure 1: Task spectrum of representation relationships.
Left: they remain distinct and complementary. Middle:
they show some similarity but do not fully align. Right:
they converge toward aligned representations. This spec-
trum motivates our task selection for analysis.

tion method, and the knowledge type of each task
in Table 1.

Event temporal relation extraction (ETRE)
The objective of ETRE is to predict the temporal
relationship yij between a pair of event mentions
(i, j) within a short passage q using a fixed relation
label set (e.g., before, after, simultaneous, vague).
Because distinct layers of text encode time cues for
short- and long-distance mention pairs, the model
represents the text using linear transformers along-
side associated graph G(V,E). The graph contains
nodes V for event mentions and time expressions,

and edges E encoding structural relations. It is
derived from the q using part-of-speech labeling
and by applying temporal logic to limited date-
time associations which can be extracted from q.
Thus, while the graph does not explicitly encode
the temporal relation being predicted or have direct
correspondence with text spans, it reflects long-
distance structural dependencies not captured by
linear transforms. We follow Yao et al. (2024) and
use three benchmark datasets: TimeBank-Dense
(TB-Dense) (Cassidy et al., 2014), TDDiscourse-
Auto (TDDAuto) and TDDiscourse-Manual (TD-
DMan) (Naik et al., 2019).

Multilingual relation extraction (MLRE) In a
similar vein, the task of MLRE involves identify-
ing the semantic relation between a pair of entity
mentions within a given sentence(s) q for a particu-
lar language. Each text input has its corresponding
graph G(V,E) generated by an off-the-shelf depen-
dency parser (Qi et al., 2020) where V represents
the words in the sentence(s) and the E represents
the syntactic dependencies between the words. We
initialize the nodes(words) in the graph by pool-
ing across its constituent token embeddings, and
further augment it with the structural information
obtained from the graph’s topology via Walklets
(Perozzi et al., 2017). We emphasize that the de-
pendency relations capture the explicit linguistic
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signals between words but do not encode the rela-
tion being predicted. We provide an example in the
Appendix A.2. We use the REDfm (Huguet Cabot
et al., 2023) dataset which covers five languages.

Reasoning pattern prediction (RPP) Given a
question q and its associated subgraph G = (V,E)
from the knowledge base, the goal is to infer the
reasoning pattern or RP of the question q. Each
pattern corresponds to a particular reasoning path,
composed of single/multiple hops and single/multi-
ple constraints. We provide detailed descriptions in
Appendix A.1. The text input includes q and a lin-
earized serialization of the subgraph Glinear, while
the graph input uses the same question paired with
the explicit graph structure G. Thus, both text and
graph encode the same information but in struc-
turally distinct forms. We initialize the nodes in
each subgraph with Walklets embeddings follow-
ing the same procedure as Dutt et al. (2022). RP
prediction requires reasoning over the entire graph
with respect to the question, rather than individual
tokens or nodes. We use WebQSP dataset for our
task (Yih et al., 2016; Xie et al., 2022).

KBQA entity-ranking We formulate extracting
the correct answer(s) for a given question from its
associated subgraph as a ranking problem. The
model operates over a shared set of candidate en-
tities and assigns a relevance score to each entity
based on its likelihood of being the correct answer.
The input is the same as in the reasoning pattern
prediction task setting. To enable entity-level pre-
dictions from the text model, we extract an embed-
ding for each candidate entity by identifying its
corresponding span in the text and aggregating the
token representations produced by the text encoder.
Each entity thus has a one-to-one correspondence:
it appears as a node vi ∈ V in the graph and as a
token span si ⊆ q in the text.

Form understanding (FU): This task involves
identifying key–value relationships between tex-
tual spans extracted from scanned forms, such
as “Date: 2024-12-01”. Each input document is
processed by OCR to yield textual tokens with
bounding-box coordinates. The corresponding
graph G(V,E) encodes the visual layout of the
document: V represents OCR tokens and E cap-
tures spatial relations between the tokens such as
alignment, proximity, and reading order. Such a
framework encodes positional cues central to the
task objective, and establishes a one-to-one corre-

spondence between the nodes and the OCR tokens.
We adopt the experimental setup of Nourbakhsh
et al. (2024) and include three multimodal datasets,
i.e. SROIE (Huang et al., 2019), FUNSD (Jaume
et al., 2019), and CORD (Park et al., 2019).

4 Unified framework for analysis

We propose a unified, task-agnostic framework,
henceforth called R2-CoD (Figure 2), to under-
stand how text and graph representations relate
during learning. We choose a framework that is
generalizable to observe how information from text
and graph are represented and integrated.

Across tasks, each instance corresponds to a text-
graph pair, as defined in Section 3. These are en-
coded using modality-specific encoders: ht = ft(q)
and hg = fg(G). We then create a hybrid repre-
sentation hhybrid through concatenation or residual
connection to perform task-specific prediction and
compute the task loss:

hhybrid = ffuse(ht, hg) (1)

Ltask = L(hhybrid, y) (2)

where y denotes the gold supervision and L(·, ·) is
the task-specific loss function. We present model
configurations, loss function, and evaluation met-
rics used for each task in Table 5 in the Appendix.

