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Abstract
Recent advances in large language models
(LLMs) such as GPT-4o offer the potential
for enhancing AI-driven robotic interactions,
but their effectiveness in mobile tour guid-
ance remains unexplored. This study investi-
gates the differences between human-operated
and AI-driven guidance at an aquarium using
Teleco, a teleoperated mobile robot, in a real-
world field experiment. A total of 277 guid-
ance sessions were collected under two modes:
human-operated, where the operator controlled
all dialogue, actions, and movement, and AI-
driven, where GPT-4o generated responses
while the operator only controlled the robot’s
actions and movement. Our results indicate
that human-operated guidance places greater
emphasis on visitor movement, spatial posi-
tioning during observation guidance, and em-
pathetic expressions, whereas AI-driven guid-
ance promotes conversational engagement by
frequently prompting visitors to ask questions.
In addition, we found that user behaviors, in-
cluding users’ gaze patterns and vocabulary
richness, also serve as valuable indicators re-
flecting their overall experience during guid-
ance interactions. Furthermore, empathetic ex-
pression is recognized as the key differentiat-
ing factor between the two guidance modes,
significantly influencing users’ overall experi-
ence.

1 Introduction

With advances in robotics technology, robots are
increasingly being deployed in various public
spaces, such as airports for information services
(Triebel et al., 2016) and museums or aquariums
for visitor guidance (Mochizuki et al., 2023; Ya-
mashita et al., 2023b). Recent advancements
in situation-aware technologies have further con-
tributed to the growing adoption of mobile robots,
as they offer greater adaptability and interactivity
compared to stationary robots. In venues such as
museums and aquariums, mobile robots have the
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(a) Operator on 3rd floor teleoperating Teleco

(b) Teleco interacting with visitors on 1st floor

Figure 1: Photographs of Teleco providing mobile guid-
ance under teleoperation by a remote operator.

potential to provide more complex tour guidance
by dynamically responding to visitors and their sur-
roundings.
However, despite extensive research on au-

tonomous navigation and context-aware interac-
tions (Chen et al., 2021; Han and Li, 2023; Al-
Kamil and Szabolcsi, 2024), mobile tour guide
robots still face major limitations in their dialogue
ability. Many existing robots use pre-defined
templates for dialogue generation (Yuguchi et al.,
2022; Vásquez andMatía, 2020), which limits flex-
ibility and reduces the naturalness of the interac-
tions. The emergence of large language models
(LLMs) (Achiam et al., 2023) has demonstrated
promising advancements in natural language un-
derstanding and conversational AI, making them a
potential solution for improving robotic guidance.
However, few studies have explored integrating
LLMs into mobile guidance robots. This raises
two research questions:
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RQ1: To what extent can high-performing LLMs
(e.g., OpenAI’s ChatGPT (Roumeliotis and
Tselikas, 2023)) provide guidance using a
teleoperated mobile robot compared with
human-operated performance?

RQ2: What are the differences between human-
operated and AI-driven mobile robot guid-
ance regarding user experience and interac-
tion quality?

To investigate the differences between human-
operated and AI-driven guidance, we conducted a
field experiment using Teleco1, a teleoperated mo-
bile robot, at Nifrel2, a facility that combines an
aquarium and a zoo in Osaka, Japan. Teleco pro-
vided a 5-minute tour, introducing three pufferfish
species across two exhibit tanks (see Fig. 1).
The experiment involved two guidance modes:

one where a human operator directly controlled
the robot’s dialogue, actions, and movement, and
another where an AI-driven system implemented
by GPT-4o generated responses while the operator
only controlled the robot’s actions and movement.
Both modes were conducted under aWizard-of-Oz
setup, in which the human operator controlled the
non-autonomous functions corresponding to each
mode. During the experiment, participants were
not informed of the operator’s involvement in ei-
ther mode, nor of which parts were automated or
manually controlled. To assess the capability of
AI-driven guidance, we evaluated post-guidance
questionnaires. To further distinguish the differ-
ences between the two modes, we analyzed in-
teraction patterns using n-gram frequency analy-
sis, identified multimodal features correlated with
questionnaire responses through correlation analy-
sis, compared utterance categories via embedding-
based clustering, and examined relationships influ-
encing user experiences through structural equa-
tion modeling (SEM).

