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Abstract

Social media has become a crucial platform for
information dissemination and opinion expres-
sion. The massive and continuous generation
of user content has given rise to various nat-
ural language processing tasks, such as senti-
ment analysis and topic classification. How-
ever, existing mainstream approaches typically
focus on modeling individual tasks in isola-
tion, lacking systematic exploration of collab-
orative modeling across multiple tasks. This
neglects the inherent correlations among social
media tasks, thereby limiting the model’s abil-
ity to fully comprehend and exploit the rich,
multi-dimensional semantic information em-
bedded in text. To address this challenge, we
propose Task-adaptive Contrastive Learning
with Cooperative Mixture of Experts (TaCL-
CoMoE), a unified framework for social media
multi-task learning. Specifically, we improve
the gating mechanism by replacing the tradi-
tional softmax routing with sigmoid activation,
enabling cooperative selection among multiple
experts and mitigating the “expert monopoly”
phenomenon. In addition, we introduce a task-
adaptive contrastive learning strategy to fur-
ther enhance the model’s ability to capture
and distinguish semantic structures across dif-
ferent tasks. Experimental results on multi-
ple public social media datasets demonstrate
that TaCL-CoMoE consistently achieves state-
of-the-art (SOTA) performance. The code is
available at https://github.com/wxr2847/
TaCL-CoMoE.

1 Introduction

In recent years, social media has become a ma-
jor platform for information acquisition, opinion
expression, and social interaction (Islam, 2025).
The continuous and rapid growth of user-generated
content has given rise to a variety of natural lan-
guage processing tasks, including sentiment anal-
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Figure 1: Comparison Between Traditional Methods
and TaCL-CoMoE on the Social Media Multi-task Anal-
ysis. Unlike traditional approaches that train separate
models for each task, TaCL-CoMoE adopts a unified
architecture capable of capturing underlying inter-task
relationships and enabling knowledge sharing.

ysis, topic classification, and misinformation de-
tection (Zhou et al., 2025; Antypas et al., 2024;
Wang et al., 2025). Although these tasks differ in
objectives and characteristics, they often exhibit
underlying semantic correlations, which suggests
the potential for joint modeling. However, most
existing approaches focus on single-task learning
as shown in Figure 1 (a), overlooking the latent
relationships and shared knowledge across tasks.
Therefore, how to effectively leverage the seman-
tic correlations among tasks for joint multi-task
modeling remains an open and important research
question.

To address this challenge, researchers have in-
creasingly turned their attention to large language
models (LLMs), which have demonstrated remark-
able performance across a wide range of natural
language processing tasks due to their powerful
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semantic understanding and generative capabili-
ties (Touvron et al., 2023; Hurst et al., 2024; Zeng
et al., 2024). However, as model sizes continue to
grow, the computational and storage costs associ-
ated with fine-tuning have escalated significantly,
posing serious limitations to the efficient deploy-
ment of such models in real-world applications.
Low-Rank Adaptation (LoRA), a representative
parameter-efficient fine-tuning approach, mitigates
these issues by freezing the backbone model and
only training a small number of low-rank parame-
ters (Hu et al., 2022). This strategy substantially
reduces training costs while maintaining competi-
tive performance. Nevertheless, in practical multi-
task scenarios, methods like LoRA often require
frequent switching between specialized models and
lack flexible gating and routing mechanisms, mak-
ing it challenging to efficiently adapt to the dy-
namic variability across tasks (Zhao et al., 2024;
Xia et al., 2024).

To address the aforementioned issue, Liu et al.
(2024) and Dou et al. (2024) propose MOELoRA,
which integrates the Mixture-of-Experts (MoE)
(Shazeer et al., 2017; Fedus et al., 2022) architec-
ture with the LoRA efficient fine-tuning technique.
A flexible gating network in MOE is leveraged to
dynamically select the most appropriate expert sub-
network across different tasks or input samples, ef-
fectively alleviating the problem of frequent switch-
ing between specialized models in multi-task sce-
narios. However, existing MoE primarily rely on
softmax-based gating mechanisms, which tend to
make overly confident expert selections, i.e., “ex-
pert monopoly” phenomenon (Nguyen et al., 2024).

