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Abstract

Analysing the generalisation capabilities of re-
lation extraction (RE) models is crucial for
assessing whether they learn robust relational
patterns or rely on spurious correlations. Our
cross-dataset experiments find that RE models
struggle with unseen data, even within similar
domains. Notably, higher intra-dataset perfor-
mance does not indicate better transferability,
instead often signaling overfitting to dataset-
specific artefacts. Our results also show that
data quality, rather than lexical similarity, is
key to robust transfer, and the choice of opti-
mal adaptation strategy depends on the qual-
ity of data available: while fine-tuning yields
the best cross-dataset performance with high-
quality data, few-shot in-context learning (ICL)
is more effective with noisier data. However,
even in these cases, zero-shot baselines occa-
sionally outperform all cross-dataset results.
Structural issues in RE benchmarks, such as
single-relation per sample constraints and non-
standardised negative class definitions, further
hinder model transferability. We release our
dataset splits with sample IDs and code for re-
producibility.1

1 Introduction

Relation extraction (RE) is the core information
extraction task of identifying the semantic rela-
tionship between entities in text. Traditional RE
evaluations rely predominantly on in-distribution
testing, but this approach often overestimates true
model performance by implicitly assuming that in-
dividual datasets wholly represent the underlying
task (Linzen, 2020; Kovatchev and Lease, 2024).
While model generalisation has gained increasing
attention in NLP, RE remains relatively unexplored
in this context (§ 2).

*Supervised by
1https://github.com/kleines-gespenst/re_cross_

dataset

However, understanding RE generalisation to
out-of-distribution (OOD) data is crucial both for
the task itself as well as for the robust application
of RE systems in downstream tasks like question
answering and knowledge-base population (Bassig-
nana and Plank, 2022a). Given the popularity of
representing internal language model (LM) knowl-
edge as relational triples (Geva et al., 2023; Her-
nandez et al., 2024), building robust RE systems
beyond the mere memorisation of dataset-specific
patterns may also be key to more interpretable and
trustworthy models.

This paper systematically analyses how well
RE systems generalise across datasets focusing on
sentence-level RE. Due to the limited relation over-
lap in popular RE datasets, we focus our experi-
ments on biographical relations, which are perva-
sive in RE settings; this also allows us to include a
domain-specific dataset for grounded analysis (§ 3).
Through our cross-dataset experiments, this paper
makes the following contributions:

• We document key challenges in analysing RE
generalisation, including inconsistent relation
schemas and highly imbalanced class distri-
butions (§ 3), as well as propose methods for
overcoming these issues.

• We find that strong in-distribution RE perfor-
mance often masks fundamental generalisa-
tion failures, with models that excel on intra-
dataset evaluations frequently failing to trans-
fer effectively (§ 5).

• Our cross-dataset analysis suggests that how
data is annotated influences the best adapta-
tion method: in our experiments, fine-tuning
achieves better cross-dataset performance for
manually annotated data, while few-shot in-
context learning (ICL) performs better on dis-
tantly supervised data. However, zero-shot
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prompting outperforms all cross-dataset meth-
ods in some settings (§ 5.2).

• We identify structural issues in current RE
benchmarks that lead to generalisation errors,
including single-relation constraints, external
knowledge reliance, and coverage biases (§ 6).

These findings reveal that while current RE
systems achieve high in-distribution results, their
cross-dataset performance shows critical gaps in
genuine relation understanding, limiting their real-
world applicability.

2 Related Work

2.1 Approaches for RE
RE is traditionally framed as a classification task,
tackled via either a pipeline approach—where sub-
tasks like named entity recognition (NER), coref-
erence resolution, and relation classification (RC)
are performed sequentially—or a joint model that
processes them simultaneously (Taillé et al., 2020;
Bassignana and Plank, 2022b; Saini et al., 2023).
It is further categorised into sentence- (Alt et al.,
2020; Plum et al., 2022) and document-level RE
(Yao et al., 2019; Meng et al., 2024).

Since the introduction of BERT (Devlin et al.,
2019), encoder-based models have dominated RE
due to their bidirectional attention mechanism,
which effectively captures context for classification
tasks (Alt et al., 2020; Plum et al., 2022). How-
ever, the rise of autoregressive models has led to
increasing adoption of decoder-based architectures
to RE (Wang et al., 2022; Sun et al., 2023; Xu et al.,
2023; Liu et al., 2024; Efeoglu and Paschke, 2024).
While encoder-decoder models have been explored
(Huguet Cabot and Navigli, 2021; Li et al., 2023b),
our experiments focus on the dominant encoder-
only and decoder-only architectures for RE.

2.2 Generalisation Capabilities of RE Models
Recent work advocates for transparent evaluation
(Neubig et al., 2019; Liu et al., 2021) and OOD
testing (Linzen, 2020; Allen-Zhu and Li, 2024; Qi
et al., 2023) to assess model robustness. Com-
mon strategies include cross-dataset (Antypas and
Camacho-Collados, 2023; Jang and Frassinelli,
2024) and cross-domain (Fu et al., 2017; Liu et al.,
2020; Bassignana and Plank, 2022a; Calderon et al.,
2024) experiments, as well as testing on perturbed
and adversarial sets (Wu et al., 2019; Gardner et al.,
2020; Goel et al., 2021; Rusert et al., 2022).

Recent studies have explored various ways to im-
prove RE model robustness. Bassignana and Plank
(2022a) introduce a cross-domain RE dataset with
broad relation types, while Meng et al. (2024) and
Chen et al. (2023) evaluate state-of-the-art (SOTA)
document-level RE models on perturbed test sets.
Chen et al. (2023) reveal that even when models
predict correctly, they often rely on spurious cor-
relations, showing vulnerability to minor evalua-
tion shifts. To reduce dependence on mere pat-
tern matching, Allen-Zhu and Li (2024) propose
augmenting training data with synthetic samples
reformulated by an auxiliary model. Most closely
related to our work, Bassignana and Plank (2022b)
analysed cross-dataset model transfer for scientific
RE with large data overlap, while our work exam-
ines cross-dataset generalisation across models for
general-purpose RE and analyses factors influenc-
ing transfer considering datasets with no overlap.

3 Methodology

We assess the RE systems’ robustness by evaluating
their OOD performance. Standard in-distribution
evaluations may overestimate RE performance
(Linzen, 2020), as models can exploit spurious cues
rather than learning genuine RE task (Chen et al.,
2023; Meng et al., 2024; Arzt and Hanbury, 2024).

To systematically evaluate generalisation capa-
bilities of RE models, we conduct both intra- and
cross-dataset experiments. The intra-dataset ex-
periments act as a control, evaluating RE mod-
els on data drawn from the distribution used for
model adaptation, while the cross-dataset experi-
ments measure model robustness with OOD test
sets derived from a different RE dataset.

For our experiments, we use three sentence-level
RE datasets: TACRED-RE (Alt et al., 2020), NYT
(Riedel et al., 2010), and Biographical (Plum et al.,
2022). While TACRED-RE and NYT are general-
purpose RE datasets, we focus only on biographical
relations, or relations describing aspects of an indi-
vidual’s life like place_of_birth or children for two
key factors: (1) TACRED-RE and NYT share six bi-
ographical relations but only two non-biographical
ones, and (2) focusing on biographical relations
allows for additional cross-dataset evaluations with
the Biographical dataset, which only contains bi-
ographical relations. This setup thus allows us
to compare the generalisation of two popular RE
datasets in a third, held-out evaluation setting.
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3.1 Data
We now briefly describe three RE datasets used.

TACRED-RE (Alt et al., 2020) is a general-
purpose RE dataset with 41 relations and a
‘no_relation’ class.2 It contains over 106k instances
but is highly imbalanced, with ∼80% labeled as
‘no_relation’. Built from English newswire and
web text, it is a revised version of TACRED (Zhang
et al., 2017), with challenging samples re-annotated
by professional annotators to reduce noise from
crowdsourcing. Experimental results show im-
proved performance on TACRED-RE compared to
TACRED (Appendix Tables 13, 14), leading to its
use in our experiments. Figure 1 shows a TACRED-
RE example. We focus on its 26 biographical rela-
tions, including ‘no_relation’ (Appendix Table 5).