To analyze text and graph representations, we
require a shared space where they can be directly
compared. Thus, we apply modality-specific MLP
projection heads that learn to map each representa-
tion into a shared latent space during training:

ztext = MLPt(ht), zgraph = MLPg(hg). (3)

4.1 Contrastive co-distillation
While learning a shared space enables compari-
son, it cannot solely influence how text and graph
will complement one another. We thus apply a
contrastive knowledge co-distillation (CoD) objec-
tive (Yao et al., 2024) which combines a contrastive
loss with a stop-gradient operation (Chen and He,
2021) to explicitly encourage bidirectional knowl-
edge transfer. Such a formulation allows us to ob-
serve how the information encoded in one modality
influences the other during mutual learning.

Formally, the contrastive loss lcl between the
teacher t and the student s representations is:

lcl(t, s) = − log
esim(t,s)/τ

∑
u 1[u̸=t] esim(t,u)/τ

(4)
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Text EncoderText sequence

Graph Encoder
task h

ead

MLP

MLP

CoD

hg

ht

h hybrid

z text

z graph

Figure 2: Our unified framework for analyzing how text and graph representations complement each other. A
text sequence and its corresponding graph are processed by separate encoders. Their outputs are used in two
ways: (1) combined as hybrid inputs for task prediction, and (2) projected into a shared space where a contrastive
co-distillation (CoD) objective encourages mutual learning and enables representation-level analysis.

where u indicates representations from the training
data other than t and s, sim(., .) is cosine similar-
ity, τ is the temperature scaling parameter (Tian
et al., 2022). Note that the notions of “teacher” and
“student” are interchangeable and fully symmetric:
one scenario treats the text projection behaves as
the teacher supervising the graph projection, while
in another the graph projection supervises the text
projection. This bidirectional design ensures that
either modality can act as teacher or student at each
step, thus mutually distilling knowledge from each
other. Hence, the full CoD loss is computed as

LCoD =
1

2

∑

i

[lcl(z
text
i , ẑi

graph)+ lcl(zi
graph, ẑi

text)]

(5)
where .̂ is the stop gradient operator (Chen and
He, 2021) that sets the input variable to a constant.
Finally, we combine this with the task loss to enable
end-to-end model optimization:

Ltotal = Ltask + λLCoD (6)

where λ controls the weight of the CoD signal.
CoD serves as a task-agnostic framework to facili-
tates learning and analysis over dual modalities.

4.2 Measuring representation relations
To evaluate how text and graph relate during learn-
ing, we need tools that can surface both alignment
and divergence in the shared space. Our goal is to
characterize the degree to which text and graph con-
verge, remain distinct, or shift in their relationship
throughout training under CoD.

To support visual interpretation, we apply
PCA, which reduces the projected embeddings

(ztext, zgraph) into a two dimensional space and re-
veals their spatial arrangement at various stages of
training, i.e. whether there is clustering, separation,
or overlap between modalities.

For a more precise measurement, we also com-
pute batch-level cosine similarity between paired
representations, along with average within- and
between-modality distances based on cosine dis-
tance. Formally, given two representation vectors
x and y, the cosine similarity is defined as

cos_sim(x,y) =
x⊤y
∥x∥∥y∥ ,

and the corresponding cosine distance is given by

cos_dist(x,y) = 1− cos_sim(x,y).

Together, these measures capture both the direc-
tional and spatial properties of different modalities
in the learned representation space.

5 Analysis and discussions

5.1 RQ1: Does combining text and graph
representations improve performance?

We examine whether integrating textual and graph-
based representations improves task performance,
and whether CoD facilitates more effective inte-
gration. We compare four model configurations:
(1) text-only, (2) graph-only, (3) hybrid without
CoD, and (4) hybrid with CoD. We present the
main results in Table 2. The task suite statistics
and training times in Table 7 illustrate that CoD
introduces minimal additional cost. Additional re-
sults for different model combinations in Table 8
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 3: Results for ETRE on the TDDMan dataset. PCA visualizations (top) across training stages, and
corresponding distance-based metrics (bottom). The text and graph representations remain well-separated, and the
between-group distance remains consistently higher than the within-group distances.

Task Dataset Text Graph CoD T+G

ETRE TDDAuto 61.6 34.6 77.1 68.9

FU FUNSD 33 22 38 35

MLRE REDfm 79.7 48.6 78.6 79.5

RPP WebQSP 62.4 63.2 65.9 65.6

KBQA WebQSP 80.7 52.2 83.8 83.5

Table 2: Task performance (averaged across three seeds)
for text-only (Text), graph-only (Graph), hybrid with
CoD (CoD), and hybrid without CoD, i.e. with only the
text and graph representations (T+G). Best performance
in bold, second-best underlined. We present results
for one representative dataset per task due to resource
constraints. Similar trends hold for other datasets. For
FU, the model was pretrained on a 1,000-example subset
of its original pretraining corpus.

further demonstrate the generalizability of our CoD
framework across different text and graph models.2

Across the tasks, we observe that hybrid models
consistently outperform the text-only and graph-
only baselines, and that incorporating the CoD loss
leads to further gains. The only exception is for

2For consistency, we report results either from our own
experiments or from existing work when the same architecture
is adopted.

MLRE where the hybrid approaches achieve per-
formance comparable to the text-based baseline,
possibly because the graph representations fail to
capture any complementary signals. Prior work has
demonstrated how large-scale pretraining enables
transformer models to encode syntactic informa-
tion within their parameters (Starace et al., 2023;
Liu et al., 2024) and thus employing off-the-shelf
parsers to capture dependency information shows
little promise (Sachan et al., 2021).