In this paper, we propose a unified multi-task
learning framework for social media scenarios,
called Task-adaptive Contrastive Learning with
Cooperative Mixture of Experts (TaCL-CoMoE),
aiming to enhance both collaborative modeling ca-
pabilities and semantic discrimination in multi-task
learning. Firstly, we introduce a sigmoid-based
cooperative expert routing mechanism that allows
multiple experts to be activated simultaneously, al-
leviating the common issue of “expert monopoly”
observed in softmax gating, and promoting bal-
anced cooperation among experts. Secondly, we
integrate a contrastive learning mechanism into
TaCL-CoMoE and flexibly adopt supervised or un-
supervised strategies depending on the availability
of task label information, guiding the model to
learn task-specific semantic representations and im-
proving its fine-grained semantic discrimination.

Finally, we conduct extensive experiments on mul-
tiple public social media datasets to validate the
effectiveness of the proposed approach. The re-
sults demonstrate that TaCL-CoMoE outperforms
existing SOTA methods across all tasks. The main
contributions of this paper are as follows:

• We propose TaCL-CoMoE, a unified multi-
task modeling framework for social media.

• We introduce a sigmoid-based cooperative ex-
pert routing mechanism to alleviate expert
selection polarization and task interference
issues commonly found in traditional MoE
architecture.

• We introduce a task-aware contrastive learn-
ing strategy that flexibly selects supervision
methods based on the nature of the task’s label
information, enhancing the model’s ability to
capture semantic structures across different
tasks.

• Extensive experimental results demonstrate
that our method outperforms existing SOTA
approaches.

2 Related Work

Parameter-Efficient Fine-Tuning for LLMs.
With the continuous growth in the number of pa-
rameters in LLMs, traditional full-parameter fine-
tuning faces significant computational and stor-
age overhead, limiting its scalability in real-world
applications. To address this challenge, various
approaches have been proposed to improve fine-
tuning efficiency. Representative techniques in-
clude Adapter (Houlsby et al., 2019), BitFit (Zaken
et al., 2022), Prefix Tuning (Li and Liang, 2021),
and LoRA (Hu et al., 2022). Among them, LoRA
introduces trainable low-rank matrices into the lin-
ear transformations of pretrained models, enabling
effective adaptation to downstream tasks without
updating the original model parameters. Owing to
its simplicity, low resource overhead, and stable
performance, LoRA has been widely adopted in
practice.

Mixture-of-Experts. The Mixture of Experts
(MoE) is an approach that expands model capac-
ity through sparsely activated expert networks,
without significantly increasing computational cost
(Shazeer et al., 2017; Fedus et al., 2022). Tradi-
tional MoE architectures have been widely adopted
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in both pretrained language models and vision mod-
els (Lepikhin et al., 2021; Riquelme et al., 2021).
The core idea is to utilize a router network to dy-
namically assign input data to different expert net-
works, thereby enabling specialization and collabo-
ration among experts.

Recently, researchers have begun to explore the
integration of MoE with Parameter-Efficient Fine-
Tuning approaches. For instance, Liu et al. (2024)
introduce a multi-expert architecture in which each
expert consists of a pair of low-rank matrices. A
task-driven gating function generates task-specific
parameters, enabling the model to achieve notable
performance gains in multi-task medical applica-
tions. Similarly, Dou et al. (2024) impose a local
balancing constraint to encourage a subset of ex-
perts to focus on leveraging world knowledge for
downstream tasks, while the remaining experts con-
centrate on task-specific objectives. This design
enhances multi-task performance while preserving
essential world knowledge.

