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Abstract

Implicit hate speech has increasingly been rec-
ognized as a significant issue for social media
platforms. While much of the research has tra-
ditionally focused on harmful speech in general,
the need for generalizable techniques to detect
veiled and subtle forms of hate has become
increasingly pressing. Based on lexicon anal-
ysis, we hypothesize that implicit hate speech
is already present in publicly available harmful
speech datasets but may not have been explic-
itly recognized or labeled by annotators. Ad-
ditionally, crowdsourced datasets are prone to
mislabeling due to the complexity of the task
and often influenced by annotators’ subjective
interpretations. In this paper, we propose an
approach to address the detection of implicit
hate speech and enhance generalizability across
diverse datasets by leveraging existing harmful
speech datasets. Our method comprises three
key components: influential sample identifi-
cation, reannotation, and augmentation using
Llama-3 70B and GPT-40. Experimental re-
sults demonstrate the effectiveness of our ap-
proach in improving implicit hate detection,
achieving a +12.9-point F1 score improvement
compared to the baseline.

1 Introduction

The field of harmful speech classification has
garnered significant attention, with extensive re-
search addressing various aspects of this phe-
nomenon. Several studies focus on general hate
speech, such as (Davidson et al., 2017), (Zampieri
et al., 2019), (Mathew et al., 2021). Others have
delved into specific forms of hate speech, including
works by (Waseem and Hovy, 2016), (Founta et al.,
2018), and (Ousidhoum et al., 2019). For clarity,
these datasets will be referred to as generic datasets
throughout this paper.

While many of these datasets include annotated
examples of implicit hate speech, the reliance on
crowdsourced annotators has introduced variability

in labeling, with some annotators identifying im-
plicit hate as harmful, while others do not. In con-
trast, publicly available datasets explicitly focused
on implicit hate speech (specialized datasets) are
far fewer than their generic counterparts. Leverag-
ing the extensive data available in generic datasets
and reformatting them to enhance generalizabil-
ity in implicit hate detection presents a promising
opportunity.

To explore this, we analyzed four generic
datasets—Davidson (Davidson et al., 2017), HateX-
plain (Mathew et al., 2021), Waseem (Waseem and
Hovy, 2016), and Founta (Founta et al., 2018)—us-
ing an offensive language lexicon developed by (Al-
mohaimeed et al., 2024). This lexicon, comprising
1.8k offensive terms along with common obfus-
cated variants of the same term (e.g., substituting
‘s’ with *$’ or the letter ‘o’ with ‘0”). Our anal-
ysis approach uses exact string matching between
the dataset’s samples and the lexicon entries to
calculate the proportion of positive samples (anno-
tated as harmful) that were free of offensive lan-
guage. Such samples were presumed to indicate
implicit hate. The results revealed that the percent-
age of positive samples free of offensive language
was 71.7%, 14%, 36.2%, and 20.8% for Waseem,
Davidson, Founta, and HateXplain, respectively.
This analysis is contingent on the lexicon’s com-
prehensiveness; some rare offensive terms may not
be included, potentially classifying certain offen-
sive samples as implicit hate. Given these findings,
we propose an approach to guide models trained
on generic datasets toward better generalizability
for implicit hate detection while preserving their
ability to identify explicit harmful speech.

Harmful speech, as defined in this paper, encom-
passes any expression that includes explicit hate,
implicit hate, offensive language, sexism, racism
or abusive speech. Furthermore, implicit hate is a
subtype of harmful speech, characterized by hate
conveyed in a veiled or subtle manner.
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The key contributions of this paper are as fol-
lows:

* Introduce a novel approach to generalize high-
level (general-purpose) datasets to specialized
classes that exist within these datasets but lack
explicit annotations.

* Develop a trusted samples dataset comprising
500 samples, designed to serve as a bench-
mark for evaluating various types of harmful
speech.

* Apply the proposed generalization approach
to adapt harmful speech datasets for the task
of implicit hate classification.

e Demonstrate the utility of influential sam-
ple identification by training classifiers us-
ing three proposed configurations across four
different hate speech datasets and evaluating
their performance on seven datasets, using
cross-dataset settings.