For the KBQA tasks, where text and graph in-
puts aim to encode the same information albeit
coming from two different formats, i.e. the lin-
earized format (for the text) versus the topological
structure (for the graph), CoD offers only marginal
gains over the default hybrid setting. In contrast,
tasks like FU where text and graph encode different
information (form content versus layout structure
from OCR), CoD shows more improvement.

5.2 RQ2: How do text and graph
representations relate during learning?

Using the representation analysis framework de-
tailed in Section 4, we observe three qualitatively
distinct trends in the spatial relationship between
text and graph representations that aligns with the
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 4: Results for reasoning pattern prediction on the WebQSP dataset. The text and graph representations move
closer but stay largely separable. The between-group distance increases during training.

task spectrum proposed in Figure 1: complemen-
tarity, partial alignment, and complete alignment.

Complementarity (ETRE): The text and graph
representations remain well-separated throughout
training, signifying that they contribute distinct,
complementary signals rather than converging to-
wards a shared embedding space.

The PCA visualization confirms this complemen-
tarity. In Figure 3, text and graph representations
consistently occupy distinct regions. We attribute
this separation to distinctiveness in how text and
graph encode task-relevant information. In ETRE,
the text representation provides local semantic cues
around event mentions, while the graph encodes
structural information in an attempt to quantify se-
mantic temporal and discourse relations. These
structural and semantic divergences could lead text
and graph representations to retain independent
representation space.

Partial alignment (MLRE and RPP): We ob-
serve that MLRE and RPP exhibit moderate conver-
gence between text and graph. PCA visualizations
(Figure 11 and 4) show that the text and graph rep-

resentations move closer in the shared space during
training, yet remain largely separable. This sug-
gests that text and graph are aligning but do not
collapse into a single unified cluster. This behav-
ior aligns with the task objective: while the inputs
encode equivalent information, the objective is to
classify the reasoning path traversed in the graph,
not specific tokens or nodes. Thus, the text and
graph representations can evolve in parallel with-
out needing to fully align. This allows each of
them to retain its inductive biases while adapting
to shared learning signals through CoD.

Complete alignment (FU and KBQA): FU and
KBQA appear near the alignment end of our spec-
trum. In both tasks, text and graph representations
show strong convergence. E.g., PCA visualizations
in Figure 5 show a clear alignment trajectory: ini-
tial representations are moderately separated in the
shared space, but progressively draw closer during
training. By the final epochs, the paired embed-
dings often form overlapping clusters.

We explain this finding by establishing the fine-
grained correspondence in input structure between
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Distance within text (e) Distance within graph (f) Distance between text and graph

Figure 5: Results for form understanding on the CORD dataset.3The text and graph representations draw closer and
form overlapping clusters during training, and the between-group distance decreases and eventually approaches the
within-group distances.

text and graph for both tasks. Each graph node vi ∈
V has a clear textual counterpart as a token span
si ⊆ q. In FU, OCR tokens are linked to spatially
grounded nodes, while in entity ranking, candidate
answer entities are matched between graph nodes
and text tokens. This one-to-one correspondence
likely encourages representations to align.

To complement the PCA-based categorization,
we further analyze cosine similarity and distance
metrics to offer quantitative insight into the degree
of alignment.

Cosine similarity increases consistently across
tasks due to the CoD objective, which encour-
ages directional agreement between text and graph
representations. However, in contrast to other tasks,
tasks characterized by complementarity like ETRE
exhibits a weaker increase, whose cosine similarity
remains bounded to 0.4.

Alignment is indicated by how closely between-
group distances match within-group ones. In
ETRE, the between-group distance remains con-
sistently higher than the within-group distances,
which reflects strong complementarity. Otherwise,
we observe patterns on the alignment side. How-
ever, the between-group distance trends between
partial and complete alignment tasks diverge: in
partial alignment tasks like MLRE and RPP, the
between-group distance increases, whereas in com-
plete alignment tasks such as FU and KBQA,

3We present distance metrics for three representative train-
ing phases due to resource constraints.

the between-group distance steadily decreases and
eventually approaches the within-group distances.

5.3 RQ3: How do task characteristics shape
the effects of CoD?

Building on the representation patterns observed in
RQ2, we now examine what task-specific charac-
teristics may shape how CoD influences learning.
We only consider the cases where adding in CoD
consistently brought about performance gains.

Same input, different task objectives Although
RPP and KBQA share the identical input, they dif-
fer in task objectives: the former identifies rea-
soning patterns in the subgraph on a global level,
whereas the latter scores individual entities at a
local level. Despite this shared input, the learned
representations behave differently under CoD. RPP
demonstrates partial convergence, while KBQA
shows strong alignment. This contrast suggests
that the level at which reasoning is required, in this
case global vs. local, can shape how the representa-
tions align in the representation space.

Same reasoning scope, different graph construc-
tion: ETRE and FU both involve localized rea-
soning between pairs: event mentions in ETRE
and field spans in forms. However, their graph
constructions differ in how directly they support
the task. In FU, edges explicitly capture spatial
layout relations that closely match the key–value
associations being predicted. In ETRE, the graph
encodes distinct layers of linguistic cues (e.g., syn-
tax, discourse), which support but do not directly
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define the target temporal relation. Under CoD,
FU shows complete alignment while ETRE demon-
strates complementarity. This indicates that how
well the graph structure reflects the task objective
can influence whether CoD promotes complemen-
tarity or alignment.