Contrastive Learning. Contrastive Learning
aims to learn more discriminative feature repre-
sentations by constructing positive and negative
sample pairs, guiding the model to draw seman-
tically similar samples closer while pushing dis-
similar ones apart in the embedding space. Khosla
et al. (2020) propose Supervised Contrastive Learn-
ing, which extends the self-supervised contrastive
learning framework by utilizing label information
to cluster embeddings of samples from the same
class more tightly. This method significantly im-
proves classification accuracy on the ImageNet
benchmark and strengthens the model’s robustness
to noise and hyperparameter sensitivity. Moreover,
Liang et al. (2021) introduce contrastive learning
into aspect-based sentiment analysis by designing
a multi-task framework that jointly optimizes the
supervised contrastive objective and the primary
task, thereby enhancing the model’s capacity to
distinguish aspect-specific sentiment features.

3 Method

In this section, we elaborate on the methodological
details of TaCL-CoMoE. The overall architecture
of TaCL-CoMoE is illustrated in Figure 2.

3.1 Task Definition

This study aims to address various text analysis
tasks in the context of social media from a multi-
task learning perspective. Specifically, it focuses on

four representative tasks: Stance Detection, Hate
Detection, Named Entity Recognition (NER), and
Topic Classification. A unified language modeling
paradigm is adopted by formulating all tasks as text-
to-text generation problems. Specifically, given a
target task instruction µ ∈ G and a social media
post X = {x1, . . . , xi, . . . , xn}, where G is a set
of multi-task instructions, xi represents the ith to-
ken in the sequence, the model is required to learn
a conditional generation function Ft : X → Ŷt,
where Ŷt represents the predicted output. The set
G is shown in Appendix B.

3.2 Cooperative Mixture of Experts
LoRA has demonstrated remarkable advantages in
the parameter-efficient fine-tuning of LLMs. The
core idea is to replace full-parameter updates with
the learning of a pair of low-rank matrices, thereby
significantly reducing the number of trainable pa-
rameters and improving convergence efficiency.
Specifically, LoRA represents the update to lin-
ear weights as W0 + ∆W = W0 + BA. Here,
W0 ∈ Rdin×dout denotes the fixed weight matrix
from the pre-trained LLMs, whileB ∈ Rdin×r and
A ∈ Rr×dout are the trainable low-rank matrices.
The forward pass is defined as:

h =W0x+
α

r
·BAx (1)

Here, α is a scaling factor that controls the influ-
ence of the low-rank update on the output, and r is
a rank hyperparameter that determines the number
of trainable parameters. The input vector x has a
dimensionality of din, and the output vector h has
a dimensionality of dout.

Existing research demonstrates that the widely
used softmax gating mechanism in MoE models
may induce unnecessary competition among ex-
perts, leading to issues such as expert monopo-
lization and representation collapse (Nguyen et al.,
2024; Csordás et al., 2023). To address this prob-
lem, we introduce a cooperative MoE layer to re-
place each dense layer in LLM.

In the cooperative MoE layer, each expert
{Ei}Ni=1 consists of a pair of low-rank matrices
Bi ∈ R

din× r
N and Ai ∈ R

r
N
×dout , where N de-

notes the number of experts. Collectively, these
experts form a trainable module for modeling the
parameter update ∆W . For each task Tj ∈ T we
assign a unique task identifier, which is mapped to a
task vector ej ∈ RdT via a task embedding matrix
E ∈ R|T|×dT , where dT denotes the task embed-
ding dimension and T denotes the set of all tasks.
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Figure 2: Illustration of the overall framework of TaCL-CoMoE, which consists of two essential components:
Cooperative Mixture of Experts, and Task-adaptive Contrastive Learning.

The task vector is then fed into a task-aware gat-
ing network, which generates task-specific expert
weights through a linear transformation followed
by a sigmoid activation:

ωj = Sigmoid(WTej) (2)

where, WT ∈ RN×dT is a learnable gating matrix,
and ωj ∈ RN denotes the contribution of each ex-
pert to task Tj . Based on this structure, the forward
process of the cooperative MoE layer for task Tj
can be represented as:

hj = W0xj +
α

r
·

N∑

i=1

ωji · Ei(xj)

= W0xj +
α

r
·

N∑

i=1

ωji ·BiAixj (3)

where hj and xj represent the input and output of
intermediate LLM layers for samples from Tj .