2 Related Work
2.1 Generalizable Implicit Hate Classifier

There are several research studies that aimed to
generalize implicit hate datasets in cross-dataset
evaluation settings. Some of them proposed tech-
niques to push positive samples towards their cor-
responding implications along with augmentation
techniques (Kim et al., 2022), bring the encod-
ing of the explicit and implicit hate samples that
share the same target close to each other (Ocampo
et al., 2023), proposed a pre-trained model on
ToxiGen (Hartvigsen et al., 2022), integrated with
prompting techniques (Kim et al., 2023), push the
embeddings of positive samples to the closest posi-
tive cluster (Almohaimeed et al., 2025) or push
samples that share the same semantics into the
same embedding cluster (Ahn et al., 2024). All
these studies used a limited number of implicit hate
datasets, such as ToxiGen (Hartvigsen et al., 2022),
IHC (ElSherief et al., 2021), DYNA (Vidgen et al.,
2021), SBIC (Sap et al., 2020) for training implicit
hate detection models.

2.2 Identification of Influential and Noisy
Samples

Most approaches for the identification of influen-
tial samples in machine learning rely on the loss
function (Koh and Liang, 2017; Pruthi et al., 2020;
Jinadu and Ding, 2024). These methods typically

aim to mitigate the impact of influential samples
during training, by either reweighting their loss or
by removing them from the training dataset.

(Jinadu and Ding, 2024) proposed a method for
detecting and correcting mislabeled samples in ma-
chine learning. Their approach relies on loss correc-
tion within a multi-task learning framework, includ-
ing a case study focusing on a hate speech dataset.
The core idea behind multi-task learning in their
methodology is to separate the predictions for each
label based on the perspectives of individual annota-
tors. The authors demonstrated the effectiveness of
their approach, reporting an approximate 10-point
improvement in the F1 score. This improvement
was observed both with and without noise injection,
where baseline performance dropped significantly
under noise, thereby highlighting the robustness of
their method.

(Liu et al., 2020) observed that machine learn-
ing models tend to learn from correctly labeled
data during early epochs but gradually begin to in-
corporate noisy labels in later epochs. To address
this issue, they proposed a method that combines
a regularization technique with a semi-supervised
model. Their approach estimates the probability of
the target label, enabling better generalization by
avoiding overfitting and the memorization of noisy
labels. Unlike early-stopping techniques that sim-
ply monitor the model during initial stages and halt
training prematurely, their method emphasizes sus-
tained learning without overfitting. Experimental
results on CIFAR-10 and CIFAR-100 demonstrated
that their approach achieves performance compara-
ble to SOTA methods.

(Pruthi et al., 2020) introduced TracIn, a method
for calculating the influence of each training sam-
ple based on the model’s predictions for test data.
This approach operates in a multi-model setting as
it relies on the loss function and gradients. Their
experiments spanned image and text classification
tasks, as well as one regression task. The authors
observed that mislabeled text samples consistently
exhibited high loss values, and Tracln effectively
identified these mislabeled samples in the early
epochs, outperforming other SOTA methods in
speed and efficiency. Their method demonstrated
practical benefits, improving the accuracy on the
CIFAR-10 dataset by 2 percentage points and the
MNIST dataset by approximately 1 percentage
point.

(Arazo et al., 2019) introduced dynamic boot-
strapping, an enhancement of the static bootstrap-
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ping technique developed by (Reed et al., 2015),
to address the challenge of noisy labels in im-
age datasets during training. Unlike the static ap-
proach, dynamic bootstrapping adapts individually
to each sample, providing a more flexible mech-
anism to avoid overfitting noisy labels. The au-
thors also combined their method with a modified
version of the data augmentation technique pro-
posed by (Zhang et al., 2018), adapting it to op-
erate dynamically for each sample. Experiments
conducted on CIFAR-10, CIFAR-100, and TinyIm-
ageNet showed that dynamic bootstrapping effec-
tively mitigated the impact of noisy labels and out-
performed existing methods in generalization, lead-
ing to improved performance across these datasets.

(Han and Tsvetkov, 2020) proposed a method to
enhance implicit hate classifiers without requiring
large annotated datasets. Their approach utilized
probing examples from the SBIC dataset (Sap et al.,
2020) and employed several tracking methods to
identify influential samples that contributed to mis-
classifications. These influential samples were then
reannotated to improve the quality of the training
data. The study demonstrated that identifying and
reannotating mislabeled training samples signifi-
cantly enhanced the model’s performance. Among
the methods tested, the gradient product proved
to be the most effective technique for detecting
influential samples.