With or without token-node correspondence
In FU and KBQA entity-ranking, there is a strong
one-to-one correspondence between graph nodes
and text token spans. This provides a scaffold that
supports representational convergence, which is
reinforced through CoD. This is in contrast to com-
plementary information encoded in ETRE, where
representations remain more distinct, and CoD pre-
serves separation. This highlights that explicit to-
ken–node correspondence could act as a structural
prior that facilitates CoD towards alignment.

6 Conclusion

We analyze how text and graph representations
complement each other during learning within a
unified, task-agnostic framework using contrastive
co-distillation (CoD) as a lens. We select five di-
verse relational reasoning tasks and observe a spec-
trum of representational behaviors from alignment
to complementarity shaped by differences in task
structure, such as whether the graph encodes the
prediction target explicitly, whether nodes corre-
spond directly to textual spans, and whether rea-
soning operates at a local or global level. These
findings improve our understanding of text-graph
representation relations and offer practical insights
into applying CoD in structured NLP tasks.

7 Limitations

Task coverage While our selected five relational
reasoning tasks covers a broad spectrum of com-
plementarity and alignment patterns, extending the
framework to other tasks may reveal additional rep-
resentational behaviors.

Analysis metrics We rely on PCA visualizations
and cosine/distance-based metrics for representa-
tion analysis. These methods provide interpretable
trends but may not capture all fine-grained or non-
linear interactions between text and graph, which
could be explored with advanced probing or disen-
tanglement techniques.

8 Ethical considerations

Bias propagation Our framework builds on pre-
trained text and graph encoders, which may inherit
and amplify biases present in the underlying data
sources.
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Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Misil. 2006. Model compression. In In
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 535–541.

Dan Busbridge, Dane Sherburn, Pietro Cavallo, and
Nils Y. Hammerla. 2019. Relational graph attention
networks. Preprint, arXiv:1904.05811.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An annotation framework
for dense event ordering. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 501–
506.

Xinlei Chen and Kaiming He. 2021. Exploring simple
siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 15750–15758.

Yufan Chen, Ruiping Liu, Junwei Zheng, Di Wen,
Kunyu Peng, Jiaming Zhang, and Rainer Stiefelha-
gen. 2025. Graph-based document structure analysis.
Preprint, arXiv:2502.02501.

Fenia Christopoulou, Makoto Miwa, and Sophia Ana-
niadou. 2019. Connecting the dots: Document-level
neural relation extraction with edge-oriented graphs.
Preprint, arXiv:1909.00228.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert
Huben, and Lee Sharkey. 2023. Sparse autoencoders
find highly interpretable features in language models.
Preprint, arXiv:2309.08600.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

1636

https://arxiv.org/abs/2102.12452
https://arxiv.org/abs/2102.12452
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1904.05811
https://arxiv.org/abs/1904.05811
https://arxiv.org/abs/2502.02501
https://arxiv.org/abs/1909.00228
https://arxiv.org/abs/1909.00228
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805


Ritam Dutt, Kasturi Bhattacharjee, Rashmi Gangadhara-
iah, Dan Roth, and Carolyn Rose. 2022. Perkgqa:
Question answering over personalized knowledge
graphs. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pages 253–268.

Ritam Dutt, Sopan Khosla, Vinayshekhar Bannihatti Ku-
mar, and Rashmi Gangadharaiah. 2023. GrailQA++:
A challenging zero-shot benchmark for knowledge
base question answering. In Proceedings of the 13th
International Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 897–909,
Nusa Dua, Bali. Association for Computational Lin-
guistics.

Tengfei Feng and Liang He. 2025. RGR-KBQA: Gen-
erating logical forms for question answering using
knowledge-graph-enhanced large language model. In
Proceedings of the 31st International Conference on
Computational Linguistics, pages 3057–3070, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Lorenzo Ferrone and Fabio Massimo Zanzotto. 2020.
Symbolic, distributed, and distributional representa-
tions for natural language processing in the era of
deep learning: A survey. Frontiers in Robotics and
AI, 6.

Hao Fu, Shaojun Zhou, Qihong Yang, Junjie Tang,
Guiquan Liu, Kaikui Liu, and Xiaolong Li. 2021.
Lrc-bert: latent-representation contrastive knowledge
distillation for natural language understanding. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 12830–12838.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel
Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan
Leike, and Jeffrey Wu. 2024. Scaling and evaluating
sparse autoencoders. Preprint, arXiv:2406.04093.

Shengxiang Gao, Jey Han Lau, and Jianzhong Qi.
2025. Beyond seen data: Improving kbqa generaliza-
tion through schema-guided logical form generation.
Preprint, arXiv:2502.12737.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond iid:
three levels of generalization for question answering
on knowledge bases. In Proceedings of the Web
Conference 2021, pages 3477–3488.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2020. Atten-
tion guided graph convolutional networks for relation
extraction. Preprint, arXiv:1906.07510.

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and
Sebastian Padó. 2015. Distributional vectors encode
referential attributes. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12–21, Lisbon, Portugal.
Association for Computational Linguistics.

Sireesh Gururaja, Ritam Dutt, Tinglong Liao, and Car-
olyn Rose. 2023. Linguistic representations for
fewer-shot relation extraction across domains. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 7502–7514.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, and 1 others.
2015. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2(7).

Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Di-
mosthenis Karatzas, Shijian Lu, and CV Jawahar.
2019. Icdar2019 competition on scanned receipt ocr
and information extraction. In 2019 International
Conference on Document Analysis and Recognition
(ICDAR), pages 1516–1520. IEEE.