3.3 Task-adaptive Contrastive Learning

In the task-adaptive contrastive learning module,
we dynamically select between unsupervised and
supervised contrastive strategies based on the na-
ture of the task’s label information. All tasks share
a unified contrastive loss framework.

3.3.1 Contrastive Loss
For each sample in a batch, two augmented views
are generated, resulting in a total of 2N representa-
tion vectors {zk}2Nk=1, where each zk ∈ Rd is a nor-
malized embedding. In unsupervised contrastive
learning, if zi and zj are two different augmented
views derived from the same original sample, they
are regarded as a positive pair, while all other sam-
ples are treated as negative examples. In supervised
contrastive learning, class labels are utilized to con-
struct positive and negative sample pairs. Samples
belonging to the same class are regarded as pos-
itive samples, while those from different classes
are treated as negative samples. The unsupervised
and supervised contrastive losses are defined as
follows:

Lx =
1

|I|
∑

i∈I
lx(zi), x ∈ {unsup, sup} (4)

lunsup(zi) = − log

∑
j∈I 1(i,j) · expS(i, j)∑
k∈I 1(i,k) · expS(i, k)

(5)

lsup(zi) = − log

∑
j∈I 1

′
(i,j) · expS(i, j)∑

k∈I 1
′
(i,k) · expS(i, k)

(6)
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Here, 1 and 1
′

denote the indicator function,
which 1 returns 1 if the two input elements origi-
nate from the same view, and 1

′
returns 1 only if

the two input elements belong to the same label
class. The function S(i, j) = sim(zi, zj)/τ com-
putes the cosine similarity and scales it under the
control of a temperature parameter τ . I denotes the
index set of all augmented samples in the batch.

3.3.2 Multi-task Contrastive Loss Integration
We assign an independent contrastive loss balanc-
ing parameter λt to each sub-task t ∈ T . The final
contrastive loss is formulated as a weighted sum of
the individual task-specific losses:

Lcontrastive =
∑

t∈T
λt · L(t)

sup/unsup (7)

The final training objective combines the con-
trastive learning loss with the primary task loss
from multi-task fine-tuning:

Ltotal = Lmain + Lcontrastive (8)

where Lmain denotes the sum of the primary loss
functions across all tasks, formulated as a cross-
entropy loss.

4 Experimental Settings

4.1 Dataset
Four representative datasets from social media are
utilized, each corresponding to a distinct task: Hate
Detection, Stance Detection, NER, and Topic Clas-
sification. The IHC dataset (ElSherief et al., 2021)
consists of annotated tweets labeled for hate speech,
distinguishing between hateful and normal con-
tent. The PStance dataset (Li et al., 2021) contains
stance annotations toward political figures, with
labels of favor or against. The TweetNER7 dataset
(Ushio et al., 2022) includes tweets annotated with
seven types of named entities, covering categories
such as person, corporation, location, etc. The
Tweet Topic Multi dataset (Antypas et al., 2022)
comprises multi-labeled tweets annotated with var-
ious topics, including family, gaming, sports, etc.
More details are given in Appendix A

4.2 Baselines
LLMs-based (Zero-shot) To evaluate the
zero-shot performance of LLMs in multi-task
social media scenarios, we conducted zero-
shot experiments on six LLMs: GLM-4-32B
(GLMTeam et al., 2024), DeepSeek-V3 (Guo