2 Related Work

Mobile robots are increasingly utilized for human
interaction in various guidance tasks, such as visi-
tor assistance in museums and aquariums, offering
a flexible guidance experience. One of the earli-
est robots formuseumguidance,MINERVA (Thrun
et al., 2000), was designed for human-machine
interaction. Similarly, Robovie (Ishiguro et al.,

1https://www.vstone.co.jp/english/
2https://www.nifrel.jp/en/

2001) featured human-like actuators, vision, and
audio sensors, enabling it to exhibit human-like be-
haviors. Honda’s ASIMO (Nakano et al., 2005) fur-
ther advanced mobility, enabling it to walk and to
perform receptionist and information guide tasks.
More recently, the Pepper robot (Pandey et al.,

2018) was designed with emotion expression ca-
pabilities and wheeled mobility, making it well-
suited for customer interactions in service en-
vironments. Doris (Vásquez and Matía, 2020)
was developed as a tour guide robot capable of
autonomously navigating predefined waypoints
while displaying emotional expressions. Its guid-
ance relied on several predefined templates for di-
alogue generation. Similarly, Butsukusa (Yuguchi
et al., 2022) integrated environment recognition
and object detection of surroundings to enable au-
tonomous movement in indoor spaces. However,
its dialogue generation remained template-based.
With the emergence of LLMs, researchers have

explored embedding them into mobile robots
(Zeng et al., 2023). Shah et al. (2023) integrated
a pre-trained LLM (GPT-3) to process language,
vision, and actions for navigation. Similarly, Liu
et al. (2024) developed a robot with ChatGPT
that can perceive its surroundings and perform
tasks while communicating with humans. PaLM-
SayCan (Brohan et al., 2023) grounds natural lan-
guage instructions into executable actions by com-
bining a languagemodel with affordance functions.
PaLM-E (Driess et al., 2023) represents one of the
first embodied multimodal LLMs, unifying vision,
language, and state inputs to generate both textual
and action outputs. RT-1 (Brohan et al., 2022)
leverages vision-language LLMs by encoding vi-
sual and language inputs into tokens and training a
transformer to perform over 700 real-world tasks,
demonstrating strong multi-task generalization.
While these studies have made advancements

with robot perception, planning, and control, little
attention has been paid to user experience and in-
teraction quality. In the current study, we focus on
the user experience and interaction quality by con-
ducting a large-scale field experiment that directly
compares human-operated and LLM-driven robot
guidance.

3 Robot Systems for Human-operated
and AI-driven Guidance

To compare AI-driven and human-operated guid-
ance, we developed a teleoperated mobile robot
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system with two modes: human-operated and AI-
driven. Teleco, a mobile robot equipped with an
OLED display and wheeled mobility, was chosen
to provide visitor guidance. The target language of
the system was Japanese.

3.1 Human-operated Guidance
In this mode, the operator directly speaks to the
visitor while simultaneously controlling Teleco’s
movements, expressions, gestures, and template
utterances as needed. To ensure a seamless au-
ditory experience, retrieval-based voice conver-
sion (RVC)3, a voice conversion model, is used to
modulate the operator’s voice and match it with
Teleco’s robotic tone, minimizing discrepancies
when switching between direct speech and tem-
plate utterances. To facilitate real-time control
and smooth interactions, the teleoperation inter-
face (Fig. 2) provides access to a live camera feed,
dialogue history, visitor gaze data, recognized ob-
jects, robot gesture and expression controls, prede-
fined utterance templates, and a navigation map.

3.2 AI-driven Guidance
In this mode, all utterances are generated by AI
using GPT-4o (Achiam et al., 2023) based on au-
tomatic speech recognition (ASR) results via the
Google Speech-to-Text API. A predefined prompt
for GPT-4o is used (see Table 6 in Appendix A),
which includes necessary information about the in-
troduced content and a one-sentence visitor gaze
description. This gaze description is automatically
generated from visitor gaze data captured using
an Insta360 GO 3S5 mounted on a head-worn ac-
cessory. Note that we collected the user’s head-
mounted camera stream here, which was then uti-
lized as an approximation of what the user was
looking at rather than actual eye gaze. The cap-
tured gaze data is processed in real-time using
GPT-4o-mini, a lighter variant of GPT-4o, to create
concise gaze summaries while minimizing compu-
tational costs. These gaze descriptions are used for
AI-driven dialogue generation, as user gaze plays
a crucial role in guided tours, influencing both vis-
itor engagement and information perception (Ruh-
land et al., 2015; Schreiter et al., 2023).
The AI-generated utterances are then converted

into Teleco’s robotic tone utilizing an embedded
text-to-speech (TTS) system before being spoken

3https://github.com/RVC-Project/Retrieval-based-Voice-
Conversion-WebUI/

5https://www.insta360.com/product/insta360-go3s/

Teleco’s Chest Camera

Dialog History Visitor Gaze Image

Templates & 
Movements

Actions & Expressions

Figure 2: Teleoperation interface. The interface in-
cludes (1) a live video feed from Teleco’s chest camera,
enabling the operator to monitor the surroundings; (2) a
dialogue history transcribed via Google Speech-to-Text
API4; (3) user gaze images streamed from the Insta360
GO 3S mounted on the visitor’s head, providing infor-
mation about visitor attention; (4) automatically recog-
nized gaze objects with one-sentence descriptions ex-
tracted from user gaze images; (5) controls for Teleco’s
actions, including bowing, hand-raising, and height ad-
justments; (6) controls for five facial expressions (sad,
happy, angry, nervous, and neutral); (7) controls for
predefined template utterances, allowing the operator
to quickly select consistent speech responses; and (8)
movement controls via a map interface, allowing the
operator to navigate the robot.

aloud. The operator does not actively chat with the
visitor in this mode; instead, their role is to moni-
tor the conversation and manually control Teleco’s
movements, as it is difficult to navigate in con-
gested environments. If the AI-generated dialogue
contains incorrect information, the operator can
pause the AI interaction and manually intervene to
provide corrections.