Pere-Lluís Huguet Cabot, Simone Tedeschi, Axel-
Cyrille Ngonga Ngomo, and Roberto Navigli. 2023.
REDfm: a filtered and multilingual relation extraction
dataset. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4326–4343, Toronto,
Canada. Association for Computational Linguistics.

Guillaume Jaume, Hazim Kemal Ekenel, and Jean-
Philippe Thiran. 2019. Funsd: A dataset for form
understanding in noisy scanned documents. In 2019
International Conference on Document Analysis and
Recognition Workshops (ICDARW), volume 2, pages
1–6. IEEE.

Longquan Jiang and Ricardo Usbeck. 2022. Knowledge
graph question answering datasets and their general-
izability: Are they enough for future research? In
Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 3209–3218.

Chen-Yu Lee, Chun-Liang Li, Hao Zhang, Timothy
Dozat, Vincent Perot, Guolong Su, Xiang Zhang,
Kihyuk Sohn, Nikolay Glushnev, Renshen Wang,
Joshua Ainslie, Shangbang Long, Siyang Qin, Ya-
suhisa Fujii, Nan Hua, and Tomas Pfister. 2023.
FormNetV2: Multimodal graph contrastive learn-
ing for form document information extraction. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 9011–9026, Toronto, Canada.
Association for Computational Linguistics.

Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan Zhou,
Weizhu Chen, Changyou Chen, and Lawrence Carin.
2020. Mixkd: Towards efficient distillation of large-
scale language models. In International Conference
on Learning Representations.

Jiacheng Lin, Kun Qian, Haoyu Han, Nurendra Choud-
hary, Tianxin Wei, Zhongruo Wang, Sahika Genc, Ed-
ward W Huang, Sheng Wang, Karthik Subbian, Danai
Koutra, and Jimeng Sun. 2025. Gt2vec: Large lan-
guage models as multi-modal encoders for text and
graph-structured data. Preprint, arXiv:2410.11235.

1637

https://doi.org/10.18653/v1/2023.ijcnlp-main.58
https://doi.org/10.18653/v1/2023.ijcnlp-main.58
https://doi.org/10.18653/v1/2023.ijcnlp-main.58
https://aclanthology.org/2025.coling-main.205/
https://aclanthology.org/2025.coling-main.205/
https://aclanthology.org/2025.coling-main.205/
https://doi.org/10.3389/frobt.2019.00153
https://doi.org/10.3389/frobt.2019.00153
https://doi.org/10.3389/frobt.2019.00153
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2502.12737
https://arxiv.org/abs/2502.12737
https://arxiv.org/abs/1906.07510
https://arxiv.org/abs/1906.07510
https://arxiv.org/abs/1906.07510
https://doi.org/10.18653/v1/D15-1002
https://doi.org/10.18653/v1/D15-1002
https://doi.org/10.18653/v1/2023.acl-long.237
https://doi.org/10.18653/v1/2023.acl-long.237
https://doi.org/10.18653/v1/2023.acl-long.501
https://doi.org/10.18653/v1/2023.acl-long.501
https://arxiv.org/abs/2410.11235
https://arxiv.org/abs/2410.11235
https://arxiv.org/abs/2410.11235


Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han,
Kun Kuang, Jiwei Li, and Fei Wu. 2021. BertGCN:
Transductive text classification by combining GNN
and BERT. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1456–1462, Online. Association for Computational
Linguistics.

Chang Liu, Chongyang Tao, Jiazhan Feng, and Dongyan
Zhao. 2022a. Multi-granularity structural knowledge
distillation for language model compression. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1001–1011.

Shuang Liu, Renshen Wang, Michalis Raptis, and Ya-
suhisa Fujii. 2022b. Unified line and paragraph de-
tection by graph convolutional networks. Preprint,
arXiv:2203.09638.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Zhu Liu, Cunliang Kong, Ying Liu, and Maosong Sun.
2024. Fantastic semantics and where to find them:
Investigating which layers of generative LLMs reflect
lexical semantics. In Findings of the Association
for Computational Linguistics: ACL 2024, pages
14551–14558, Bangkok, Thailand. Association for
Computational Linguistics.

Aakanksha Naik, Luke Breitfeller, and Carolyn Rose.
2019. Tddiscourse: A dataset for discourse-level tem-
poral ordering of events. In Proceedings of the 20th
Annual SIGdial Meeting on Discourse and Dialogue,
pages 239–249.

Vivi Nastase, Rada Mihalcea, and Dragomir R. Radav.
2015. A survey of graphs in natural language pro-
cessing. Natural Language Engineering, 5:665–698.

Andrew Ng and 1 others. 2011. Sparse autoencoder.
CS294A Lecture notes, 72(2011):1–19.

Armineh Nourbakhsh, Zhao Jin, Siddharth Parekh,
Sameena Shah, and Carolyn Rose. 2024. AliGATr:
Graph-based layout generation for form understand-
ing. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pages 13309–
13328, Miami, Florida, USA. Association for Com-
putational Linguistics.

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee,
Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee. 2019.
Cord: a consolidated receipt dataset for post-ocr
parsing. In Workshop on Document Intelligence at
NeurIPS 2019.

Bryan Perozzi, Vivek Kulkarni, Haochen Chen, and
Steven Skiena. 2017. Don’t walk, skip! online learn-
ing of multi-scale network embeddings. In Proceed-
ings of the 2017 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining
2017, pages 258–265.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Devendra Sachan, Yuhao Zhang, Peng Qi, and
William L Hamilton. 2021. Do syntax trees help
pre-trained transformers extract information? In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2647–2661.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2017. Modeling relational data with graph convolu-
tional networks. Preprint, arXiv:1703.06103.