et al., 2025), InternLM2.5-20B-chat (Zang et al.,
2025), Qwen2.5-72B-Instruct (Hui et al., 2024),
GPT-3.5-turbo, and GPT-4o (Hurst et al., 2024).
LLMs-based (Fine-tuning) To investigate the
fine-tuning capabilities of LLMs in multi-task
social media scenarios, we selected four represen-
tative open-source models: Baichuan2-7B (Yang
et al., 2023)1, DeepSeek-7B (Bi et al., 2024)2,
Llama2-7B (Touvron et al., 2023)3, and Qwen2-7B
(QwenTeam, 2024)4. All fine-tuning baselines
adopted LoRA as an efficient parameter-efficient
tuning strategy.
LLMs-based (KTO) Knowledge Transfer Op-
timization (KTO) (Ethayarajh et al., 2024) is a
reinforcement learning method based on human
preference, which aims to optimize the behavior
of language models through human feedback. All
baseline models are trained with the KTO strategy.
SOTA To validate the superiority of our approach,
we conducted a comparative study against current
SOTA methods on four selected social media
tasks. Hate Speech Detection: Hoang et al. (2024)
propose ToXCL, a unified framework for detecting
and explaining implicit harmful speech. ToXCL
integrates a target group generator, an encoder-
decoder architecture, and a teacher classifier,
leveraging knowledge distillation to enhance
detection performance. Stance Detection: Lan et al.
(2024) introduce COLA, a three-stage framework
composed of collaborative large language model
agents. The framework includes multidimen-
sional text analysis, reasoning-enhanced debate,
and stance inference stages. NER and Topic
Classification: Due to inconsistent dataset splits
in prior work, fair comparisons are infeasible.
Therefore, we follow the original dataset splits for
our experiments and report the best performance
reported in the respective papers as baselines
(Ushio et al., 2022; Antypas et al., 2022).
Evaluation Metrics All tasks are evaluated using
the Macro F1 score as a unified metric.

4.3 Implementation Details

ChatGLM3-6B (GLMTeam et al., 2024)5 is em-
ployed as the base model in TaCL-CoMoE, which

1https://huggingface.co/baichuan-inc/
Baichuan2-7B-Chat

2https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-7B

3https://huggingface.co/meta-llama/Llama-2-7b
4https://huggingface.co/Qwen/

Qwen2-7B-Instruct
5https://huggingface.co/THUDM/chatglm3-6b
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Methods Hate Detection Stance Detection NER Topic Classification Avg

LLMs-based (Zero-shot)
GLM-4-32B 68.00 82.05 33.11 52.41 58.89
DeepSeek-V3 60.70 83.27 57.43 56.74 64.53
Internlm2.5-20B-chat 62.92 76.60 13.23 41.79 48.63
Qwen2.5-72B-Instruct 62.12 78.62 57.36 53.91 63.00
GPT-3.5-turbo 66.85 79.35 41.80 55.89 60.97
GPT-4o 70.83 82.98 52.85 55.16 65.45

LLMs-based (Fine-tuning)
Baichuan2-7B 74.80 84.12 73.27 62.99 73.79
DeepSeek-7B 74.28 84.55 73.52 62.21 73.64
Llama2-7B 76.72 84.23 72.66 62.60 74.05
Qwen2-7B 77.15 84.25 72.81 63.24 74.36

LLMs-based (KTO)
Baichuan2-7B 67.48 83.54 51.59 54.91 64.38
DeepSeek-7B 65.87 84.26 66.00 58.40 68.63
Llama2-7B 63.52 84.94 71.07 57.89 69.35
Qwen2-7B 63.76 84.53 70.92 60.05 69.81

SOTA 78.19 83.43 63.10 62.02 71.68

TaCL-CoMoE (Ours) 78.21 85.90 78.04 64.37 76.63

Table 1: The overall results(%) of the competing baselines and TaCL-CoMoE on the social media multi-task datasets.
The best results are highlighted in bold, and the second-best results are underlined. The results of all LLM-based
methods are derived from experiments conducted using self-constructed instruction data.

is built upon the transformer architecture and con-
sists of 28 transformer layers, exhibiting strong
capabilities in language understanding and gener-
ation. The model is fine-tuned using LoRA for
parameter-efficient adaptation, with a rank of 16
and a dropout rate of α = 0.1. The number of ex-
perts is set to 8. All training stages use the AdamW
optimizer (Loshchilov and Hutter, 2017) with an
initial learning rate of 2e-4. The maximum input
and output lengths are set to 2048 and 512, re-
spectively. All experiments are conducted on two
NVIDIA RTX 4090 GPUs, each with 24GB of
memory. For all experiments, we report the re-
sults as the average over three runs with different
random seeds.

5 Results and Discussions

5.1 Main Results

The performance of TaCL-CoMoE compared to
all baselines is presented in Table 1. The detailed
analyses are as follows.