Overall, influential sample identification re-
search has largely focused on image classification,
such as (Koh and Liang, 2017; Pruthi et al., 2020;
Liu et al., 2020; Arazo et al., 2019), while only a
small number of studies have explored text classi-
fication, such as (Han and Tsvetkov, 2020; Jinadu
and Ding, 2024).

3 Methodology

3.1 Datasets

The scarcity of implicit hate datasets motivated
us to leverage existing generic harmful speech
datasets to improve generalizability for implicit
hate detection. To address this, we utilized the
generic datasets for training, which is the intended
use of these artifacts. These datasets serve as the
foundation for applying our approach to enhance
the detection of implicit hate. The licenses and us-
age conditions of the datasets are list in Table 1. We
note that while this paper addresses a critical and
sensitive topic—hate speech—it does not include
any offensive content or personally identifiable in-

formation. However, the datasets used in this work
for training contain offensive content due to the
nature of the task.

We evaluated the trained model on three spe-
cialized implicit hate datasets: IHC (EISherief
et al., 2021), OLID_IH (Caselli et al., 2020), and
THOS_IH (Almohaimeed et al., 2023). Addition-
ally, we cross-tested on the generic datasets to
ensure that the performance on explicit harmful
speech detection was not compromised by our ap-
proach.

Table 1: Licenses and usage conditions of the datasets
used in this paper. P indicates datasets with no explicit
license but made publicly available by the authors with
a request for citation. MIT refers to the MIT License.
CC denotes the Creative Commons Attribution 4.0 (CC
BY 4.0) license, and CCNC refers to the Creative Com-
mons Attribution-NonCommercial-ShareAlike 4.0 In-
ternational (CC BY-NC-SA 4.0) license.

Dataset License

Waseem (Waseem and Hovy, 2016) p
Davidson (Davidson et al., 2017) MIT
Founta (Founta et al., 2018) CC

HateXplain (Mathew et al., 2021) MIT
IHC (ElSherief et al., 2021) MIT
OLID_IH (Caselli et al., 2020) CCNC

THOS_IH (Almohaimeed et al., 2023) CCNC

As a note, the Founta dataset as used here is
shorter than its original published size from Founta
et al. (Founta et al., 2018) due to data unavailabil-
ity while fetching them using their published IDs
through the Twitter’s (X) APIL. Approximately 35k
samples were removed as a result of platform poli-
cies or author decisions. Additionally, the labels in
all datasets were unified into binary classes (nor-
mal or harmful) for generic datasets and (not im-
plicit hate or implicit hate) for specialized datasets
following the standardization introduced in (Almo-
haimeed et al., 2024).

3.2 Trusted Samples Dataset

Our objective is to create a dataset that is signifi-
cantly smaller than typical datasets but annotated
with a level of effort and consideration that would
not be feasible for a larger dataset. In practice,
500 carefully curated samples are sufficient for
evaluating the model. Expanding the TSD would
substantially increase the burden on human anno-
tators, making it harder to maintain high-quality
labels and raising the risk of inconsistencies, par-
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Figure 1: The pipeline of our proposed methodology

ticularly in a study focused on subtle phenomena
like implicit hate. To achieve this, we define the
Trusted Samples Dataset (TSD') as a benchmark
testing dataset. Our intention is for this dataset to
serve as a guide for improving data annotation to
enhance generalizability and identifying influential
data within the training dataset.

To construct the dataset, GPT-40 was prompted
to generate examples across three levels of harm-
fulness (explicit, borderline, and implicit) targeting
groups defined by ethnicity, religion, country, and
political affiliation. To increase diversity, less com-
mon target groups were also included. All harmful
examples were merged into a single positive class
(see Appendix A for details). GPT-40 was addi-
tionally prompted to produce neutral samples, in-
cluding some intentionally resembling implicit hate
in tone and structure. Two human experts in the
field of harmful speech detection jointly reviewed
all generated content and retained only samples
with full agreement. The final dataset contains
250 positive (harmful) and 250 negative (neutral)
samples, producing the TSD dataset. The GPT-40
generation for the required content was conducted
between October 8th and 12th, 2024.