Samuel Stanton, Pavel Izmailov, Polina Kirichenko,
Alexander A. Alemi, and Andrew G. Wilson. 2021.
Does knowledge distillation really work? Advances
in neural information processing systems, 34:6906–
6919.

Giulio Starace, Konstantinos Papakostas, Rochelle
Choenni, Apostolos Panagiotopoulos, Matteo Rosati,
Alina Leidinger, and Ekaterina Shutova. 2023. Prob-
ing LLMs for joint encoding of linguistic categories.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 7158–7179, Singapore.
Association for Computational Linguistics.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William W. Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. Preprint,
arXiv:1809.00782.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323–4332.

Siqi Sun, Zhe Gan, Yuwei Fang, Yu Cheng, Shuohang
Wang, and Jingjing Liu. 2020. Contrastive distil-
lation on intermediate representations for language

1638

https://doi.org/10.18653/v1/2021.findings-acl.126
https://doi.org/10.18653/v1/2021.findings-acl.126
https://doi.org/10.18653/v1/2021.findings-acl.126
https://arxiv.org/abs/2203.09638
https://arxiv.org/abs/2203.09638
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2024.findings-acl.866
https://doi.org/10.18653/v1/2024.findings-acl.866
https://doi.org/10.18653/v1/2024.findings-acl.866
https://doi.org/10.18653/v1/2024.findings-emnlp.778
https://doi.org/10.18653/v1/2024.findings-emnlp.778
https://doi.org/10.18653/v1/2024.findings-emnlp.778
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/1703.06103
https://arxiv.org/abs/1703.06103
https://doi.org/10.18653/v1/2023.findings-emnlp.476
https://doi.org/10.18653/v1/2023.findings-emnlp.476
https://arxiv.org/abs/1809.00782
https://arxiv.org/abs/1809.00782


model compression. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 498–508.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020.
Contrastive representation distillation. In Interna-
tional Conference on Learning Representations.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2022.
Contrastive representation distillation. Preprint,
arXiv:1910.10699.

Yuhang Tian, Dandan Song, Zhijing Wu, Changzhi
Zhou, Hao Wang, Jun Yang, Jing Xu, Ruanmin Cao,
and HaoYu Wang. 2024. Augmenting reasoning ca-
pabilities of LLMs with graph structures in knowl-
edge base question answering. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 11967–11977, Miami, Florida, USA.
Association for Computational Linguistics.

Andric Valdez-Valenzuela, Helena Gómez-Adorno, and
Manuel Montes-y Gómez. 2025. Text graph neural
networks for detecting AI-generated content. In Pro-
ceedings of the 1stWorkshop on GenAI Content De-
tection (GenAIDetect), pages 134–139, Abu Dhabi,
UAE. International Conference on Computational
Linguistics.
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RP Illustration Definition Example Question S-expression

T-0 A single-hop path from the con-
straint to the answer.

What is the name of
money in Brazil?

(JOIN (R loca-
tion.country.currency_used) m.015fr)

T-1 A two-hop path from the con-
straint to the answer.

Where does the Queen
of Denmark live?

(JOIN (R people.place_lived.location)
(JOIN (R people.person.places_lived)
m.0g2kv))

T-2 Two single-hop paths arising
from two different constraints
and converging to the same an-
swer.

What was Elie
Wiesel’s father’s
name?

(AND (JOIN people.person.gender
m.05zppz) (JOIN (R peo-
ple.person.parents) m.02vsp))

T-3 Two paths (one single-hop and
another two-hop) arising from
two different constraints and con-
verging to the same answer.

Where did Joe Namath
attend college?

(AND (JOIN com-
mon.topic.notable_types
m.01y2hnl) (JOIN (R educa-
tion.education.institution) (JOIN (R
people.person.education) m.01p_3k)))

T-4 Two two-hop paths arising from
two different constraints and con-
verging to an intermediate com-
mon node before reaching the an-
swer.

Who does Zach Gal-
ifianakis play in The
Hangover?

(JOIN (R film.performance.character)
(AND (JOIN film.performance.film
m.0n3xxpd) (JOIN (R film.actor.film)
m.02_0d2)))

Table 3: Reasoning patterns with their corresponding definitions, example questions, and S-expressions.

Figure 6: Example depicting the supplemental information provided by the dependency tree. The entities of interest
are wood and fences, having the relationship material_used. The path wood← used→ make→ posts→ fences
elicits this relationship.

RP Illustration i.i.d. Comp Z.S. Total

T-0 50.3 0.0 49.7 54.5

T-1 37.3 44.3 18.4 23.5

T-2 17.1 47.1 35.7 5.2

T-3 83.3 6.7 10.0 2.2

T-4 12.8 81.5 5.6 14.5

ALL 40.8 24.9 34.3 100.0

Table 4: Distribution of reasoning patterns over the
generalization splits (i.i.d., compositional (Comp), zero-
shot (Z.S.)) of our modified WebQSP dataset.