4 Field Experiment

To assess the capability of AI-driven guidance and
clarify its differences from human-operated guid-

4https://cloud.google.com/speech-to-text/
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ID Questionnaire Items
Q1 I was satisfied with the conversation.
Q2 I actively participated in the conversation.
Q3 My interest and curiosity toward the introduced

creatures deepened through the conversation.
Q4 I felt a sense of closeness with the robot.
Q5 The robot’s speech was informative.
Q6 The robot’s guidance was easy to understand.
Q7 The robot maintained an appropriate sense of dis-

tance.
Q8 The robot was looking at the same things as me.
Q9 The robot’s speech and actions were consistent.
Q10 The robot’s speech was appropriate for the situa-

tion.
Q11 The robot’s actions were appropriate for the situa-

tion.

Table 1: User questionnaire items (translated from
Japanese).

ance, we conducted a field experiment using the
Teleco robot at Nifrel.
The experiment was conducted over 28 days.

During this period, Teleco was controlled un-
der two different modes, human-operated and AI-
driven, to provide short guidance tours to visitors.
Multimodal data, including audio dialogues, video
recordings, and user gaze tracking data, were col-
lected for further analysis. The field experiment
was approved by our institution’s ethics committee
and conducted in compliance with ethical guide-
lines.

4.1 Experimental Workflow

Our study focused on guiding visitors through two
exhibit tanks featuring three species of pufferfish.
The experiment involved a single operator per ses-
sion, with one male and one female operator as-
signed on different days. Both operators had native
proficiency in Japanese and were trained in basic
teleoperation as well as in the pufferfish species
introduced during the tour. Staff members invited
visitors to participate or responded to those who
showed interest in the guidance tour.
Once the tour session began, Teleco moved se-

quentially from the small tank (containing Oki-
nawa pufferfish) to the large tank (housing mouse
pufferfish and makeup pufferfish), providing an
interactive guidance experience. The robot in-
troduced the three species and answered visitors’
questions. At the end of the tour, Teleco returned
to its initial position, and both the visitor and op-
erator completed a post-guidance questionnaire to
evaluate their guidance experience. The user ques-
tionnaire, consisting of 11 items, assessed user

Human AI
No. of conversations 212 65
Total conv. time (h) 21.9 6.1
Avg. conv. time (sec) 372±101 336±112
Avg. no. of utterances 66.3±21.2 55.4±19.3
Avg. sys utt. duration (sec) 4.5±3.8 8.8±12
Avg. usr utt. duration (sec) 4.6±0.87 4.8±1.28

Table 2: Statistics of conversations under human and
AI modes.

satisfaction, engagement, interest level, perceived
closeness, and various aspects of the robot’s perfor-
mance (see Table 1). Each item was rated on a 7-
point Likert scale, where 1 represented the lowest
rating (worst) and 7 represented the highest (best).
The operator questionnaire assessed the effective-
ness of the guidance and the usability of the teleop-
eration system (see Table 7 in Appendix B). Each
session lasted approximately five minutes, with
flexibility to shorten or extend the duration based
on visitor engagement and contextual factors such
as congestion or ongoing events in the facility.

4.2 Statistical Information
We collected over 300 dialogues in this field exper-
iment. After filtering out incomplete interactions
caused by WiFi issues in congested conditions, a
total of 277 dialogue sessions were retained, con-
sisting of 212 human-operated sessions and 65 AI-
driven sessions. The number of AI-driven sessions
was lower due to environmental constraints; since
speech recognition in the AI-driven mode required
a quieter environment, these sessions were con-
ducted only when background noise levels were
low.
Table 2 presents a comparison of the dialogue

statistics. All guidance utteranceswere transcribed
using OpenAI Whisper-large-v36. The results
show that human-operated sessions had a longer
average conversation time and more utterances
than AI-driven sessions, indicating richer dialogue
and interaction in the human-operated mode. In
addition, the average system utterance duration in
the human-operated mode was shorter than in the
AI-driven mode, suggesting that AI-generated re-
sponses were longer and took more time to deliver.