The inclusion of GPT-40 in the TSD creation
process was critical for achieving a comprehen-
sive and balanced dataset. GPT-40 contributed
by identifying diverse targets that human experts
might overlook and generating neutral samples that
closely resemble harmful speech in structure and
tone. This approach provides a robust metric for
evaluation, as the TSD includes challenging exam-
ples that prevent the model from favoring a specific
class (positive or negative) based solely on target
presence.

"https://github.com/mohaimeed/TSD

3.3 Influential Sample Identification

Influential samples can be classified into two cate-
gories. The first category consists of samples that
were mislabeled by the annotators, leading to dis-
crepancies in model performance. The second cat-
egory includes samples that closely resemble mis-
classified TSD examples but belong to the opposite
class in the binary classification task (harmful vs.
neutral). Our objective is twofold: to correct mis-
labeled samples from the first category and to aug-
ment the second category to improve the model’s
generalizability. As depicted in Fig. 1, influential
sample identification involves finding the samples
responsible for the misclassification of each TSD
sample.

Let us assume D = {ty,ta,t3,...,t,} where
D is the training dataset and ¢; represents a text
sample in D. Additionally, assume 7T'SD =
{gt1, gta, gts, ..., gm} where T'SD is the trusted
samples dataset and gt; represents a text sample in
TSD.

Let M be a trained model using D, and let y;
denote M’s prediction for gt;, defined M (gt;) =
yj, forj € {1,2,...,m}. We define the set of
misclassified 'S D samples by M as E such that
E = {gt; € TSD | §; # y;} where E includes
trusted samples that the model misclassified them.

Next, let us define a cosine similarity metric as
esim(t;, gtj) = ”ete”% where e represents the
embedding of a given text sample produced by M.
Finally, we define the top x influential samples for
gt; € E as follows:

top_influence(FE, x) =

U Top—x{csim(ti,gtj) |ti€ D,y; = y}}
gtjEE

The prerequisite of this function is where the
ground-truth of the D sample y; has the same label
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of misclassified TSD sample ;.

3.4 GPT4 Annotation

Sometimes what makes a sample influential in mak-
ing M misclassify a given gt; is the fact that the
sample was mislabeled by the annotators. It is dif-
ficult to engage humans in the loop of our pipeline
Fig. 1 to reannotate influential samples since we are
dealing with an extensive amount of data, 107.8k
rows in total from the 4 generic datasets along with
full training process on each loop in our pipeline.
So, it is necessary to find an applicable technique
to reannotate influential samples such that it will
be fixed in case it was mislabeled. Despite the lim-
itations of GPT4 to overlook the explicit and im-
plicit hate that targets individuals or to be confused
with sarcasms and opinions (Almohaimeed et al.,
2024), several studies (Almohaimeed et al., 2024,
Huang et al., 2023; Donmez et al., 2024) explain
the effectiveness of GPT family on identifying hate
text. (Donmez et al., 2024) studies the effective-
ness and limitations of 16 LLMs on identifying the
harmful content, and despite the limitations, the
authors found that the GPT family (GPT3.5-turbo
and GPT4) were the best closest performing LLMs
to the human baseline. Taking these results into
consideration, we employed GPT4o0 to reannotate
the influential samples, and adjust the ground truth
label if it does not match the GPT40 annotation.

3.5 Llama-3 Augmentation

We utilized the capabilities of open-source large
language models to augment generic datasets with
more implicit hate speech samples. Specifically, we
employed Llama-3 8B and 70B (Dubey et al., 2024)
to paraphrase explicit harmful speech samples into
implicit hate speech.

Llama-3 8B struggled to perform the task effec-
tively, often repeating the provided system and user
prompts instead of generating paraphrased outputs.
In contrast, Llama-3 70B demonstrated a substan-
tial understanding of the task and consistently pro-
duced accurate paraphrases. For this augmentation
process, we used the 4-bit quantization setting on
an NVIDIA H100 80GB GPU. The paraphrasing
of a single harmful speech sample took an aver-
age of 9.58 seconds, resulting in a total runtime of
approximately 136 hours to augment 51k harmful
speech samples.

In the experiments, we explored several tech-
niques to incorporate the augmented data into
model training. The first approach duplicated each

row with its augmented version, assigning the same
label (positive). The second approach replaced
explicit harmful speech rows with their implicit
counterparts. However, in both cases, the BERT
model struggled to learn from the augmented data
and failed to converge, even when varying model
hyperparameters.