Irene Morgan Kirkaldy, who was born and reared in Baltimore, lived 
on Long Island and ran a child-care center in Queens with her second 
husband, Stanley Kirkady.

per:city_of_birth

Figure 1: TACRED-RE example (Zhang et al., 2017).

NYT (Riedel et al., 2010) is a general-purpose
RE dataset with 24 relations and a ‘None’ class. It
contains over 266k sentences, with 64% labeled as
‘None’ and half of positive instances containing a
single dominant relation, ‘/location/location/con-
tains’.3 NYT was constructed via distant supervi-
sion, by applying Freebase (Bollacker et al., 2008)
as external supervision to New York Times articles
(Sandhaus, 2008). Figure 2 shows an NYT exam-
ple. We focus on its subset with 7 biographical
relations, including a ‘None’ class (Table 6, Ap-
pendix).

“I think Amlo truly feels he’s the Redeemer of Mexico, but his reign is 
of this world,” said Enrique Krauze, a historian.

people/person/nationality

Figure 2: NYT example.

Biographical is an RE dataset for the biograph-
ical text domain, with 10 relation types (Plum
et al., 2022). Built from Wikipedia articles on
prominent individuals and containing 346,257 in-
stances, Biographical was created using a semi-
supervised approach.4 Named entities were auto-
matically extracted using spaCy (Honnibal et al.,

2Licensed by the Linguistic Data Consortium (LDC).
3Available at https://github.com/INK-USC/ReQuest.
4We use the m2_normal_final1 version.

2020) and Stanford CoreNLP (Manning et al.,
2014). Wikipedia sentences with these entities
were matched with Pantheon and Wikidata to au-
tomatically infer relations. Figure 3 shows an exam-
ple5 from Biographical. Statistics for Biographical,
downsampled to match the size of the TACRED-
RE and NYT subsets, appear in Appendix Table 6.

Kharlan was born in Mykolaiv a shipbuilding town in the south of 
Ukraine.

bplace_name

Figure 3: Biographical example.

3.2 Cross-Dataset Comparison: Challenges

Single Relation per Sample: Both TACRED-
RE and Biographical restrict each sample to
at most two entities and one relation, even
when multiple relations exist in a sentence.
For instance, the TACRED-RE example in Fig-
ure 1 is labeled with ‘per:city_of_birth’ but
also contains ‘per:stateorprovinces_of_residence’,
‘per:employee_of’, and ‘per:spouse’, all within
TACRED-RE’s relation set. This constraint may
confuse a model trained on such data, as it enforces
a single-label assignment. While NYT better re-
flects real-world scenarios by allowing multiple
relations per sentence, we filtered it to two-entity,
single-relation samples for fair cross-dataset com-
parison, retaining only examples like in Figure 2.

Unclear ‘Negative’ Class: Clear negative sam-
ples—instances with entities but no meaningful
relation—are crucial for RE. While TACRED-RE
has an explicit ‘no_relation’ class, NYT’s ‘None’
class lacks clear definition (Riedel et al., 2010),
potentially confusing models about whether it indi-
cates absence of predefined relations or any relation.
Similarly, Biographical lacks an explicit negative
class, using instead an ‘Other’ class for unspecified
relations (Plum et al., 2022), exemplified in Ap-
pendix Figure 5. This inconsistency between choos-
ing a ‘no_relation’ versus a ‘none_of_the_above’
class in RE benchmarks highlights the general chal-
lenge of consistently defining the boundaries be-
tween presence and absence of semantic relations
in text (Bassignana and Plank, 2022b).

Expected Factual Knowledge: The design of
RE datasets influences whether models genuinely

5Sample ID ‘mS1/18860978’ shows punctuation revomal
by Plum et al. (2022) that may affect model comprehension.
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learn RE or rely on dataset-specific cues. NYT’s
distant supervision approach incorporates Freebase-
derived relations not stated in text requiring exter-
nal world knowledge rather than textual evidence,
as shown in Figure 2 where the text lacks explicit
information about Enrique Krause’s nationality—
such annotations extend beyond RE’s scope and
corrupt models trained on such data. Similarly,
although manually curated, TACRED-RE encom-
passes relations like ‘per:city_of_birth’, which re-
quire factual knowledge from a model, limiting
generalisation to instances seen during adaptation.

3.3 Cross-Dataset Label Overlap

Following Bassignana and Plank (2022b), we
manually analysed instances for each relation in
TACRED-RE, NYT, and Biographical to establish
a cross-dataset label mapping. Appendix Table 8
shows six overlapping biographical relations be-
tween NYT and TACRED-RE, with twelve fine-
grained TACRED-RE relations mapping to six
broader NYT labels (e.g., NYT’s ‘place_of_birth’
encompasses three TACRED-RE birth location re-
lations). Treating Biographical’s ‘Other’ class as
negative—supported by manual analysis of 30 ran-
dom instances showing negative rather than unspec-
ified relations—we find four overlapping relations
across three datasets (Appendix Table 10). NYT
and Biographical share these same four relations
(Appendix Table 7), while TACRED-RE and Bio-
graphical share nine relations (Appendix Table 9).

4 Experiments

4.1 Data Format and Standardisation

To enable cross-dataset evaluations and focus exclu-
sively on relation classification, we standardise our
data using unified format with entity spans marked
as <e1>head entity</e1> and <e2>tail entity</e2>.

To address class imbalance, we randomly down-
sampled negative instances across three datasets
to balance the number of positive and negative in-
stances, and downsampled Biographical (∼350k)
to match other biographical subset sizes for fair
comparison (Appendix A). For cross-dataset eval-
uation, we mapped TACRED-RE’s fine-grained
relations to broader NYT labels (Appendix C.1).

4.2 Model Selection, Training, and Evaluation

We consider two types of models: an encoder-only
(DeBERTa-v3-large 304M; He et al. (2021)) and a
decoder-only model (an instruction-tuned LLaMA

3.1 8B; Grattafiori et al. (2024)). For DeBERTa, we
follow common practice for RE encoder models:
we mark entity spans with custom markers and use
the concatenated hidden states of the entity start
tokens, <e1> and <e2>, as inputs for the classifi-
cation head (Baldini Soares et al., 2019). We also
evaluate three SOTA systems (or replications of
these systems) on our biographical test sets, one
for each considered dataset, in order to compare
our models to prior work. We provide more details
on our replication study in Appendix C.3.

We employ two commonly used model adapta-
tion strategies for RE: fine-tuning and in-context
learning (ICL). Specifically, we consider direct fine-
tuning with DeBERTa, fine-tuning LLaMA using
low-rank adaptation (LoRA; Hu et al., 2022), and
zero-shot and five-shot ICL (Brown et al., 2020)
with LLaMA. For few-shot ICL, we perform five
runs with different demonstration sets to account
for demonstration sensitivity (Zhang et al., 2022;
Webson and Pavlick, 2022; Lu et al., 2022). How-
ever, due to computational constraints, fine-tuning
experiments are limited to a single run. For NYT
and TACRED-RE, we conduct experiments in two
adaptation settings: adaptation on all biographical
relations in each dataset (Appendix Tables 5 and 6)
and adaptation on only overlapping relations (Ap-
pendix Table 8). This applies to both fine-tuning
and ICL, where zero-shot prompts and few-shot
demonstrations are selected accordingly.

We then perform two types of evaluations: intra-
dataset, where models are evaluated on the same
dataset they were adapted to; and cross-dataset,
where the adapted models were tested on OOD data
to assess their generalisation. Further implementa-
tion details, including hyperparameter settings, and
prompting details, are provided in Appendix C.2.