5 Data Analysis

In this section, we analyze the differences between
human-operated andAI-driven guidance frommul-

6https://huggingface.co/openai/whisper-large-v3
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Figure 3: Results of user questionnaire, with each item
rated on a Likert scale from 1 to 7.

tiple perspectives. First, we examine user question-
naire results to evaluate the overall performance
of the two guidance modes. Next, we extract
and compare lexical differences in system utter-
ances. We then analyze correlations between ques-
tionnaire results and multimodal features derived
from dialogue, user gaze behavior, and robot ac-
tions. Subsequently, robot utterances are catego-
rized through embedding-based clustering to fur-
ther identify key linguistic differences between the
two modes. Lastly, we construct a four-layer SEM
structure to examine the hypothesized directional
relationships among these multimodal variables
and their influences on user experiences.

5.1 Results of Post-guidance User
Questionnaire

The post-guidance questionnaire results for
human-operated and AI-driven guidance are
shown in Fig. 3. On average, human-operated
guidance received a score of 6.0, while AI-driven
guidance scored 5.4. Across all questionnaire
items, human-operated guidance consistently
received higher ratings than AI-driven guidance.
Since this study primarily focuses on user ex-
perience, operator questionnaire results are not
analyzed here and are left for future investigation.
To statistically analyze the differences, we used

a Mann-Whitney U test on each questionnaire
item. The results showed significant differences
between the two modes for all items except Q2
(user engagement) and Q3 (interest level). This
suggests that AI-driven guidance showed the abil-
ity to achieve a human-level performance to some
extent, although there is still a noticeable gap. The
lack of significant differences in Q2 and Q3 in-
dicates that both modes were equally effective in
maintaining user engagement and sparking inter-

est, possibly because the guidance content itself
(three species of pufferfish) was engaging, and
both modes provided essential information about
the guidance content.

5.2 Lexical Differences in System Utterances
To clarify the specific linguistic differences in the
dialogue between human-operated and AI-driven
guidance, we performed an n-gram frequency anal-
ysis, following the approach of Yamashita et al.
(2023a). We utilized word 4-grams in this anal-
ysis, as they provide a balance between captur-
ing meaningful word sequences and maintaining
interpretability, and analyzed the most distinctive
4-grams that exhibited significant differences be-
tween the two modes.
First, we utilized MeCab (Kudo et al., 2004), a

morphological analyzer, to tokenize utterances and
extract words from both human-operated and AI-
driven dialogues. We then extracted 4-grams from
the tokenized text. For each 4-gram, we compared
its occurrences in human-operated and AI-driven
dialogues by computing the proportion of its fre-
quency relative to the total occurrences of all 4-
grams in each mode. To determine whether the dif-
ference in relative frequencies was statistically sig-
nificant, we applied the two-proportion z-test (Zou
et al., 2003), which is suitable for comparing pro-
portions between two independent samples.
The results of the distinctive 4-grams we ob-

tained (see Table 8 in Appendix C) indicate that in
the human-operated mode, Teleco frequently used
directive phrases such as “Follow me” and “Please
come here”, emphasizing spatial guidance. In con-
trast, in the AI-driven mode, Teleco tended to use
more question-oriented statements such as “Feel
free to ask” and “Ask me anything”, highlighting
a stronger focus on interactive engagement with
the visitor. This pattern is also evident in the exam-
ple dialogues for bothmodes provided in Table 9 in
Appendix D. These examples suggest that human-
operated guidance places more emphasis on visi-
tor movement and spatial positioning, whereas AI-
driven guidance, due to its limited ability to man-
age spatial guidance, had no alternative but to rely
more on conversational engagement by prompting
visitors to ask questions.

5.3 Correlation Analysis of Multimodal
Features with User Questionnaire Results

To clarify the factors influencing users’ question-
naire ratings, we analyzed the correlation between
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Human-operated
Multimodal Features Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Avg. sentence len (Sys) .14 .10 .07 .06 .12 .11 .11 .10 .12 .18 .01
Lexical diversity (Sys) –.05 –.03 –.02 –.01 .02 –.03 .04 .04 .01 –.06 –.05
Vocabulary (Sys) .17 .19+ .14 .08 .12 .11 .02 –.03 .03 .16 .15
Avg. sentence len (Usr) .12 .12 .20 .06 .16 .23∗ .00 .12 .12 .12 .08
Lexical diversity (Usr) .04 –.14 –.09 –.05 .04 –.07 –.04 –.06 –.06 –.05 –.07
Vocabulary (Usr) .06 .20+ .14 .10 .08 .16 .10 .11 .06 .08 .10
User gaze entropy .10 .05 –.03 .10 .08 .03 .00 .07 .08 .10 .12
Total action count –.05 –.01 –.01 .03 –.03 –.05 –.03 –.09 –.03 .01 .03