Our observations indicate that models often face

difficulties when training on datasets with a high
proportion of deeply implicit samples — samples
that even humans may find challenging to iden-
tify as harmful. Examples include statements like
“RACE should stay in their own neighborhoods”
or “COUNTRY people need to take more respon-
sibility”. While such statements may not appear
harmful to some, they can be deeply offensive to
individuals belonging to vulnerable groups. These
challenges are compounded for small models (e.g.
BERT), which may lack the capacity to discern the
implicit harmfulness of such texts.

In our case, we limited augmentation to the iden-
tified influential samples—a smaller subset of the
dataset—which yielded significant performance im-
provements, as shown in Table 4.

4 Experimental Settings

For our experiments settings, we utilized BERT e
uncased, which comprises 110 million parame-
ters and 12 encoder layers (Kenton and Toutanova,
2019). We experimented with batch sizes of 4, 8,
and 16 and learning rates ranging from le-6 to le-7.
Although all experiments were run for 20 epochs,
the reported results are based on the best epoch
performance.

4.1 Experimental Setup

Text Preprocessing: We applied several steps to
clean and standardize the input data for the train-
ing model. These steps included removing URLs,
user references (e.g., @USER), and hashtags from
the text. We also decomposed contractions (e.g.,
doesn’t — does not) and eliminated extra whites-
paces. These preprocessing steps were applied to
ensure consistency and reduce noise in the dataset.

Generic Datasets: This category comprised four
experiments using generic datasets for training. In
these experiments, we focused on influential sam-
ple identification and processing. Each dataset
went through multiple full training loops. Dur-
ing each loop, influential samples were identified,
removed from the dataset, and then the model was
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retrained. The number of loops required to achieve
the best results varied across datasets. Table 2
shows the number of loops and the number of
dropped samples for each dataset. The number
of dropped samples represents the total count of
the top x samples for each misclassified gt;. It is
important to note that that the top « samples for
gt, and gt, may sometimes overlap. For Founta,
we chose to drop the top 20 samples for each mis-
classified gt; sample per loop instead of 10, given
its larger dataset size relative to the other generic
datasets.

Table 2: Influential Sample Identification Results of the
Generic Datasets

Original  # Influential
Dataset # Top # Loops Size Samples
Waseem 10 16 16,907 8,343
Davidson 10 3 24,783 1,434
Founta 20 13 45,982 12,770
HateXplain 10 7 20,148 2,328

Specialized Datasets: This category involved three
experiments where the model was trained on spe-
cialized datasets (i.e. implicit hate datasets) and
tested across other specialized datasets. The ob-
jective was to compare the effectiveness of gener-
alizing from generic datasets toward implicit hate
detection versus using datasets explicitly special-
ized for implicit hate.

Testing: For each test across the seven datasets,
the results presented in Tables 3, 4 and 5 repre-
sent the average performance across five run with
different random seeds. Each run used balanced
random samples consisting of 500 positive and 500
negative examples from the test set. This approach
ensured consistency and robustness for evaluating
the results across all experiments.

4.2 Metrics

The metrics used in all experiments were the F1-
Micro score and the Recall. While the F1 score
is a more comprehensive metric as it incorporates
Recall in its calculation, Recall was also included
as an additional metric to ensure fairness when
comparing the performance of generic datasets (Ta-
ble 4) against specialized datasets (Table 5). This
consideration stems from the inherent differences
in the annotation approaches: generic datasets la-
bel all harmful speech samples as positive, whereas
specialized datasets label only implicit hate sam-

ples as positive. Consequently, other types of harm-
ful speech (e.g., explicit hate and offensive lan-
guage) are annotated as negative in specialized
datasets, alongside neutral speech. As a result,
when a model trained on generic datasets is tested
on specialized datasets, it is likely to predict many
explicit harmful speech samples as positive, result-
ing in a higher number of False Positives (FP). This
discrepancy occurs because specialized datasets an-
notate such samples as negative, focusing solely
on implicit hate. Given this context, Recall is par-
ticularly suitable as it measures the True Positive
(TP) rate, capturing the proportion of correct posi-
tive predictions relative to the total number of ac-
tual positive samples. In our case, Recall provides
a reliable measure of the model’s ability to iden-
tify implicit hate samples within the specialized
datasets, providing a fair and meaningful compar-
ison. However, we also include the F1 score in
Tables 4 and 5 to ensure a balanced view of the
model’s performance without overemphasizing Re-
call at the expense of Precision.