5 Results

Overview of Reported Results: Table 1 shows
intra- and cross-dataset results for NYT and
TACRED-RE on six overlapping relations, using
models adapted on all biographical relations. For
TACRED-RE, which maps its 12 fine-grained la-
bels to NYT’s shared label space, we report both
dataset-specific and shared label results, denoted
as ‘Dataset Labels’ and ‘Shared Labels’ in Table 1.
Table 2 shows model generalisation to Biographi-
cal across three overlapping relation sets: (1) four
relations shared by all datasets, (2) same four rela-
tions shared between NYT and Biographical, and
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Model Setting Dataset Intra-Dataset Cross-Dataset
Shared Labels Dataset Labels NYT TACRED-RE

DeBERTa-v3
large 304M Fine-tuned on NYT 0.81 0.81 – 0.26

TACRED-RE 0.72 0.62 0.53 –
LLaMA 3.1 8B Fine-tuned on NYT 0.87 0.87 – 0.45

TACRED-RE 0.82 0.76 0.62 –
LLaMA 3.1 8B Zero-Shot NYT 0.31 0.31 – –

TACRED-RE 0.58 0.37 – –
LLaMA 3.1 8B 5-Shot NYT 0.45 ± 0.07 0.45 ± 0.07 – 0.52 ± 0.06

TACRED-RE 0.63 ± 0.06 0.43 ± 0.07 0.39 ± 0.02 –

Table 1: Macro F1-scores for intra- and cross-dataset predictions on six overlapping relations. Results include
shared and dataset-specific labels, with models adapted on all biographical relations via fine-tuning or ICL. Best
intra- and cross-dataset results are in bold.

Model Setting Dataset Full Overlap Overlap w. NYT Overlap w. TACRED-RE
DeBERTa-v3-large 304M Fine-tuned on NYT 0.48 0.48 –

TACRED-RE 0.62 – 0.70
Biographical 0.80 0.80 0.81

LLaMA 3.1 8B Fine-tuned on NYT 0.30 0.30 –
TACRED-RE 0.69 – 0.70
Biographical 0.79 0.79 0.74

LLaMA 3.1 8B Zero-Shot Biographical 0.24 0.24 0.35
LLaMA 3.1 8B 5-Shot NYT 0.48 ± 0.04 0.48 ± 0.04 –

TACRED-RE 0.51 ± 0.04 – 0.58 ± 0.02
Biographical 0.53 ± 0.05 0.53 ± 0.05 0.54 ± 0.03

Table 2: Evaluation on Biographical Dataset (macro F1-scores). Models adapted on all biographical relations
through fine-tuning or ICL. Best intra- and cross-dataset results on full overlap are in bold.

(3) nine TACRED-RE/Biographical shared rela-
tions. Models were adapted on each dataset’s full
biographical relations, with Biographical’s intra-
dataset results for comparison. We focus on re-
sults with models adapted on the full overlap, as
they perform similarly to those adapted only on
overlap (Appendix Table 16) while better reflect-
ing real-world settings. Cross-dataset experiments
with Biographical as training source appear in Ap-
pendix E. Given Biographical’s ambiguous ‘Other’
class (§ 3.2), we use it only for evaluation in the
main paper.

While we primarily focus on macro F1 to address
class imbalance, we report micro F1 (commonly
reported for RE tasks) for our fine-tuned models in
Table 3; additional experimental results, including
per-class breakdowns, appear in Appendix F.

5.1 Intra-Dataset Results

We evaluate our RE models on their training data
distribution for comparison of cross-dataset gener-
alisation. Unsurprisingly, we find that fine-tuning
performs best for intra-dataset evaluations: fine-
tuned LLaMA outperforms DeBERTa on TACRED-
RE and NYT (Table 1), while DeBERTa outper-
forms LLaMA on Biographical (Table 2).

Our ICL experiments similarly show expected
results, with the five-shot prompting moderately
outperforming zero-shot prompting but underper-
forming full model fine-tuning. For Biographical,
this few-shot ICL gain over zero-shot is signifi-
cant, increasing from 0.24 to 0.53± 0.05 with five
demonstrations (Table 2).

We observe different performance trends within
TACRED-RE and NYT intra-dataset evaluations.
While fine-tuning yields higher intra-dataset per-
formance on NYT than on TACRED-RE, this
trend flips for the zero- and few-shot ICL settings,
with prompting on NYT performing significantly
worse despite TACRED-RE’s finer-grained rela-
tion schema. This likely stems from differing data
quality between datasets: the noisy labeling during
NYT creation (Yaghoobzadeh et al., 2017) likely
leads to over-fitting during fine-tuning (Tänzer
et al., 2022) (rather than learning robust relational
patterns), but harms model generalisation to NYT
when not fine-tuned for that data distribution.

Comparison with SOTA: As our cross-dataset
analysis focuses on biographical relations, direct
comparisons with prior work are challenging as
they rarely report per-class results. Thus, we per-
form a replication study to re-evaluate prior work
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Dataset SOTA∗ DeBERTa-v3
large 304M

LLaMA 3.1
8B

Macro Micro Macro Micro Macro Micro
NYT 0.87 0.90 0.84 0.93 0.89 0.94
TACRED-RE 0.78 0.87 0.71 0.85 0.78 0.89
Biographical 0.87 0.93 0.83 0.92 0.75 0.91

Table 3: F1 score comparison of our models (trained
on biographical subsets) vs. SOTA systems (trained
on full datasets) when evaluated on biographical test
sets. Underlined values indicate which metric (macro or
micro F1) was originally reported in SOTA∗ papers from
Orlando et al. (2024) (NYT), Zhou and Chen (2022)
(TACRED-RE), and Plum et al. (2022) (Biographical).

on our biographical evaluation sets, comparing
SOTA models—trained using full training and val-
idation datasets—against our models fine-tuned
exclusively on biographical subsets.

Table 3 shows that our models perform well on
all three biographical test sets, achieving competi-
tive or superior results to existing RE systems de-
spite their more limited training data.

In most settings, our models outperform prior
work, with one exception: on the Biographical
dataset, our DeBERTa model trails the model with
entity tags introduced in Plum et al. (2022) by 4
and 1 points in macro/micro F1. This gap is likely
attributable to training data disparity (our 20K vs.
their 346K), particularly since both approaches use
identical text formatting with entity markers and
entity token representations for the classification
head. Replication details appear in Appendix C.3.

5.2 Cross-Dataset Results
We now turn to examining the cross-dataset gen-
eralisation of our RE systems. Unsurprisingly,
we find that performance almost always declines
with cross-dataset evaluations. However, models
adapted on TACRED-RE exhibit relatively strong
generalisation capabilities—the few exceptions of
better cross-dataset performance stemming from
TACRED-RE models applied to the Biographical
dataset–while those adapted on NYT struggle to
transfer effectively, likely due to dataset noise.

RE Models Struggle to Generalise across
Datasets Cross-dataset evaluations (almost) al-
ways perform worse than the comparable intra-
dataset experiment: NYT and TACRED-RE show
substantial drops of 20-30 points, while Biograph-
ical exhibits a smaller decrease of ∼10 points for
both full and TACRED-RE/Biographical relation
overlap (Tables 1, 2). We also observe somewhat
different performance trends across model and
adaptation approaches from the intra-dataset ex-

periments; while fine-tuning LLaMA on TACRED-
RE achieves the best cross-dataset performance on
NYT, the best TACRED-RE cross-dataset results
are obtained using few-shot ICL with NYT demon-
strations (rather than fine-tuning). However, these
remain below the zero-shot TACRED-RE baseline.

The cross-dataset experiments on Biographi-
cal similarly perform worse than the correspond-
ing intra-dataset experiments in most settings (Ta-
ble 2); one notable exception is LLaMA prompted
with five TACRED-RE examples, which outper-
forms the intra-dataset few-shot experiments on
the TACRED-RE/Biographical label overlap. The
best Biographical cross-dataset results are achieved
with fine-tuning LLaMA on TACRED-RE, though
this still underperforms intra-dataset fine-tuning.

NYT Models Generalise Worse than TACRED-
RE Models NYT-adapted models exhibit signif-
icantly poorer generalisation than those adapted
on TACRED-RE (Tables 1 and 2). For example,
fine-tuning LLaMA with TACRED-RE surpasses
zero- and cross-dataset ICL on NYT (by ∼30 and
∼20 points, respectively), while all cross-dataset
experiments transferring from NYT to TACRED-
RE underperform zero-shot evaluations with no
cross-dataset signal. This is also clear from the
evaluations on the held-out Biographical dataset,
where transferring from TACRED-RE always per-
forms better than NYT (and occasionally outper-
forms the intra-dataset performance).