Hate Detection TaCL-CoMoE achieves an F1
score of 78.21%, slightly outperforming the current
SOTA result of 78.19%. Compared to GPT-4o and
the best result under the KTO paradigm, TaCL-
CoMoE yields absolute improvements of 7.38%
and 10.73%, respectively. The result suggests that

both zero-shot and KTO methods exhibit certain
limitations in recognizing offensive intent within
social contexts.

Stance Detection TaCL-CoMoE achieves an F1
score of 85.90%, outperforming GPT-4o, the best
KTO-based model, and the best supervised fine-
tuned model by 2.92%, 0.96%, and 1.35% , respec-
tively. This result demonstrates the effectiveness
of TaCL-CoMoE in Stance Detection.

NER TaCL-CoMoE achieves an F1 score of
78.04%, substantially surpassing existing best-
performing methods. Compared to the current
SOTA, the best supervised fine-tuned model, and
the best KTO-based approach, it yields improve-
ments of 14.94%, 4.52%, and 6.97%, respectively.
The generally poor performance of zero-shot meth-
ods indicates that pretrained language models ex-
hibit clear limitations in structured information ex-
traction tasks.

Topic Classification TaCL-CoMoE achieves an
F1 score of 64.37%, outperforming the current
SOTA by 2.35 %. Compared to GPT-4o, the best
KTO-based model, and the best supervised fine-
tuned model, TaCL-CoMoE yields improvements
of 9.21%, 4.32%, and 1.13%, respectively.

Overall, TaCL-CoMoE achieves SOTA perfor-
mance across four social media tasks, demonstrat-
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ing notable advantages particularly in NER and
Stance Detection. These results validate the effec-
tiveness of TaCL-CoMoE in multi-task modeling
within the context of social media.

5.2 Ablation Study
In this section, we perform ablation studies to an-
alyze the effects of critical modules in our TaCL-
CoMoE, detailed in Table 2.

Impact of the MoE Architecture To evaluate
the impact of the MoE architecture on model per-
formance, we remove the MoE module and directly
fine-tune the base model, ChatGLM3-6B, on the
four tasks (θ). Experimental results show that re-
moving the MoE leads to performance degradation
across all four tasks, with the most notable drop of
4.38% observed in the NER task.

Impact of Contrastive Learning To investigate
the impact of contrastive learning on model per-
formance, we remove the Lcon (ρ) and replace the
task-adaptive contrastive learning (ϕ) with a uni-
fied unsupervised contrastive learning approach.
Experimental results show that both modifications
lead to performance degradation, with average F1
scores decreasing by 1.86% and 0.69%, respec-
tively. These findings demonstrate the effectiveness
of task-adaptive contrastive learning.

Methods Hate Stance NER Topic

TaCL-CoMoE 78.21 85.90 78.04 64.37

(θ) w/o MoE 76.18↓2.03 84.49↓1.41 73.66↓4.38 62.60↓1.77

(ρ) w/o Lcon 76.37↓1.84 84.87↓1.03 75.38↓2.66 62.47↓1.90
(ϕ) w CLunsup 77.19↓1.02 84.89↓1.01 77.58↓0.46 64.12↓0.25

(κ) w Softmax 77.04↓1.17 84.55↓1.35 76.95↓1.09 63.20↓1.17
(Ω) w Random 76.15↓2.06 84.10↓1.80 74.68↓3.36 62.53↓1.84

(η) w/o N.+T. 77.50↓0.71 84.80↓1.10 / /
(ζ) w/o H.+S. / 77.02↓1.02 63.74↓0.63 /
(ψ) w/o MTL 75.48↓2.73 84.27↓1.63 72.61↓5.43 61.02↓3.35

Table 2: The experimental results(%) of the ablation
study for TaCL-CoMoE (F1 score).

Impact of the Gating Mechanism To evalu-
ate the impact of the gating mechanism design on
model performance, we conduct comparative ex-
periments by replacing the Sigmoid gating function
with Softmax (κ) and random (Ω) gating mecha-
nisms, respectively. The experimental results show
that both alternative designs lead to a decline in
overall performance, with the average F1 score
dropping by 1.2% and 2.27%, respectively.