S Experiments and Results

We defined three approaches for conducting the
experiments and compare them against the base-
line (training with the original dataset). The first
approach involves training a generic model after
removing all influential samples from the training
dataset (see Table 2). The second approach involv-
ing reannotating the influential samples within each
training dataset using GPT-4o, as detailed in Sec-
tion 3.4. The third approach involves augmenting
the influential samples with paraphrased implicit
versions generated by Llama-3 70B, as described
in Section 3.5. For each training dataset listed in
Table 3, the last row (exploration) shows results
where the influential samples were reannotated in
both the training and testing datasets. This was
done to explore the impact of testing the model on
reannotated (cleaned) datasets.

5.1 Generic Dataset as Training and Testing

In this experiment, the F1 score is more mean-
ingful than Recall, although Recall is included
for consistency across the tables. The F1 score
is more relevant here because both the training
and testing datasets classify any kind of harm-
ful speech—whether explicit, implicit, or offen-
sive—as part of the positive class. As shown in Ta-
ble 3 and Fig. 2a, the performance varies depending
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Table 3: Performance of generic datasets evaluated across each other. Baseline results are underlined, and the
best-performing approach is highlighted in bold.

J Train Dataset  Test dataset— Waseem Davidson Founta HateXplain
R F1 R F1 R F1 R F1
Waseem Original Dataset - - 0743 0836 0.597 0.796 0.547 0.76
+ Drop Influential Samples - - 0781 0.759 0.69 0.805 0.768 0.744
+ GPT4o Influential Reannotation - - 0776 0.767 0.695 0.827 0.8 0.657
+ GPT4o0 + Llama3 Augmentation - - 0822 0759 0.747 0.846 0.853 0.648
+ GPT40 on Train and Test - - 0761 0.774 0.728 0.849 0.785 0.672
Davidson Original Dataset 0.652 0.7 - - 0772 0.81 0.869 0.669
+ Drop Influential Samples 0.866 0.697 - - 0.86 0.783 0.936 0.598
+ GPT4o Influential Reannotation  0.702  0.724 - - 0798 0.832 0.922 0.627
+ GPT4o0 + Llama3 Augmentation 0.764  0.729 - - 0826 0.824 0914 0.616
R +GPT4o on Train and Test 071 0752 . - 0826 0849 0909 0.637
Founta Original Dataset 0.596 0.742 0.874 0.852 - - 0784 0.724
+ Drop Influential Samples 0.68 0.737 0.895 0.805 - - 0813 0.717
+ GPT4o0 Influential Reannotation  0.616  0.738 0.886  0.829 - - 0.847 0.684
+ GPT40 + Llama3 Augmentation 0.562 0.716 0.882 0.836 - - 0.82  0.699
+ GPT40 on Train and Test 0.64 0.776 0.875 0.824 - - 0.844 0.695
HateXplain Original Dataset 0.658 0.704 0953 0.726 0.797 0.831 - -
+ Drop Influential Samples 0.715 0.705 0953 0.727 0.804 0.831 - -
+ GPT4o Influential Reannotation  0.762 0.695 0.957 0.711 0.814 0.822 - -
+ GPT40 + Llama3 Augmentation 0.777 0.665 0.961 0.699 0.827 0.811 - -
+ GPT40 on Train and Test 0.762 0.731 0962 0.728 0.851 0.838 - -

on the training dataset. The M (W aseem) dataset
performed best in the baseline. The M (Davidson)
showed a preference for the second approach,
achieving an average F1 score of 0.728 across
the three test datasets. For the M (Founta), the
baseline outperformed other approaches by an av-
erage of 2 points in the F1 score. Finally, the
M (HateXplain) performed slightly better with
the first approach, though the results were nearly
identical to the baseline.