AI-driven
Multimodal Features Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Avg. sentence len (Sys) .10 .09 .25 .16 .17 .16 .18 .19 .12 –.09 .02
Lexical diversity (Sys) –.34 –.33+ –.20 –.12 –.06 –.05 –.09 –.13 –.13 .05 .03
Vocabulary (Sys) .22 .38+ .21 .08 .07 .06 .11 –.01 .10 –.08 –.05
Avg. sentence len (Usr) –.01 –.16 –.08 –.12 –.12 –.09 –.27 .05 –.02 –.13 –.08
Lexical diversity (Usr) –.05 –.25 .08 .07 .05 .08 .08 .18 .09 .09 .03
Vocabulary (Usr) .16 .10 –.01 –.04 –.02 –.14 –.16 –.03 –.05 –.21 –.20
User gaze entropy .27 .02 –.05 .31∗ –.02 –.05 –.06 .22 .05 .14 –.02
Total action count .31 .08 .14 .12 .24 .25 .31 .34 .33 .37+ .27
Refer to Table 1 for descriptions of Q1 to Q11. +𝑝 < .1, *𝑝 < .05

Table 3: Correlation results for human-operated and AI-driven guidance. Bold values indicate significant correla-
tions after two-stage false discovery rate correction.

multimodal features extracted from dialogue, user
gaze, and robot actions with user questionnaire re-
sults for both human-operated and AI-driven guid-
ance.
Following previous work by Guo et al. (2024),

for each guidance session, we extracted linguis-
tic features from both system and user utterances,
including average sentence length, lexical diver-
sity, and vocabulary as key linguistic characteris-
tics. We also calculated user gaze transition en-
tropy (Krejtz et al., 2015), which quantifies the
variability and unpredictability of gaze shifts be-
tween different regions of interest, providing in-
formation about attention distribution. In addition,
we calculated the total action count from Teleco’s
action data, which includes the operator’s control
of its gestures, movements, and facial expressions.
The total action count was utilized to evaluate the
richness of the system’s interactive behaviors.
Table 3 presents the Spearman’s rank correlation

coefficient (Sedgwick, 2014) results between user
questionnaire items and multimodal features for
human-operated and AI-driven guidance. A two-
stage false discovery rate correction (𝛼 < 0.05)
was applied separately for each questionnaire item
to evaluate the statistical significance of correla-
tions. Note that for human-operated guidance, sys-
tem linguistic features refer to those extracted from
the operator’s utterances, whereas for AI-driven
guidance, they refer to features extracted from AI-
generated utterances. Our key findings are as fol-
lows.

Language usage correlates with user engage-
ment and guidance clarity. For Q2 (user en-
gagement), both human-operated and AI-driven
guidance were influenced by the richness of
Teleco’s vocabulary (the operator’s utterance
vocabulary in human-operated mode and the
AI-generated utterance vocabulary in AI-driven
mode), suggesting that in both modes, diverse lan-
guage contributes to user engagement. Signifi-
cant correlations for Q2 (user engagement) and
Q6 (guidance clarity) indicated that, in human-
operated guidance, longer user sentence length and
richer vocabulary were associated with higher user
ratings on these two dimensions.

User gaze and robot actions correlate with
users’ perceived familiarity with the robot and
its speech appropriateness. In AI-driven guid-
ance, ratings for Q4 (familiarity with robot) and
Q10 (speech appropriateness) correlated with user
gaze entropy and total action count, respectively.
This suggests that users who actively explored
their surroundings tended to feel more familiar
with the robot, with the richness of robot actions
further influencing their experience—likely due to
the AI system’s limited ability to adapt its guidance
based on visitor movements. In contrast, human-
operated guidance seems to have adapted to visi-
tor behaviors, making dialogue the primary factor
influencing user experience.
To better understand the association between robot
actions and Q10 in AI-driven guidance, we com-
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pared the total action count using a Mann–Whit-
ney U test. The human-operated mode showed sig-
nificantly higher counts (median = 6.0) than the
AI-driven mode (median = 4.0; 𝑝 < .01). In
the human-operated condition, frequent use of ac-
tions (facial expressions and gestures) was com-
mon and may therefore have been less influential
on Q10. In contrast, in the AI-driven condition,
actions were fewer. We conclude that operators
may have needed to focus on listening to the AI-
generated dialogue and on navigation. Accord-
ingly, each action may have been more salient and
therefore more closely associated with Q10.

5.4 Utterance Clustering Using Sentence
Embeddings

To explore differences between human-operated
and AI-driven guidance regarding typical utter-
ance categories, we conducted clustering analyses
on system utterances extracted from transcribed
dialogue data. Each utterance from both guid-
ance modes was first embedded using the Japanese
Sentence-BERT model7. We then applied K-
means clustering with Euclidean distance to these
Sentence-BERT embeddings. The optimal num-
ber of clusters was selected from a range of 2 to
10, determined by the silhouette score (Shahapure
and Nicholas, 2020). For each cluster, we selected
five utterances closest to the centroid as represen-
tative examples, provided them to GPT-4o, and
instructed it to generate a concise description for
each cluster.
The results of utterance clustering and their de-

scriptions are summarized in Table 4. Opera-
tor utterances were clustered into nine categories,
and a cluster proportion analysis was conducted
to examine differences between human-operated
andAI-driven guidance across these nine utterance
categories. Specifically, we calculated the pro-
portion of utterances in each category separately
for human-operated and AI-driven guidance, then
compared these proportions using two-proportion
z-tests. The Benjamini–Hochberg (FDR-BH) pro-
cedure with 𝛼 = 0.05 was applied to control the
false discovery rate across multiple comparisons.
The results in Table 5 reveal that, compared

to AI-driven guidance, human-operated guidance
provided more detailed introductions of the Oki-
nawa pufferfish (the first species introduced), ex-
pressed greater empathy, offered more observa-