A Task suite details

A.1 Data processing for reasoning pattern
prediction and KBQA entity-ranking

We use the WebQSP dataset (Yih et al., 2016) for
our two KBQA related experiments, i.e. reason-

ing pattern prediction and entity-ranking. An ex-
ploratory analysis of WebQSP highlighted a sig-
nificant overlap of relations and classes across the
train and test splits. Subsequently, we employed
the approach of Jiang and Usbeck (2022) to obtain
development and test splits that characterize differ-
ent generalization levels in equal proportion. The
three generalization levels for KBQA tasks include
i.i.d, compositional, and zero-shot.

The i.i.d. case implies that the questions ob-
served during inference follow similar logical tem-
plates to those during training; for example the
questions “Who was the author of Oliver Twist?”
and “Who wrote Pride and Prejudice?” follow sim-
ilar logical templates. We contrast this with the
compositional case, where questions in the test
split operate over the same set of relations that were
present in the training set (such as the “written-by”
relation), but different logical templates. For exam-
ple, the questions “Who wrote Pride and Prejudice?”
and “Who wrote both The Talisman and It?” re-
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Task Text model Graph model Loss function Metric

ETRE RoBERTa1 {1,2,3}-layer
RGAT4

cross-entropy
(CE)

weighted F1

Form understanding RoBERTa1 2-layer RGAT4 binary CE F1
MLRE mBERT-base2 2-layer RGCN 5 CE macro F1
Reasoning pattern prediction T5-base3 2-layer RGCN5 CE macro F1
KBQA entity-ranking T5-base3 2-layer RGCN5 binary CE Hits@K6

Table 5: Model configurations, training objectives, and evaluation metrics for each task. The text and graph model
backbones listed in this table are used for the primary results in Table 2.

Task LR Batch
size

Drop
out Temp. Max

input len
GNN
layers

GNN
hidden dim

ETRE (TDDMan) 1e-5 16 0.1 0.1 – 2 256
ETRE (TDDAuto) 1e-5 32 0.1 0.04 – 3 256
ETRE (TB-Dense) 1e-5 32 0.1 0.9 – 1 256
MLRE 1e-5 16 0.2 0.1 512 2 768
Reasoning pattern prediction 5e-5 6 0.2 0.1 512 2 768
KBQA entity-ranking 5e-5 4 0.2 0.1 1024 2 768
Form understanding Same settings as in Nourbakhsh et al. (2024)

Table 6: Hyperparameters used across tasks. Temperature refers to τ in CoD. All experiments use a shared space
dimension of 2048.

quire reasoning over the same relation “written-by”
but follows different reasoning paths, since the for-
mer involves only one constraint or entity, whereas
the latter involves two. Finally, questions in the
zero-shot split operate over new or unseen relations
that were not present in the training dataset. For
example, the questions “Who wrote Pride and Prej-
udice?” and “Who directed Pride and Prejudice in
2005?” involves different relations, i.e. “written-
by” and “directed-by” respectively. We defer the
readers to past work (Gu et al., 2021; Jiang and Us-
beck, 2022; Dutt et al., 2023) for a more thorough
description of the different generalization splits.

We characterize the complexity of the reasoning
pattern to answer a given KBQA question based
on Dutt et al. (2023). Given the modified version
of WebQSP dataset, we identify the following five
reasoning patterns that accounted for ≥ 97% of the
dataset across all splits. We describe the different
reasoning patterns in Table 3 and outline their dis-
tribution in the our modified WebQSP dataset in
Table 4.

To accommodate the input length constraints of
models like T5, we simplify the representation of
knowledge base entities in the linearized graph in-
put. Instead of using full entity identifiers (e.g.,
m.02896), we assign short, unique placeholder to-
kens (e.g., <E1>, <E2>) to each entity as a part of
the tokenizer vocabulary. This helps reduce the in-
put sequence length and avoids unwanted subword

tokenization. In addition, we ensure that these
placeholder tokens are assigned consistently across
modalities: the same entity is represented as node
vi in the graph and as token <Ei> in the linearized
text.

A.2 MLRE dependency parsing illustration

See Figure 6.

A.3 FU example

We adapt an example to showcase the FU task
from Nourbakhsh et al. (2024) in Figure 7.

B Task experiments details

We present the experimental details for different
tasks. In Table 5, we outline the loss function that
we are optimizing, the corresponding evaluation
metric, and the backbone architectures used for the
primary results reported in Table 2: the transformer
model that encodes the textual information, and the
specific GNN architecture that encodes the graph
information. In Table 6, we provide hyperparam-
eters values for our experiments. We also present
statistics on the task suite datasets and training
times in Table 7. All datasets we used are publicly
available, and we follow the licensing terms and
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Task Dataset Train Test Number of labels Training time

ETRE
TDDMan 4,000 1,500 5 28 min
TDDAuto 32,609 4,258 5 3h 40min
TB-Dense 4,032 1,427 6 26 min

MLRE

REDFM (en) 8,504 1,235 32 6h 7min
REDFM (es) 5,194 733 32 2h 30min
REDFM (fr) 5,452 975 32 3h 14min
REDFM (de) 5,909 811 32 2h 46min
REDFM (it) 4,597 1,086 32 2h 38min

Reasoning pattern prediction WebQSP 3,014 1,343 5 1h
KBQA answer-ranking WebQSP 3,014 1,343 Number of gold answers 3h

Form understanding
SROIE 626 347 4 10h
FUNSD 149 50 4 4h 36min
CORD 800 100 30 17h 47min

Table 7: Task suite statistics and training times. We train for 1000 epochs for form understanding.

intended use of each.