This performance gap is unlikely due to domain
differences, as both datasets contain newspaper arti-
cles (TACRED-RE includes some NYT newspaper
content without instance overlap), while Biographi-
cal uses Wikipedia. We attribute it to NYT’s distant
supervision annotations, which introduce noise and
limit model robustness. This is likely why LLaMA
fine-tuned on NYT and evaluated on Biographical
(0.30) underperforms DeBERTa (0.48; Table 2)—
the over-parametrised LLaMA exhibits stronger
overfitting to NYT noise and generalises poorly to
unseen data, a phenomenon also noted by Liu et al.
(2022) with corrupted training data.

Effect of Adaptation Strategy on Generalisa-
tion While prior work suggests that ICL often
generalises more effectively to OOD data than
fine-tuning (Awadalla et al., 2022; Song et al.,
2023; Si et al., 2023), our results indicate this ad-
vantage depends heavily on data quality. With
high-quality data like TACRED-RE, fine-tuning
consistently achieves the best cross-dataset per-
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Figure 4: Confusion matrices comparing cross-dataset
results for LLaMA fine-tuned on TACRED-RE/NYT.

formance, surpassing few-shot ICL on both NYT
and Biographical evaluations. In fact, TACRED-
RE adaptations can even perform comparably to
intra-dataset ones: LLaMA (0.70) fine-tuned on
TACRED-RE achieves similar results to its Bio-
graphical intra-dataset performance (0.74) on the
TACRED-RE/Biographical label overlap (Table 2).

However, when adaptation data are noisy, as with
NYT, few-shot ICL becomes a more effective strat-
egy: few-shot ICL via NYT consistently performs
better than fine-tuning on NYT for both TACRED-
RE and Biographical evaluations (Tables 1, 2). This
is likely because ICL limits the signal from noisy
training data, which in turn reduces the overfitting
to dataset-specific artefacts and catastrophic for-
getting compared to fine-tuning (Tran et al., 2024;
Kotha et al., 2024; Li et al., 2025).

6 Analysing RE Generalisation Failure
Cases

Given RE benchmarks’ numerous relations and
class imbalance, we analyse the strongest cross-
dataset performing model, fine-tuned LLaMA, be-
yond aggregated metrics. We examine per-relation
performance (Figure 4) and qualitatively analyse
30 random misclassifications from four evaluation

settings to identify their likely underlying causes.6

Through these analyses, we find the following
causes of RE generalisation mistakes:

Effect of Noisy Supervision on Generalisation
Figure 4 reveals that NYT-adapted models sys-
tematically overpredict the ‘None’ class on both
TACRED-RE and Biographical, with manual analy-
sis showing misclassifications stem primarily from
NYT’s distant supervision (Appendix Table 23)
rather than vocabulary differences (Appendix Fig-
ure 6) or domain shift. This issue is particularly
evident in NYT’s location-based relations, where
reliance on external knowledge leads to conflict-
ing annotations that hinder pattern learning—for
instance, “Henryk Tomaszewski [...] died on Sun-
day at his home in Warsaw”7 is labeled as birthplace
despite clear evidence of death location. Similar
issues arise with Biographical’s semi-supervised
data, where models adapted on cleaner datasets
like TACRED-RE fail to replicate ground truth la-
bels that lack textual evidence. Notably, despite
higher lexical overlap between Biographical and
NYT (Appendix Figure 7), TACRED-RE-adapted
models perform better on Biographical, indicating
that adaptation data quality matters more than lexi-
cal similarity.

Single Relation Constraint & Negative Class
The issue extends beyond noisy supervision to fun-
damental RE task design constraints. Models of-
ten detect valid but unlabeled relations (marked as
‘new_relation’ in Figure 4), revealing limitations of
single-relation per sample. This manifests in cases
like “Gross, who is himself Jewish [...] was sent to
Cuba”8, where only ‘place_lived’ is labeled while
‘religion’ is omitted due to TACRED-RE’s con-
straint. Also, unclear negative class affects cross-
dataset evaluation: while Biographical’s ‘Other’
class is intended to cover undefined relations, our
analysis reveals it contains both instances without
meaningful relations and those with valid but unde-
fined relations. This explains the high frequency of
‘new_relation’ predictions for Biographical when
using LLaMA fine-tuned on TACRED-RE with
their finer-grained relation schema (Figure 4) and
highlights the fundamental difficulty in defining
boundaries between relation presence or absence.
Despite this ambiguity, the class achieves strong

6More misclassification patterns in Appendix Table 23.
7NYT instance ID: ‘/m/vinci8/data1/riedel/projects/relation

/kb/nyt1/docstore/nyt-2005-2006.backup/1701917.xml.pb’
8TACRED-RE instance ID: ‘098f6f318be29eddb182’
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cross-dataset performance when mapped to ‘None’
(0.78 and 0.72 for LLaMA fine-tuned on TACRED-
RE and NYT (Appendix Tables 19 and 20)), fur-
ther underscoring the importance of distinguish-
ing between ‘no_relation’ and ‘none_of_the_above’
cases (Bassignana and Plank, 2022b).

Reliance on External Knowledge even in Man-
ually Curated Datasets Even with high-quality
manual annotations, RE often requires external
knowledge and complex reasoning capabilities.
Our analysis reveals this challenge manifests in
two key ways: through implicit relations requiring
inference, and through necessary world knowledge
for entity interpretation. For example, in “Gross
[...] was sent to Cuba as a spy”8, the NYT-adapted
model predicts ‘None’ instead of ‘place_lived’, fail-
ing to infer that being sent somewhere as a spy im-
plies residence. While detecting implicit relations
is crucial (Geva et al., 2021), ensuring consistent
and objective interpretation remains challenging.

Beyond implicit relations, models must also rely
on world knowledge for basic entity understanding-
as in cases like ‘Idaho businesswoman’9, where
identifying entity types requires knowing Idaho
as a location. TACRED-RE fine-grained relation
schema further demonstrates this issue, where even
with world knowledge, distinguishing between re-
lations like city of birth and state/province of birth
can be ambiguous (e.g., whether New York refers to
the city or state). As Chen et al. (2023) note, even
human annotators tend to rely on such prior knowl-
edge despite the lack of rationales, motivating the
need for finer-grained word evidence annotation.

Dataset Composition and Coverage Biases
Analysis of the most frequent words across NYT
and TACRED-RE shows a strong US-centric cov-
erage bias, likely limiting generalisation to non-US
contexts (Appendix Table 24). NYT also exhibits
topical skews in specific relations, like religion
being primarily associated with Islam, potentially
biasing model relation representations.

Analysing part-of-speech distributions also re-
veals distinct patterns across all three datasets (Ap-
pendix Table 22). While proper nouns dominate
head and tail entities in all datasets (nearly 100%
in NYT), TACRED-RE shows more linguistic di-
versity with 17% of head entities as pronouns and
17% of tail entities as common nouns. Biographi-
cal, sourced from Wikipedia, contains a high pro-

9TACRED-RE instance ID: ‘098f6bd9fa786293e49d’

portion (26%) of numerical tail entities, primar-
ily dates. These compositional differences, along
with TACRED-RE’s longer, compound sentences
and higher average entity distance (∼12 tokens
vs NYT’s ∼8 tokens), most likely impact cross-
dataset performance; NYT-adapted models strug-
gle with these more complex patterns, which are ab-
sent from their training data (Appendix Table 23).

7 Conclusion

This work examines cross-dataset generalisation in
language model-based RE systems in biographical
settings. We find RE models struggle to gener-
alise even within similar domains, with high intra-
dataset performance potentially masking spurious
overfitting rather than indicating genuine learning
of relational patterns. Our empirical results sug-
gest that data annotation quality can significantly
influence transfer; specifically, we observe that
datasets with human annotations provide notably
better cross-dataset performance than those cre-
ated through distant supervision. The best adapta-
tion strategy also appears dataset-dependent, with
fine-tuning yielding the best cross-dataset perfor-
mance with TACRED-RE as the adaptation source
while few-shot ICL appears to offer advantages
with noisier data from our experiments. However,
in some cases, a zero-shot baseline surpasses all
cross-dataset results, further underscoring the limi-
tations of current RE systems.

Our analysis also reveals several structural issues
in all current RE benchmarks: (1) single-relation
constraints that ignore other valid relations between
entities in text, (2) the lack of a well-defined nega-
tive class with challenging samples (e.g., sentences
containing commonly used tokens for relations like
‘born’ or ‘died’) to enforce deeper semantic un-
derstanding beyond pattern matching, and (3) lim-
ited diversity in data sources. These issues, com-
pounded by inconsistent relation definitions and
limited overlap across datasets, hinder meaningful
evaluations of RE generalisation.