Impact of Task Interactions To investigate the
influence of different tasks on each other, we de-
signed three task ablation settings: (1) removing

NER and Topic Classification while training the
model only on Hate Detection and Stance Detection
(η); (2) removing Hate Detection and Stance De-
tection while retaining only NER and Topic Clas-
sification (ζ). (3) removing the multi-task learn-
ing (MTL) mechanism and fine-tuning the base
model ChatGLM3-6B separately on each of the
four tasks (ψ). Experimental results show that all
three ablation settings lead to a degradation in over-
all model performance, which verifies the impor-
tance of cross-task joint training.

5.3 Case Study
To better understand the impact of the MoE module
on multi-task learning, we selected four represen-
tative examples from four distinct tasks. Figure 3
presents a comparative analysis of the performance
of TaCL-CoMoE and w/o MoE on these examples.

In both the hate speech detection and stance de-
tection tasks, TaCL-CoMoE accurately captures
the emotional tone and stance expressed in the in-
puts, successfully identifying hateful content and
correctly determining the supportive stance. In con-
trast, w/o MoE fails in both cases, misclassifying
the inputs. This suggests that TaCL-CoMoE ex-
hibits a stronger capacity for fine-grained opinion
understanding.

For the NER task, the input text includes three
entities: two person names and one location. TaCL-
CoMoE successfully identifies and categorizes all
entities, whereas w/o MoE identifies only a sub-
set, missing a key person name. A similar pattern
is observed in the topic classification task, where
w/o MoE identifies only part of the topic informa-
tion, while TaCL-CoMoE correctly captures the
complete set of topic categories.

5.4 The Impact of the Number of Experts
Figure 4 illustrates the impact of varying the num-
ber of experts on the performance across different
tasks. As the number of experts increases from
2 to 8, the F1 scores generally exhibit an upward
trend, particularly in Hate Detection and Stance
Detection, indicating that appropriately increasing
the number of experts can effectively enhance the
model’s performance in multi-task learning. How-
ever, when the number of experts further increases
to 16, the performance of all tasks declines to vary-
ing degrees. This phenomenon suggests that more
experts do not necessarily lead to better results. An
excessive number of experts may introduce redun-
dancy or noise, thereby undermining the model’s
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Figure 3: Case Study of TaCL-CoMoE and w/o MoE on Social Media Multi-task Datasets

Figure 4: The Impact of the Number of Experts

performance.

5.5 Feature Representation Visualization

To more intuitively illustrate the role of contrastive
learning, we visualize the learned representations
on four tasks using dimensionality reduction, as
shown in Figure 5. The figure presents the distri-
bution of samples in the feature space at both the
Initial State and Trained State.

For the hate speech detection and stance detec-
tion tasks, we adopt supervised contrastive learning.
As observed, at the initial state, samples from dif-
ferent classes are mixed and poorly separated, with
fuzzy class boundaries. After training, the samples
exhibit a clearer clustering structure, with improved
intra-class compactness and increased inter-class
separation.

In the named entity recognition and topic classi-
fication tasks, we adopt unsupervised contrastive
learning. Initially, the sample distribution appears

scattered and lacks discernible semantic structure.
After training, the samples progressively form
dense clusters in the feature space, revealing more
coherent and semantically meaningful groupings.

Overall, both supervised and unsupervised con-
trastive learning effectively facilitate the emergence
of semantic structures in the feature space across
different tasks, enabling the model to learn more
organized and discriminative semantic representa-
tions.

5.6 Expert Weights Visualization

Figure 6 presents the visualization of expert
weights across four tasks under two gating mech-
anisms: Sigmoid and Softmax. It is observed that
the Softmax gating tends to concentrate weights
on a small subset of experts, exhibiting the issue
of “expert monopoly”. In contrast, the Sigmoid
gating more evenly activates multiple experts in
each task, resulting in a more balanced distribution
of expert weights. These results suggest that the
Sigmoid gating, by independently computing the
activation probability of each expert, effectively
mitigates the over-reliance on a few experts seen in
Softmax gating and promotes better collaboration
among experts.