7https://huggingface.co/sonoisa/sentence-bert-base-ja-
mean-tokens-v2

Utterance Categories and Examples
Okinawa Pufferfish
Introduction

That one is called an “Okinawa puffer”,
but it’s actually a relative of the porcu-
pinefish.

Toxicity Warning Its entire body is poisonous, so it isn’t
edible.

Mouse Pufferfish In-
troduction

The black-spotted porcupinefish is a
large pufferfish with dark mottled pat-
terns along its body.

Move Instruction All right, let’s move on to the next area.
Empathy Expres-
sion

Lucky you! You got to see it all puffed
up!

Behavior Induction Certainly. I’ll guide you. Please follow
right behind me.

Makeup Pufferfish
Introduction

As its name suggests, the make-up
pufferfish has markings around its eyes
that look like cosmetics.

Observation Guide In this large tank, a humphead wrasse
is swimming. Can you find it?

Prompting Question Any guesses? I wonder if you can tell.

Table 4: Utterance categories generated by GPT-4o and
representative examples (translated from the original
Japanese).

Proportion of Utterance Categories
Category Human AI Sig.

Okinawa Pufferfish Intro. 16.8% 11.3% **
Toxicity Warning 4.3% 4.3%
Mouse Pufferfish Intro. 16.2% 18.9% **
Move Instruction 9.6% 11.9% **
Empathy Expression 11.9% 8.8% **
Behavior Induction 13.6% 13.6%
Makeup Pufferfish Intro. 9.7% 8.1% *
Observation Guide 10.3% 7.3% **
Prompting Question 7.4% 15.9% **
* 𝑝 < .05, ** 𝑝 < .01 (FDR-BH corrected)

Table 5: Proportions of utterance categories in human-
operated and AI-driven guidance. Bold values indicate
the higher proportion for each category between the two
groups.

tion guidance, and used fewer movement instruc-
tions and prompting questions. Given the gener-
ally lower ratings observed for AI-driven guidance,
these findings suggest that users’ overall experi-
ences could be improved if dialogues contain more
empathetic expressions, detailed observation guid-
ance, and richer information about the initially in-
troduced species. The inclusion of such richer in-
formation likely reflects and promotes greater user
engagement from the beginning of guidance.
Compared with the results in Subsection 5.2,

which indicate that human-operated guidance
places greater emphasis on visitor movement and
spatial positioning, Table 5 shows that AI-driven
guidance contains a higher proportion of move in-
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−0.538
p-val: 0.00

Move_Instruction

0.509
p-val: 0.00

−0.313
p-val: 0.00

Figure 4: SEM results for two representative structures. The binary variable Human_AI_Binary is coded as 0 for
human-operated guidance and 1 for AI-driven guidance.

structions. The distinction is that the AI tended
to repeat the same transition phrase when mov-
ing to the next tank (e.g., “Let’s move to the next
area”), particularly in our field experiment at a pub-
lic aquarium, where moving from the small tank to
the big tank often required extra time in crowded
conditions. In contrast, human operators used such
instructions less frequently but produced more di-
verse spatial expressions throughout the guidance
(e.g., “Follow me,” “Please look here”). Con-
sequently, the AI-driven system generated more
move instructions in raw counts (11.9% vs. 9.6%)
in the utterance proportion analysis, whereas the
human operators provided richer and more varied
spatial guidance, which made the move instruc-
tions more salient in the lexical analysis. Thus, the
two analyses are complementary rather than con-
tradictory.

5.5 SEM Analysis
Due to its capability to simultaneously analyze
hypothesized directional relationships among mul-
tiple variables (Fan et al., 2016), we utilized
structural equation modeling (SEM) to clarify dif-
ferences between human-operated and AI-driven
guidance regarding how multimodal behaviors in-
fluence user ratings. Referring to the previous
study by Guo et al. (2025), which assumed a three-
layer structure to clarify the influence of person-
ality on task performance, we hypothesized a four-
layer SEM structurewith hierarchical relationships
from top to bottom, where the first layer repre-

sents the guidance mode as a binary variable (0 for
human-operated, 1 for AI-driven), the second and
third layers correspond to utterance categories and
multimodal features analyzed previously in Sub-
sections 5.3 and 5.4, and the fourth layer is a spe-
cific questionnaire item targeted for analysis. The
ordering of the second and third layers is based on
the assumption that broader communication strate-
gies (layer 2) guide the expression of specific mul-
timodal behaviors (layer 3), which in turn influ-
ence users’ overall experiences, such as satisfac-
tion.
We applied regularized SEM (Jacobucci et al.,