These findings thus highlight the need for more
transparent evaluation beyond in-distribution test-
ing and aggregated metrics, as limiting evaluation
to these may not reflect genuine improvements in
capturing relational patterns or account for class
imbalance and the large number of relations in RE
benchmarks. We see many promising directions
for future work, including testing RE robustness on
perturbed evaluation sets and applying interpretabil-
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ity methods to better understand how models infer
relational knowledge.

Limitations

Our cross-dataset analysis is limited to a particular
set of biographical relations but reflects a broader
challenge in RE evaluation where datasets, even
covering the same domain, typically share a small
relation overlap. We also constrain our analysis
to single-relation examples: while, real-world sce-
narios often involve multiple relations per instance
(and NYT allows multiple relations), we focused
on single-relation setting for fair cross-dataset com-
parison, as TACRED-RE and Biographical are an-
notated with single relations. Similarly, we exclu-
sively evaluate relation classification (RC) due to
dataset constraints: TACRED-RE and Biographical
assume a single relation triple per sentence, unlike
real-world text where multiple relations can coexist.
By focusing on RC with entity tags as guidance, we
aim to minimise the prediction of other potential
relations present in a sentence, but not between the
specified entities.

The adaptation sets we used contain a large class
imbalance due to the underlying distributions of
the datasets, even after we perform data rebalanc-
ing. While this could be viewed as a limitation, it
reflects real-world scenarios where models must
adapt with limited training data (Bassignana and
Plank, 2022a). Additionally, we evaluate replicated
SOTA systems on identical biographical subsets as
our models rather than full test sets to ensure con-
trolled comparison with our models. Finally, our
work is limited to examining cross-dataset gener-
alisation across three general-purpose datasets due
to limited relation type overlap across RE datasets.
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A Dataset Statistics: Class Distribution

Relation # of Samples

Other 10,000
birthdate 2914
bplace_name 2845
dplace_name 1138
occupation 1105
deathdate 1011
parent 394
educatedAt 339
child 136
sibling 118

Positive Samples 10,000
Negative Samples 10,000
All 20,000

Table 4: Balanced Biographical Dataset.

Relation # of Samples

no_relation 14,192
per:title 3805
per:employee_of 2104
per:age 818
per:countries_of_residence 695
per:cities_of_residence 596
per:origin 652
per:stateorprovinces_of_residence 444
per:spouse 463
per:date_of_death 343
per:children 347
per:cause_of_death 318
per:parents 282
per:charges 270
per:other_family 241
per:siblings 238
per:schools_attended 219
per:city_of_death 204
per:religion 145
per:alternate_names 132
per:city_of_birth 107
per:stateorprovince_of_death 100
per:date_of_birth 99
per:stateorprovince_of_birth 77
per:country_of_death 57
per:country_of_birth 45

Positive Samples 12,801
Negative Samples 14,192
All 26,993

Table 5: Balanced TACRED-RE Subset with Biographi-
cal Relations (26 relations).

Relation # of Samples

None 5068
/people/person/nationality 2160
/people/person/place_lived 2016
/people/person/place_of_birth 437
/people/deceased_person/place_of_death 284
/people/person/children 147
/people/person/religion 24

Positive Samples 5068
Negative Samples 5068
All 10,136

Table 6: Balanced NYT Subset with Biographical Rela-
tions after removal of instances with multiple labels (7
relations).

B Relation Type Overlap

NYT Biographical

/people/person/children child
/people/person/place_of_birth bplace_name
/people/deceased_person/place_of_death dplace_name
None Other

Table 7: NYT/Biographical Relation Overlap.

NYT TACRED-RE

None no_relation

/people/person/children per:children

/people/person/religion per:religion

/people/person/place_lived per:stateorprovinces_of_residence
per:countries_of_residence
per:cities_of_residence

/people/person/place_of_birth per:stateorprovince_of_birth
per:country_of_birth
per:city_of_birth

/people/deceased_person/place_of_death per:stateorprovince_of_death
per:country_of_death
per:city_of_death

Table 8: NYT/TACRED-RE Relation Overlap.

Biographical TACRED-RE

bplace_name
per:stateorprovince_of_birth
per:country_of_birth
per:city_of_birth

birthdate per:date_of_birth

deathdate per:date_of_death

parent per:parents

educatedAt per:schools_attended

dplace_name
per:stateorprovince_of_death
per:country_of_death
per:city_of_death

sibling per:siblings

child per:children

Other no_relation

Table 9: Biographical/TACRED-RE Relation Overlap.

Biographical TACRED-RE NYT

child per:children /people/person/children

bplace_name
per:stateorprovince_of_birth

/people/person/place_of_birthper:country_of_birth
per:city_of_birth

dplace_name
per:stateorprovince_of_death /people/deceased_person/

place_of_death
per:country_of_death
per:city_of_death

Other no_relation None

Table 10: Biographical/TACRED-RE/NYT Overlap.
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Ruggiero was awarded the Grand Cross of the Order of the Sacred 
Treasure by the government of Japan.

Other

Figure 5: Example for ‘Other’ relation from the Bio-
graphical dataset (sample ID ‘mS7/1269356’).

C Implementation Details

C.1 Data Formatting Details

TACRED-RE’s fine-grained relations (e.g.,
"per:city_of_birth" and "per:country_of_birth")
were mapped to broader categories (e.g.,
"place_of_birth") used in NYT and Biographical
datasets, as shown in Tables 8 and 9. Cross-dataset
results are reported using NYT label names
(Table 17).

C.2 Model Implementation

We fine-tuned DeBERTa-v3-large10 for 10 epochs
employing early stopping. Following prior work
using encoder-based models for RE (Baldini Soares
et al., 2019; Plum et al., 2022), we extended the
DeBERTa-v3-large tokeniser with entity marker
tokens, namely, <e1> and </e1> for the head en-
tity and <e2> and </e2> for the tail entity, and
used the concatenated final hidden states of the
entity start tokens, specifically <e1> and <e2>,
as input to the classification head. For LLaMA
3.111, we used LoRA fine-tuning (r = 8) over
three epochs, applying it to attention and feedfor-
ward modules. Both models were fine-tuned using
HuggingFace’s Trainer class. For evaluation of
LLaMA 3.1, predictions were considered correct
only if they matched ground-truth labels exactly
(Hendrycks et al., 2021).

For prompting, we used vanilla prompting (Li
et al., 2023a; Vatsal and Dubey, 2024) and tested
several RE-specific prompt designs (Leidinger
et al., 2023; Li et al., 2023a; Efeoglu and Paschke,
2024), given LLaMA’s sensitivity to prompt for-
mulation (Leidinger et al., 2023). The prompt 1
performed best and was used across all datasets
with adapted label sets. Further prompt optimisa-
tion techniques were not considered, as they were
beyond the scope of this paper. Hyperparameter
settings for all experiments are detailed in Table 21.

10https://huggingface.co/microsoft/
deberta-v3-large

11https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

system_message = {
"role": "system",
"content ": (

"You are an intelligent assistant
specializing in identifying
relations between entities in a
sentence. "

"Question: What is the relation between
two tagged entities <e1 >entity1 </e1
> and <e2 >entity2 </e2> in the
following sentence? "

"Choose one relation from the list: "
"['/ people/person/children ', '/people/

person/nationality ', '/people/
person/place_lived ',"

"'/people/person/place_of_birth ', '/
people/deceased_person/
place_of_death ', '/people/person/
religion ',"

"'None ']. "
"Rules: Select exactly one relation from

the list. If none of the listed
relations apply , select 'None '. "

"Output must strictly follow this
format: <relation_type >. Provide
no additional text or explanation
."

)
}

Listing 1: System prompt for LLaMA 3.1 8B zero-shot,
few-shot, and fine-tuning experiments, shown here with
NYT relation inventory.

Due to Biographical’s ambiguous ‘Other’ class
(Section 3), we use it only for evaluation in the
main paper (Table 2, Section 5) and add supple-
mentary cross-dataset experiments with it in the
Appendix Section E.