6 Conclusion

In this paper, we propose TaCL-CoMoE, a multi-
task learning framework for the social media do-
main that incorporates task-adaptive contrastive
learning into an MoE architecture. To mitigate the
expert domination issue inherent in traditional MoE
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Figure 5: Visualization of Feature Representations on Social Media Multi-task Datasets

Figure 6: The Visualization of Expert Weights for Vari-
ous Tasks. In each task, the length of the bar in different
colors represents the weights for the corresponding ex-
pert.

models, we design a sigmoid-based expert routing
mechanism that facilitates cooperative expert selec-
tion and reduces task interference. Experimental
results and analyses demonstrate the effectiveness
of the proposed TaCL-CoMoE.

Limitations

Despite achieving state-of-the-art results on multi-
ple social media tasks, the proposed TaCL-CoMoE
still has certain limitations. Firstly, due to con-
straints in computational resources and time, ex-
periments are conducted on only four social media
tasks. Future work will aim to extend the evalua-
tion to a broader range of tasks to further verify the
model’s generalizability and effectiveness across

diverse social media scenarios. Secondly, the pro-
posed task-adaptive contrastive learning relies on
task labels or semantic similarity to construct pos-
itive and negative sample pairs, which introduces
additional training overhead to some extent.

Ethical Considerations

For the Hate Detection task, the examples provided
in this paper are solely for research purposes and
do not reflect the authors’ personal values or view-
points. The goal of this task is to identify and
prevent the spread of harmful content on social
media, thereby fostering a healthy and positive on-
line environment. All data used in this study are
derived from publicly available datasets, with no
additional data collection, annotation, or external
dissemination involved.
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A Dataset Statistics

In this section, we present the dataset statistics
for social media multitask learning, as shown in
Table 3 and Figure 7. Table 3 lists the sizes of the
training, validation, and test sets, the average token
lengths, and the number of labels for the four tasks.
Figure 7 illustrates the label distribution for each
task.

Hate Detection This task aims to determine
whether a given text contains hate speech. It in-
cludes 13,797 training samples, 1,838 validation
samples, and 3,912 test samples, with an average
token count of 21.77. It comprises two labels: Nor-
mal and Hate. The Normal class contains 13,291
samples, while the Hate class contains 6,256 sam-
ples.

Stance Detection This task aims to identify the
attitude expressed in a text toward a specific target
individual. The targets include three former U.S.
presidential candidates: Donald Trump, Joe Biden,
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Task Type # Train # Validation # Test # Avg Tokens # Label Num
Hate Detection 13797 1838 3912 21.77 2
Stance Detection 17191 2174 2176 43.50 2
NER 7111 886 3383 45.71 7
Topic Classification 5005 708 5536 44.54 19

Table 3: Data Statistics of Social Media Multi-task Datasets

Figure 7: Label Distribution Statistics on Social Media Multi-task Datasets

and Bernie Sanders. The stance labels consist of
Favor and Against. The dataset comprises 17,191
training samples, 2,174 validation samples, and
2,176 test samples, with an average token count of
43.50. It includes two labels, with 10,398 samples
labeled as Favor and 11,143 samples labeled as
Against.

Named Entity Recognition This task aims to
identify and classify named entities in text into
predefined categories. It includes 7,111 training
samples, 886 validation samples, and 3,383 test
samples, with an average token count of 45.71. It
comprises seven entity categories: Person, Creative
Work, Location, Corporation, Group, Product, and
Event.

Topic Classification This task is formulated as

a multi-label text classification problem, aiming to
assign one or more relevant topics to each social
media post. The dataset consists of 5,005 training
samples, 708 validation samples, and 5,536 test
samples. The average number of tokens per sample
is 44.54, and the label space includes 19 distinct
topic categories.

B Task Instructions

The instruction design for the four tasks is shown
in Figure 8.
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Figure 8: Instruction Design for the Four Tasks
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