C Extended CoD results

To further demonstrate the robustness and general-
ity of CoD, we apply it to new model combinations
on two representative tasks: reasoning pattern pre-
diction and ETRE (Table 8). We also demonstrate
additional CoD performance across each language
data for MLRE in Table 9.

D Extended visualization results across
tasks

D.1 ETRE results

See Figure 8 and Figure 9 for results on TimeBank-
Dense and TDDAuto datasets, respectively. See
Figure 10 for results on TDDMan dataset when no
CoD is applied.

D.2 MLRE results

See Figure 11 for PCA plots, and Figure 12 for
cosine similarity and distance metrics results.

D.3 FU results

See Figure 13 and Figure 14 for results on SROIE
and FUNSD datasets, respectively.

1Liu et al. (2019)
2Devlin et al. (2019)
3Raffel et al. (2023)
4Busbridge et al. (2019)
5Schlichtkrull et al. (2017)
6K indicates the number of correct answers for an instance.

D.4 RPP results
See Figure 15 for Reasoning Pattern Prediction task
without CoD applied.

D.5 KBQA entity-ranking results
See Figure 16 and Figure 17 for results for KBQA
entity-ranking with and without CoD applied, re-
spectively.
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(a) Reasoning pattern prediction

Text encoder Graph encoder Hybrid (CoD) Text only Graph only

T5 RGCN 0.6190 0.5700 0.5840
T5 RGAT 0.6120 0.5700 0.4966
BERT RGCN 0.5999 0.5835 0.5840
BERT RGAT 0.5956 0.5835 0.4966
GPT-2 RGCN 0.6022 0.5614 0.5840
GPT-2 RGAT 0.6049 0.5614 0.4966

(b) Event temporal relation extraction (ETRE)

Text encoder Graph encoder Hybrid (CoD) Text only

TDDMan
BERT GCN 0.411 0.447
BERT RGCN 0.384 0.447
BERT RGAT 0.481 0.447
RoBERTa GCN 0.435 0.445
RoBERTa RGCN 0.452 0.445
RoBERTa RGAT 0.551 0.445

TDDAuto
BERT GCN 0.631 0.624
BERT RGCN 0.647 0.624
BERT RGAT 0.683 0.624
RoBERTa GCN 0.748 0.689
RoBERTa RGCN 0.665 0.689
RoBERTa RGAT 0.771 0.689

TB-Dense
BERT GCN 0.790 0.775
BERT RGCN 0.782 0.775
BERT RGAT 0.810 0.775
RoBERTa GCN 0.805 0.767
RoBERTa RGCN 0.847 0.767
RoBERTa RGAT 0.856 0.767

Note that we did not record numbers for the graph-only approach
because the graph approach for this task yields incredibly poor results
without the incorporation of linear transformers (Yao et al., 2024).

Table 8: Additional results for (a) Reasoning pattern prediction and (b) ETRE using different text and graph encoder
backbones. CoD consistently improves over baselines across all combinations in Reasoning pattern prediction, and
improves 78% of the times across all 18 cases for ETRE. These results demonstrate CoD’s generality across diverse
model architecture combinations.
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Figure 7: An example of FU task from the FUNSD dataset, adapted from Nourbakhsh et al. (2024). Green links
show correct predictions. Red links show false negatives. Blue links show false positives.

Language Text only Graph only Hybrid + CoD Hybrid + no-CoD

de 80.41 ± 0.61 47.13 ± 2.76 80.35 ± 0.71 79.55 ± 0.40
en 85.94 ± 1.41 52.21 ± 0.56 84.57 ± 2.25 84.74 ± 1.07
es 80.49 ± 0.61 51.21 ± 1.47 76.64 ± 1.09 80.26 ± 0.44
fr 77.47 ± 0.73 45.62 ± 1.60 78.80 ± 0.58 78.31 ± 0.78
it 74.25 ± 0.36 46.61 ± 1.98 72.67 ± 1.40 74.76 ± 1.02

Avg 79.71 ± 3.95 48.55 ± 3.21 78.61 ± 4.17 79.53 ± 3.32

Table 9: F1 score results on MLRE task for the REDfm dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 8: Results for ETRE on the TimeBank-Dense dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 9: Results for ETRE on the TDDAuto dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 10: Results for ETRE on the TDDMan dataset when no CoD is applied.

1647



(a) Initial epoch (de) (b) Intermediate epoch (de) (c) Final epoch (de)

(d) Initial epoch (en) (e) Intermediate epoch (en) (f) Final epoch (en)

(g) Initial epoch (es) (h) Intermediate epoch (es) (i) Final epoch (es)

(j) Initial epoch (fr) (k) Intermediate epoch (fr) (l) Final epoch (fr)

(m) Initial epoch (it) (n) Intermediate epoch (it) (o) Final epoch (it)

Figure 11: PCA plots for MLRE across the different languages in the REDfm dataset.
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(a) Cosine similarity (b) Distance within text

(c) Distance within graph (d) Distance between text and graph

Figure 12: Cosine similarity and distance results for MLRE on the REDfm dataset.

(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Distance within text (e) Distance within graph (f) Distance between text and graph

Figure 13: Results for form understanding on the SROIE dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Distance within text (e) Distance within graph (f) Distance between text and graph

Figure 14: Results for form understanding on the FUNSD dataset.

(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 15: Results for reasoning pattern prediction on the WebQSP dataset when no CoD is applied.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 16: Results for KBQA entity-ranking on the WebQSP dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 17: Results for KBQA entity-ranking on the WebQSP dataset when no CoD is applied.
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