All experiments with DeBERTa-v3-large were
run on a single NVIDIA® TITAN RTX 24GB GPU;
all experiments with LLaMA-3.1-8B-Instruct were
run on a single NVIDIA® A100 80GB GPU. All
experiments were performed with a fixed random
seed for reproducibility.

C.3 Replication Study

For our replication of SOTA models for NYT (Or-
lando et al., 2024), TACRED-RE (Zhou and Chen,
2022), and Biographical (Plum et al., 2022), we ei-
ther used the provided trained model, implementa-
tion, or closely followed the implementation details
provided in the corresponding paper. Thus, all mod-
els were trained on full training data (i.e., train and
validation) (NYT: ∼266k, TACRED-RE: ∼107k,
Biographical: ∼346k instances), while our mod-
els used only downsampled biographical subsets
(NYT: ∼10k, TACRED-RE: ∼26k, Biographical:
∼20k instances), as reflected in Tables 4, 5, and 6.
The evaluation was performed on the biographical
test sets used in our experiments.

For NYT (Orlando et al., 2024), the retriever-
reader ReLiK Large model is accessible via Hug-
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gingFace12 ecosystem and it was used for evalua-
tion on the biographical test set. Detailed per-class
results of the model by Orlando et al. (2024) on
this test set along with results using our models
are reflected in Table 12. While Orlando et al.
(2024) reports micro F1 of 0.95 on the full test set,
ReLiK-Large achieves 0.90 micro F1 on the bio-
graphical subset, underperforming our fine-tuned
LLaMA model by 4 micro F1 points, as reflected
in Table 12.

For TACRED-RE, we replicated the SOTA
model by Zhou and Chen (2022), RoBERTa-large
with typed entity markers that uses entity-specific
hidden representations as input for the classifica-
tion head, using provided code13. Detailed per-
class results of the model by Zhou and Chen (2022)
on this test set along with results using our models
are reflected in Table 14. On the full test set of
TACRED-RE (Alt et al., 2020), Zhou and Chen
(2022) report micro F1 of 0.83, whereas it achieves
a micro F1 of 0.87 on the biographical subset trail-
ing our fine-tuned LLaMA model by 2 micro F1
points.

For Biographical, we replicated the SOTA model
Plum et al. (2022), who used BERT Base with en-
tity markers and entity-specific hidden representa-
tions for classification—the same representation
strategy we employed in our DeBERTa experi-
ments. Since neither the trained BERT Base model
nor the train-validation-test split used by Plum et al.
(2022) were made publicly available, the results
cannot be considered fully replicable. We followed
all implementation details provided by Plum et al.
(2022) to replicate their model. On the full test
set of the normal version of Biographical, as des-
ignated by the authors, Plum et al. (2022) report
macro F1 of 0.76. With our replicated model, we
achieve macro F1 of 0.87 and micro F1 of 0.93
on the downsampled test set, outperforming our
DeBERTa by 4 macro F1 points and 1 micro F1
point (Table 15). This gap is likely attributable
to training data disparity—we heavily downsam-
pled Biographical to 20K instances to match NYT
and TACRED-RE subset sizes, whereas the SOTA
approach used the full 346K instances.

12https://huggingface.co/sapienzanlp/
relik-relation-extraction-nyt-large

13https://github.com/wzhouad/RE_improved_
baseline

D Vocabulary Overlap between Datasets

Figure 6 depicts vocabulary overlap between NYT
and TACRED-RE per overlapping relation. Fig-
ure 7 depicts vocabulary overlap between Biograph-
ical and TACRED-RE as well as Biographical and
NYT per overlapping relation.

E Cross-Dataset Results with
Biographical-adapted Models

We extend our cross-dataset experiments with a
cross-dataset evaluation of models adapted on Bi-
ographical (Table 11). We compare these cross-
dataset experiments with NYT- and TACRED-RE-
adapted models evaluated on the same four over-
lapping relations between the three datasets.

As observed with other datasets, Biographical-
adapted models also exhibit performance degra-
dation in cross-dataset scenarios, with NYT and
TACRED-RE scores showing drops of 14-17 points.
Following patterns observed in Section 5, LLaMA
fine-tuned on Biographical achieves higher scores
than DeBERTa on both NYT and TACRED-RE.

Notably, Biographical-adapted LLaMA achieves
the best cross-dataset results on NYT, even out-
performing its TACRED-RE counterpart. How-
ever, closer manual analysis of errors suggests that
this stems from the Biographical dataset’s align-
ment with NYT’s annotation methodology: for ex-
ample, in “Arne Duncan, the chief executive of
Chicago public schools [...]”14, the Biographical-
adapted model predicts ‘place_of_birth’ (matching
NYT’s gold label) despite absent textual evidence,
while TACRED-RE more appropriately predicts
‘no_relation’. Thus, this finding does not necessar-
ily indicate Biographical-adapted models possess
better cross-dataset transfer capabilities than mod-
els finetuned on the other datasets.

In few-shot ICL, LLaMA with Biographical
demonstrations underperforms its TACRED-RE
counterpart on NYT by 5 points, while achiev-
ing nearly identical results on TACRED-RE as
compared to intra-dataset few-shot ICL results.
Biographical-adapted models also achieve their
best cross-dataset results on TACRED-RE via few-
shot ICL adaptation (0.68 ± 0.02), which aligns
with our hypothesis in Section 5.2 that ICL miti-
gates noisy training signals (see Section 6 for more
details on Biographical annotation noise).

14NYT instance ID: /m/vinci8/data1/riedel/projects/relation
/kb/nyt1/docstore/nyt-2005-2006.backup/1653431.xml.pb
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Model Setting Dataset Intra-Dataset Cross-Dataset
Shared Labels Dataset Labels NYT TACRED-RE Biographical

DeBERTa-v3 large 304M Fine-tuned on NYT 0.83 0.83 – 0.28 0.48
TACRED-RE 0.73 0.57 0.55 – 0.62
Biographical 0.80 0.80 0.46 0.62 –

LLaMA 3.1 8B Fine-tuned on NYT 0.82 0.82 – 0.43 0.30
TACRED-RE 0.82 0.74 0.55 – 0.69
Biographical 0.79 0.79 0.65 0.65 –

LLaMA 3.1 8B Zero-Shot NYT 0.30 0.30 – – –
TACRED-RE 0.58 0.39 – – –
Biographical 0.24 0.24 – – –

LLaMA 3.1 8B 5-Shot NYT 0.45 ± 0.04 0.45 ± 0.04 – 0.62 ± 0.06 0.48 ± 0.04
TACRED-RE 0.70 ± 0.13 0.47 ± 0.08 0.37 ± 0.03 – 0.51 ± 0.04
Biographical 0.53 ± 0.05 0.53 ± 0.05 0.32 ± 0.05 0.68 ± 0.02 –

Table 11: Macro F1-scores for intra- and cross-dataset predictions on four overlapping relations. Results show both
shared and dataset-specific labels, with models adapted on all biographical relations through fine-tuning or ICL. The
best intra- and cross-dataset results on full overlap are highlighted in bold.