5.2 Generic Dataset as Training and
Specialized as Testing

In this experiment, the Recall metric is more mean-
ingful than the F1 score because the generic-trained
model is expected to produce a high number of
False Positives (FP) when tested on implicit hate
datasets, where explicit harmful speech is labeled
as part of the negative class. As shown in Table 4
and Fig. 2d, the models trained on Waseem, David-
son, and Founta datasets favored the first approach,
achieving the best performance on implicit hate
testing. In contrast, models trained on HateXplain
performed best with the third approach.
Regarding model generalizability, Fig. 2c
and Fig. 2d illustrate that all proposed approaches
substantially improved performance compared to

training on the original datasets. This demonstrates
the effectiveness of the proposed methods in gen-
eralizing generic datasets for implicit hate detec-
tion in specialized datasets. Table 5 further high-
lights the performance of specialized datasets in
cross-dataset testing scenarios. Despite the limited
availability of implicit hate datasets, we evaluated
their effectiveness when the model was trained
and tested on the same type of dataset, compar-
ing the results with our generalized approaches.
The results indicate that M (THOS_IH) and
M(OLID_IH) struggled to perform well in cross-
dataset testing, whereas the M (IHC) showed
stronger performance. However, when examining
the average Recall across tests with OLID_IH and
THOS_IH, M (Davidson) in the first approach
and M (H ate X plain) in the third approach outper-
formed the specialized dataset’s model M (I HC).
Additionally, as shown in Table 4, the remain-
ing results were comparable to M (I HC') perfor-
mance in Table 5. In terms of the F1 score,
M (HateXplain) under the third approach also
outperformed M (IHC).
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Table 4: Performance of generic datasets evaluated across specialized datasets. Baseline results are underlined, and

the best-performing approach is highlighted in bold.

J Train Dataset  Test dataset— IHC OLID_IH THOS_IH
R F1 R F1 R F1
Waseem Original Dataset 0.064 0.512 0.14 0.501 0.069 0.355
+ Drop Influential Samples 0.64 0.588 0.564 0.59 0467 0.484
+ GPT4o Influential Reannotation ~ 0.573  0.607 0.409 0.553 0.356 0.447
+ GPT4o + Llama3 Augmentation 0.661 0.607 0.518 0.576 0.406 0.462
Davidson Original Dataset 0.598 0.563 0424 0.509 0.39 0422
+ Drop Influential Samples 0.851 0.562 0.789 0.55 0.647 0.469
+ GPT4o0 Influential Reannotation 0.8 0.607 0.649 0.566 0.527 0475
+ GPT4o0 + Llama3 Augmentation 0.82 0.6 0.714 0.571 0.55 0474
Founta Original Dataset 0459 0.586 0.378 0.546 0.256 0.415
+ Drop Influential Samples 0.535 0.582 058 0594 043 0.482
+ GPT4o Influential Reannotation ~ 0.612 0.611  0.476 0.57 0344 0.448
+ GPT40 + Llama3 Augmentation  0.544 0.6 0459 0.569 0.306 0.432
HateXplain Original Dataset 0.701 0.62 0.58 0.56 0443 0.462
+ Drop Influential Samples 0.721  0.605 0.68 0.571 0.545 0.504
+ GPT4o Influential Reannotation 0.82 0.609 0.712 0571 0.587 0.511
+ GPT40 + Llama3 Augmentation  0.824 0.6 0.768 0.577 0.614 0.521

Davidson Davidson

Founta

waasem

Founta

HateXpl:
—e— Original Dataset

Dropped Influ.
—=— GPT4o0 Reannotation
—e— GPT40 Reannotation+ Llama3 Augm.
—=— Test on GPT40 Reannotation

g?Xplam

—e— Original Dagg
Dropped Influ.

—=— GPT4o0 Reannotation

—e— GPT40 Reannotation+ Llama3 Augm.

—=— Test on GPT40 Reannotation

(a) Generic F1 Score (b) Generic Recall Score

waasem

Davidson Davidson

waasem
Founta
woaasem

HateXplain HateXplain

—e— Original Dataset
Dropped Influ.
—— GPT4o0 Reannotation
—=— GPT40 Reannotation+ Llama3 Augm.

—e— Original Dataset
Dropped Influ.
—— GPT4o0 Reannotation
—=— GPT40 Reannotation+ Llama3 Augm.

(c) Specialized F1 Score  (d) Specialized Recall Score

Figure 2: Averaged Performance Metrics for training on generic datasets and evaluated over generic and specialized
datasets (generic datasets in the figures represent the training dataset).