2016) to optimize the SEM structure. Specifically,
we first implemented Lasso regression to select sig-
nificant high-level and low-level features as pre-
dictors. Then, we built initial SEM models and it-
eratively applied a stepwise procedure, removing
non-significant paths at each step until all remain-
ing paths were statistically significant.
An individual SEM model was built for each

of the 11 questionnaire items. Two typical ques-
tionnaire items, guidance satisfaction (Q3) and in-
terest in the exhibit (Q6), were selected as rep-
resentative examples and are shown in Fig. 4;
the remaining questionnaire items exhibited sim-
ilar patterns. In the first structure (left side of
Fig. 4), compared with human-operated guidance,
AI-driven guidance exhibited fewer empathetic ex-
pressions and provided more movement instruc-
tions, resulting in shorter average sentence lengths
within dialogues and thereby decreasing guidance
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satisfaction. In the second structure (right side of
Fig. 4), AI-driven guidance again showed fewer
empathetic expressions and provided less intro-
duction about the initially presented species (Ok-
inawa pufferfish), leading to poorer user vocabu-
lary and consequently reducing users’ interest in
the exhibit. These findings highlight empathetic
expression as the key difference between the two
guidance modes, consistent with the results pre-
sented in Table 5, where human-operated guidance
demonstrated greater empathy and received higher
overall user ratings.

6 Conclusion and Future Work

In this study, we conducted a comparative analy-
sis of human-operated and AI-driven guidance us-
ing Teleco, a teleoperated mobile robot. Through a
field experiment, we collected and analyzed multi-
modal data including linguistic features, user gaze
behavior, and robot actions to investigate the dif-
ferences between human and AI-driven interac-
tions.
We evaluated the results of a user questionnaire

to address RQ1 (How effective is AI-driven guid-
ance compared to human-operated performance?)
and concluded that while AI-driven guidance does
not yet fully match human-operated performance,
it achieves a comparable level in certain aspects.
Moreover, our analysis addressing RQ2 (What are
the differences between human-operated and AI-
driven guidance?) revealed that human-operated
guidance places more emphasis on visitor move-
ment, spatial positioning during observation guid-
ance, and empathetic expressions, whereas AI-
driven guidance promotes conversational engage-
ment by frequently prompting visitors to ask ques-
tions. In addition, user behaviors, including users’
gaze patterns and vocabulary richness, can serve
as valuable indicators reflecting their overall ex-
perience during guidance interactions. Further-
more, empathetic expression is recognized as the
key differentiating factor between the two guid-
ance modes, significantly influencing users’ over-
all experience.
Several aspects of this study should be im-

proved in future work. First, additional dialogue-
level analyses, such as dialogue structure analysis,
would further enrich the computational linguistics
perspective of this work; multimodality, such as
gaze, and its relationship to spatial movement cues
may also help explain differences between human

and LLM operators. Second, due to the stricter
environmental conditions (i.e., lower background
noise levels) required for accurate speech recog-
nition in the AI-driven guidance mode, fewer AI-
driven guidance sessions were collected compared
to human-operated sessions. Future studies should
include more AI-driven sessions to enable more
reliable comparisons. Third, since the robot’s
movement was restricted to predefined waypoints,
a more flexible navigation system should be im-
plemented to enhance adaptability and interaction
quality. Fourth, since the human-operated condi-
tion also contains a subset of sessions collected in
quiet environments comparable to the AI-driven
mode, it is possible to perform a controlled com-
parison under similar noise levels. We plan to con-
duct a more systematic comparison with this sub-
set in future work. Fifth, in the AI-driven mode,
the perception design mainly relied on gaze input,
which constrained the system’s ability to generate
more contextually grounded and empathetic utter-
ances. In future work, we plan to extend the per-
ception pipeline by incorporating broader environ-
mental and robot state information to enable richer
and more appropriate responses. Finally, the iden-
tified differences between human-operated and AI-
driven guidance should be leveraged to systemati-
cally improve and evaluate AI-driven guidance ap-
proaches.

7 Limitations

This study has several limitations that should
be acknowledged. First, due to the AI-driven
guidance’s requirement for a quieter environment,
noise levels differed between the human-operated
and AI-driven conditions, potentially introducing
confounding variables that could affect user per-
ceptions and evaluations. Second, the collected
data exhibited imbalance, with fewer AI-driven
guidance sessions compared to human-operated
sessions. This imbalance might have impacted the
robustness and reliability of the comparative anal-
yses. Third, the robot’s navigation capability was
restricted to predefined waypoints, limiting its abil-
ity to dynamically adapt to visitor behavior and
potentially influencing the naturalness and interac-
tivity of the provided guidance. Finally, the utter-
ances analyzed in this study were transcribed using
OpenAI Whisper-large-v3 instead of human anno-
tators, which may have introduced transcription er-
rors or noise.
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8 Ethical Considerations