F Results

F.1 Intra-Dataset Results

Model Orlando et al. (2024) DeBERTa-v3-large 304M LLaMA-3.1 8B zero-shot LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1 P R F1 P R F1

place_of_death 0.84 0.97 0.90 0.82 0.70 0.75 0.93 0.82 0.87 0.75 0.09 0.16 0.93 0.82 0.87
children 0.48 0.93 0.63 0.87 0.93 0.90 0.87 0.93 0.90 0.77 0.71 0.74 0.87 0.93 0.90
nationality 0.94 1.00 0.97 0.98 1.00 0.99 0.99 0.99 0.99 0.96 0.10 0.18 0.99 0.99 0.99
place_lived 0.84 0.98 0.90 0.85 0.93 0.89 0.84 0.95 0.89 0.36 0.58 0.44 0.84 0.95 0.89
place_of_birth 0.70 0.94 0.80 0.76 0.54 0.63 0.88 0.46 0.60 0.07 0.06 0.07 0.88 0.46 0.60
religion 1.00 1.00 1.00 1.00 0.60 0.75 1.00 1.00 1.00 0.83 1.00 0.91 1.00 1.00 1.00
None 0.98 0.81 0.89 0.97 0.96 0.97 0.97 0.97 0.97 0.62 0.76 0.68 0.97 0.97 0.97

macro avg 0.87 0.87 0.87 0.89 0.81 0.84 0.92 0.87 0.89 0.62 0.47 0.45 0.92 0.87 0.89
micro avg 0.90 0.90 0.90 0.93 0.93 0.93 0.30 0.22 0.25 0.52 0.52 0.52 0.94 0.94 0.94
weighted avg 0.90 0.90 0.90 0.93 0.93 0.93 0.94 0.94 0.94 0.63 0.52 0.47 0.94 0.94 0.94

Table 12: NYT Results. SOTA model by Orlando et al. (2024) used full NYT train/dev sets, while ours were adapted
exclusively on the subset with biographical relations.
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Model DeBERTa-v3-large 304M LLaMA-3.1 8B zero-shot LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1 P R F1

macro avg 0.67 0.64 0.64 0.49 0.38 0.34 0.37 0.30 0.29 0.76 0.71 0.73
micro avg 0.83 0.83 0.83 0.31 0.29 0.30 0.51 0.51 0.51 0.87 0.87 0.87
weighted avg 0.83 0.83 0.83 0.68 0.29 0.32 0.59 0.51 0.49 0.87 0.87 0.87

Table 13: TACRED Results.

Model Zhou and Chen (2022) DeBERTa-v3-large 304M LLaMA-3.1 8B zero-shot LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1 P R F1 P R F1

no_relation 0.90 0.95 0.92 0.97 0.80 0.88 0.81 0.01 0.02 0.80 0.61 0.69 0.97 0.87 0.92
per:age 0.96 0.96 0.96 0.92 0.99 0.96 0.97 0.32 0.48 0.93 0.65 0.77 0.95 1.00 0.97
per:cause_of_death 0.92 0.86 0.89 0.77 0.71 0.74 0.46 0.26 0.33 0.53 0.24 0.33 0.65 0.95 0.77
per:charges 0.98 0.88 0.92 0.82 0.97 0.89 0.76 0.30 0.43 0.67 0.43 0.52 0.87 0.99 0.93
per:children 0.93 0.68 0.78 0.65 0.81 0.72 0.23 0.14 0.17 0.19 0.38 0.25 0.96 0.73 0.83
per:cities_of_residence 0.76 0.87 0.81 0.49 0.96 0.65 0.38 0.55 0.45 0.51 0.34 0.41 0.61 0.92 0.73
per:city_of_birth 1.00 0.50 0.67 0.75 0.50 0.60 0.50 0.67 0.57 0.43 0.50 0.46 1.00 0.50 0.67
per:city_of_death 0.60 0.38 0.46 0.64 0.44 0.52 0.33 0.31 0.32 0.28 0.56 0.38 0.43 0.56 0.49
per:countries_of_residence 0.70 0.53 0.61 0.47 0.82 0.60 0.33 0.45 0.38 0.34 0.31 0.32 0.59 0.91 0.71
per:country_of_death 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.56 0.53 0.50 0.44 0.47
per:date_of_birth 1.00 1.00 1.00 0.78 1.00 0.88 0.26 0.86 0.40 0.71 0.71 0.71 0.86 0.86 0.86
per:date_of_death 0.94 0.73 0.82 0.65 0.88 0.74 0.53 0.42 0.47 0.62 0.12 0.21 0.74 0.93 0.82
per:employee_of 0.93 0.81 0.87 0.79 0.88 0.83 0.10 0.97 0.19 0.17 0.73 0.27 0.86 0.89 0.88
per:origin 0.85 0.81 0.83 0.71 0.84 0.77 0.65 0.12 0.21 0.45 0.13 0.20 0.82 0.79 0.80
per:other_family 0.92 0.97 0.95 0.53 0.89 0.67 0.00 0.00 0.00 0.11 0.59 0.19 0.61 0.97 0.75

macro avg 0.84 0.74 0.78 0.67 0.78 0.71 0.43 0.30 0.25 0.53 0.44 0.41 0.77 0.83 0.78
micro avg 0.90 0.83 0.87 0.85 0.85 0.85 0.20 0.14 0.17 0.53 0.51 0.52 0.89 0.89 0.89
weighted avg 0.90 0.90 0.90 0.88 0.85 0.85 0.70 0.14 0.11 0.72 0.51 0.54 0.91 0.89 0.89

Table 14: TACRED-RE Results. SOTA model by Zhou and Chen (2022) used full TACRED-RE train/dev sets,
while ours were adapted exclusively on the subset with biographical relations.

Model Plum et al. (2022) DeBERTa-v3-large 304M LLaMA-3.1 8B zero-shot LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1 P R F1 P R F1

Other 0.95 0.94 0.95 0.95 0.93 0.94 0.78 0.29 0.42 0.94 0.54 0.69 0.92 0.93 0.93
birthdate 1.00 1.00 1.00 1.00 1.00 1.00 0.53 0.91 0.67 0.83 0.91 0.87 1.00 1.00 1.00
bplace_name 0.83 0.92 0.87 0.86 0.87 0.87 0.82 0.08 0.14 0.69 0.82 0.75 0.87 0.85 0.86
child 0.67 0.67 0.67 0.38 0.56 0.45 0.02 0.56 0.05 0.00 0.00 0.00 0.57 0.44 0.50
deathdate 1.00 0.98 0.99 1.00 0.95 0.98 0.73 0.82 0.77 0.65 0.85 0.74 0.96 0.99 0.98
dplace_name 0.76 0.67 0.71 0.60 0.72 0.66 0.39 0.25 0.31 0.50 0.55 0.52 0.56 0.81 0.66
educatedAt 0.86 0.97 0.91 0.84 0.84 0.84 0.06 1.00 0.12 0.19 1.00 0.32 0.00 0.00 0.00
occupation 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.41 0.55 0.77 0.94 0.85 1.00 0.98 0.99
parent 0.83 0.77 0.80 0.77 0.82 0.79 0.38 0.59 0.46 0.26 0.84 0.39 1.00 0.68 0.81
sibling 0.85 0.73 0.79 0.83 0.67 0.74 0.10 0.13 0.11 0.42 0.33 0.37 1.00 0.67 0.80

macro avg 0.87 0.86 0.87 0.82 0.84 0.83 0.46 0.50 0.36 0.53 0.68 0.55 0.79 0.74 0.75
micro avg 0.93 0.93 0.93 0.92 0.92 0.92 0.41 0.40 0.41 0.69 0.69 0.69 0.91 0.91 0.91
weighted avg 0.93 0.93 0.93 0.92 0.92 0.92 0.70 0.40 0.43 0.80 0.69 0.71 0.90 0.91 0.90

Table 15: Biographical Results. The model by Plum et al. (2022) used full Biographical train/dev sets, while ours
were adapted on its downsampled subset matching NYT and TACRED-RE biographical subset sizes.
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F.2 Cross-Dataset Results with Models Fine-tuned on Overlap

Model Setting Dataset Intra-Dataset Cross-Dataset
Shared Labels Dataset Labels NYT TACRED-RE

DeBERTa-v3-large 304M Fine-tuned on NYT 0.79 0.79 – 0.27
TACRED-RE 0.73 0.64 0.49 –

LLaMA 3.1 8B Fine-tuned on NYT 0.83 0.83 – 0.45
TACRED-RE 0.79 0.76 0.58 –

Shot Setting
LLaMA 3.1 8B Zero-Shot NYT 0.35 0.35 – –

TACRED-RE 0.64 0.54 – –
LLaMA 3.1 8B 5-Shot NYT 0.46 ± 0.04 0.46 ± 0.04 - 0.50 ± 0.06

TACRED-RE 0.59 ± 0.03 0.45 ± 0.05 0.44 ± 0.04 -

Table 16: Macro F1-scores for intra- and cross-dataset predictions for six overlapping relations. Results are reported
for shared and dataset-specific labels in both fine-tuned and shot settings; only the six overlapping relations are used
for adaptation.