Table 5: Performance of specialized datasets evaluated
across each other (for comparison with the performance
of the generic datasets in Table 4).

Test Dataset — TIHC OLID_IH THOS_IH
Train Dataset | Fi R Fi R F1
IHC - 0.659 0.557 0.712  0.529
OLID_IH 0.136 0.529 - - 0.077 0516
THOS_IH 0.047 0.51 0.016 0.502

5.3 Reannotated Dataset as Training and
Testing

As shown in the last row of each training dataset
section in Table 3, 7 out of 12 experiments achieved
higher F1 scores compared to all other approaches,
including the baseline. The results show that rean-
notating Davidson and HateXplain on testing led to
a decrease in performance. In contrast, reannotat-

ing Waseem and Founta as testing datasets resulted
in improved performance in all experiments, out-
performing other approaches, including the base-
line. This discrepancy raises important questions.
Given that Waseem and Founta have a high pro-
portion of influential samples, as shown in Table 2,
it is possible that these datasets initially contained
significant noise, which was corrected through re-
labeling. Conversely, this result may suggest that
HateXplain and Davidson require additional train-
ing loops, as illustrated in our pipeline (Fig. 1), to
identify and correct more influential samples for
further improvements.

From a different perspective, when comparing
the exploration approach, in which GPT-40 reanno-
tation was applied to both training and testing data,
with the second approach, where GPT-40 reanno-
tation was applied only to the training data, the
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exploration approach yielded better performance in
all experiments. The only exception occured when
the model was trained with Founta and tested with
Davidson, where the second approach achieved an
F1 score of 0.829, slightly higher than the 0.824
score for the exploration approach.

6 Conclusion

In this paper, we proposed an approach to general-
ize generic datasets toward a subtle and previously
unannotated class by leveraging a trusted samples
dataset generated with GPT-40 under the guidance
and curation of two experts. The approach involves
identifying influential samples in the training data
and applying various configurations, such as re-
moving influential samples, GPT-4o reannotation,
and Llama-3 augmentation. To evaluate the per-
formance of our proposed approach, we conducted
experiments using seven datasets of harmful speech.
Among these, four are generic datasets focusing
on hate speech and offensive language, while three
are specialized datasets on implicit hate speech.
Our results demonstrate the effectiveness of the
proposed approach to generalize the explicit hate
datasets to classify implicit hate samples, achieving
a 12.9 point improvement in F1 score on special-
ized datasets while maintaining comparable perfor-
mance on the generic datasets.

Limitations

In our second and third approaches, where we en-
gaged the LLM to determine whether a given influ-
ential sample is mislabeled, the solution remains
suboptimal. As observed in previous research (Al-
mohaimeed et al., 2024), (D6nmez et al., 2024),
LLMs have not yet reached the level of human
experts in accurately identifying harmful content,
particularly in its implicit form. This limitation
may lead to the mislabeling of critical data, posing
a challenge to the reliability of the model.
Additionally, in our methodology pipeline, the
selection of the best-performing version of the train-
ing dataset after removing a set of influential sam-
ples is not automated. Instead, the choice was made
based on our manual observation of the optimal
loop results. Developing an approach to system-
atically determine whether a given version yields
the best results would enable a fully automated
pipeline. Such an advancement could be beneficial
for future research and facilitate the development
of tools for both academic and production settings.
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7 Appendix A

The process of GPT-40 generation involved iden-
tifying core vulnerable groups (ethnicity, country,
religion, political affiliation) and prompting GPT-
40 to propose additional, less common targets to
increase diversity. The degree of explicitness (ex-
plicit, borderline, or implicit) of the harmful con-
tent was also defined during the prompting process
and is described as follows:

» Explicit hate: clearly overt expressions.
Examples: “RELIGION are criminal” or
“ETHNICITY are violent m**f who should
all be in prison.”

» Borderline hate: explicit to some readers, but
not to others.
Examples: “ETHNICITY are ruining our cul-
ture” or “COUNTRY are always looking for
handouts.”

* Implicit hate: subtle or veiled, difficult to de-
tect for both LLMs and some human annota-
tors.

Example: “RELIGION are often too control-
ling of global financial systems.”

These examples are real samples from the TSD.
The three categories were used only during data
creation; in the final dataset, they were unified into
a single positive class representing harmful content.
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