This study was approved by our institute’s ethics
committee and was conducted following relevant
ethical guidelines. Informed consent was explic-
itly obtained from all participants prior to their in-
volvement in the experiment. The participants in
this study were visitors voluntarily attending the
Nifrel facility, located in Osaka, Japan. All partici-
pants were native Japanese speakers and did not re-
ceive any monetary or material compensation for
their participation. To ensure privacy and ethical
standards, all collected data were anonymized, se-
curely stored, and analyzed only in aggregate form,
minimizing any potential risk to the participants.
We used GPT-4o and GPT-4o-mini via OpenAI’s
API for dialogue generation and image recognition,
respectively, and Google’s Speech-to-Text API for
speech recognition. All these artifacts were uti-
lized in accordance with their respective terms of
use and licenses.
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A Prompt Structure for AI-driven Guidance

Section Content

Instruction You are “Teleco”, a mobile guide robot in Nifrel, introducing pufferfish to visitors. Based on the provided
information, generate utterances that continue the dialogue history naturally.

Guidance
Outline

- Move sequentially between small and large tanks.
- Explain Okinawa Pufferfish at the small tank (approx. 5 turns).
- Introduce Mouse and Makeup Pufferfish at the large tank (approx. 10 turns).
- Return to the starting position.

Rules
- Maintain a friendly and engaging tone.
- Responses should be concise (max 50 characters).
- Ensure smooth conversation flow without abrupt transitions.
(omitted)

Animal
Information

- Okinawa Pufferfish: Tropical species, first successfully bred in Nifrel, identified by two black bands
and white spots.
-Mouse Pufferfish: Largest species in the tank, expands body with spines when threatened.
-Makeup Pufferfish: Named for its eye patterns resembling makeup, known as “Map Puffer” in English.
(omitted)

Gaze
Information

- Gaze Objects: Large Tank, Fish, Pufferfish
- Gaze Description: There is a large tank with several fish swimming around.

Table 6: Prompt structure for the dialogue system (English translation of the original Japanese prompt).

B Operator’s Post-dialogue Questionnaire

ID Operator Questionnaire Items
Q1 I was able to remotely control the robot to effectively engage in conversation.
Q2 The visitor was satisfied with the interaction.
Q3 I felt that my communication was appropriate.
Q4 Through our conversation, I successfully deepened my interest in the visitor’s exhibit.
Q5 The robot maintained an appropriate distance.
Q6 The robot was looking at the same exhibit as the visitor.
Q7 My speech matched the robot’s actions.
Q8 I was able to operate the robot as intended using the controller.
Q9 The camera feed provided sufficient information for controlling the robot.
Q10 I effectively used commands to control the robot’s movements and facial expressions.

Table 7: Operator’s post-dialogue questionnaire (translated from Japanese).

C Distinctive 4-grams between Human-operated and AI-driven Guidance

Human-operated (JP) Human-operated (EN) AI-driven (JP) AI-driven (EN)
ついてきて Follow me はあるかな Is there any?
ハリセンボンの仲間な Porcupinefish’s companion 質問はあるか Do you have any questions?
についてき About this でも聞いてね Feel free to ask
実はハリセンボンの仲間 Actually, Porcupinefish’s companion なんでも聞いて Ask me anything
けど実はハリセンボンの But actually, Porcupinefish’s companion ななんでも聞い Ask me anything
僕について Follow me あるかななん Is there anything?
サンゴ礁に生息する Inhabits coral reefs かななんでも Maybe anything
フグだよおち It’s a living pufferfish か質問はある Is there a question?
よおちょぼぐちと目 Pursed mouth and eyes 何か質問は Any questions?
生息するフグだ A pufferfish that inhabits 大型の水槽に In a large aquarium

Table 8: Top 10 distinctive 4-grams between Human-operated and AI-driven guidance.
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D Examples of Human-operated and AI-driven Dialogue

Human-operated
Speaker Utterance
Teleco We’re moving, so follow me!
Teleco This is an Okinawa pufferfish.
Teleco It was successfully bred in Japan. Amazing, right?
Visitor That’s amazing.
Teleco Right? These were born in August 2022.
Teleco When they grow up, they can reach about 30 cm in size.

AI-driven
Speaker Utterance
Teleco In this tank, we have the Okinawa pufferfish! It’s a type of puffer that lives in tropical waters!
Teleco Do you have any questions?
Visitor Is it poisonous?
Teleco There are a few reports of Okinawa pufferfish being poisonous, so it’s not suitable for eating. Do you have

any other questions?
Teleco Let’s move to the next location!
Teleco In this large tank, we have two types of pufferfish: the Spot-fin porcupinefish and the Masked pufferfish!

Can you tell the difference?

Table 9: Example of dialogue for human-operated and AI-driven guidance (translated from Japanese).
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