F.3 Cross-Dataset Per-Class Results

Model DeBERTa-v3-large 304M LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1

/people/deceased_person/place_of_death 0.75 0.36 0.49 0.54 ± 0.07 0.39 ± 0.11 0.45 ± 0.08 0.71 0.45 0.56
/people/person/children 0.75 0.64 0.69 0.47 ± 0.05 0.29 ± 0.10 0.34 ± 0.08 0.69 0.64 0.67
/people/person/place_lived 0.62 0.90 0.73 0.27 ± 0.06 0.22 ± 0.15 0.23 ± 0.11 0.63 0.86 0.73
/people/person/place_of_birth 0.20 0.04 0.07 0.12 ± 0.05 0.07 ± 0.04 0.09 ± 0.04 0.17 0.02 0.04
/people/person/religion 1.00 0.20 0.33 0.64 ± 0.03 0.72 ± 0.23 0.66 ± 0.11 1.00 0.80 0.89
None 0.94 0.78 0.85 0.84 ± 0.03 0.46 ± 0.07 0.59 ± 0.06 0.90 0.82 0.86

macro avg 0.71 0.49 0.53 0.48 ± 0.03 0.36 ± 0.04 0.39 ± 0.02 0.68 0.60 0.62
micro avg 0.79 0.74 0.77 0.59 ± 0.07 0.37 ± 0.03 0.45 ± 0.04 0.79 0.76 0.78
weighted avg 0.80 0.74 0.75 0.62 ± 0.04 0.37 ± 0.03 0.45 ± 0.03 0.78 0.76 0.76

Table 17: Adapted on TACRED-RE with all biographical relations present in TACRED-RE. Evaluations on NYT.
The labels, although borrowed from NYT dataset, reflect the shared labels between NYT and TACRED-RE. More
fine-grained TACRED-RE were mapped to broader shared labels to enable cross-dataset evaluation comparison.
The best results on full overlap are highlighted in bold.

Model DeBERTa-v3-large 304M LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1

/people/deceased_person/place_of_death 0.27 0.17 0.21 0.66 ± 0.11 0.33 ± 0.20 0.40 ± 0.17 0.62 0.23 0.33
/people/person/children 0.40 0.05 0.10 0.49 ± 0.15 0.48 ± 0.20 0.47 ± 0.17 1.00 0.14 0.24
/people/person/place_lived 0.56 0.25 0.34 0.65 ± 0.09 0.38 ± 0.06 0.48 ± 0.05 0.71 0.31 0.43
/people/person/place_of_birth 0.00 0.00 0.00 0.18 ± 0.10 0.88 ± 0.26 0.28 ± 0.11 0.38 0.25 0.30
/people/person/religion 1.00 0.03 0.05 0.86 ± 0.04 0.64 ± 0.17 0.72 ± 0.11 0.94 0.40 0.56
None 0.80 0.91 0.85 0.85 ± 0.04 0.78 ± 0.12 0.81 ± 0.05 0.79 0.95 0.86

macro avg 0.51 0.23 0.26 0.62 ± 0.05 0.58 ± 0.06 0.52 ± 0.06 0.74 0.38 0.45
micro avg 0.73 0.69 0.71 0.75 ± 0.04 0.66 ± 0.09 0.70 ± 0.06 0.74 0.74 0.74
weighted avg 0.72 0.69 0.67 0.79 ± 0.01 0.66 ± 0.09 0.71 ± 0.05 0.77 0.74 0.72

Table 18: Adapted on NYT with all biographical relations present in NYT. Evaluations on TACRED-RE. The labels,
although borrowed from NYT dataset, reflect the shared labels between NYT and TACRED-RE. More fine-grained
TACRED-RE were mapped to broader shared labels to enable cross-dataset evaluation comparison. The best results
on full overlap are highlighted in bold.

Model DeBERTa-v3-large 304M LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1

None 0.93 0.64 0.75 0.87 ± 0.10 0.49 ± 0.09 0.62 ± 0.04 0.90 0.68 0.78
/people/person/place_of_birth 0.89 0.73 0.80 0.84 ± 0.02 0.70 ± 0.08 0.76 ± 0.05 0.90 0.75 0.82
/people/person/children 0.44 0.44 0.44 0.14 ± 0.14 0.13 ± 0.14 0.14 ± 0.14 0.71 0.56 0.63
/people/deceased_person/place_of_death 0.95 0.33 0.49 0.87 ± 0.05 0.36 ± 0.05 0.51 ± 0.05 0.95 0.38 0.54

macro avg 0.80 0.54 0.62 0.68 ± 0.06 0.42 ± 0.04 0.51 ± 0.04 0.87 0.59 0.69
micro avg 0.91 0.63 0.74 0.84 ± 0.05 0.55 ± 0.01 0.66 ± 0.01 0.90 0.67 0.77
weighted avg 0.91 0.63 0.74 0.85 ± 0.06 0.55 ± 0.01 0.65 ± 0.01 0.90 0.67 0.76

Table 19: Adapted on TACRED-RE with all biographical relations present in TACRED-RE. Evaluations on
Biographical with four biographical relations (full overlap between three datasets). The labels, although borrowed
from NYT dataset, reflect the shared labels between NYT, TACRED-RE, and Biographical. The best results on full
overlap are highlighted in bold.
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Model DeBERTa-v3-large 304M LLaMA-3.1 8B 5-shot LLaMA-3.1 8B fine-tuned

P R F1 P R F1 P R F1

/people/person/place_of_birth 0.75 0.28 0.41 0.82 ± 0.02 0.71 ± 0.14 0.75 ± 0.09 0.92 0.14 0.25
/people/person/children 0.80 0.44 0.57 0.19 ± 0.06 0.51 ± 0.06 0.27 ± 0.07 0.00 0.00 0.00
/people/deceased_person/place_of_death 0.72 0.12 0.21 0.76 ± 0.09 0.11 ± 0.08 0.19 ± 0.12 0.74 0.13 0.22
None 0.63 0.89 0.73 0.85 ± 0.09 0.62 ± 0.09 0.71 ± 0.06 0.57 0.96 0.72

macro avg 0.73 0.43 0.48 0.65 ± 0.02 0.49 ± 0.04 0.48 ± 0.04 0.56 0.31 0.30
micro avg 0.65 0.57 0.60 0.59 ± 0.05 0.59 ± 0.05 0.59 ± 0.05 0.55 0.55 0.55
weighted avg 0.69 0.57 0.55 0.82 ± 0.04 0.59 ± 0.05 0.66 ± 0.04 0.71 0.55 0.48

Table 20: Adapted on NYT with all biographical relations present in NYT. Evaluations on Biographical with
four biographical relations (full overlap between three datasets). The labels, although borrowed from the NYT
dataset, reflect the shared labels between NYT, TACRED-RE, and Biographical. The best results on full overlap are
highlighted in bold.

Setting Parameter DeBERTa-v3-
large Fine-tuned

LLaMA 3.1 8B
Zero-Shot

LLaMA 3.1 8B
Five-Shot

LLaMA 3.1 8B
Fine-tuned

Common

# of Epochs 10 – – 3
seed 42 42 42 42
Loss Cross-Entropy Loss – – Cross-Entropy Loss
Optimiser AdamW – – AdamW
Batch Size 8 – – 4
Gradient Accumulation 4 – – –
Early Stopping Patience 2 – – 2
Temperature – 0.1 0.1 –
Nucleus Sampling – 0.9 0.9 –
Lora Settings† – – – 8/32/0.1
Train-dev-test split 70-20-10 – – 70-20-10

TACRED-RE
Learning Rate 5 × 10−6 /

5 × 10−5 – – 5 × 10−5

Max Length – – – 800/384
Max New Tokens – 40 256 –
Cross-Validation –/5-fold – – –

NYT
Learning Rate 5 × 10−6 – – 1 × 10−4

Max Length – – – 384
Max New Tokens – 256 256 –
Cross-Validation –/5-fold – – –

Biographical
Learning Rate 5 × 10−6 – – 1 × 10−4

Max Length – – – 384
Max New Tokens – 40 256 –

Table 21: Hyperparameter settings across datasets. Two values (x/y) indicate All/Overlap relation experiment
settings respectively (if these differ), where All indicates experiments with the whole set of biographical relations in
each dataset and Overlap uses only the intersection. Biographical experiments are performed only with the whole
set of biographical relations. †Lora Settings: Rank/Alpha/Dropout.

TACRED-RE NYT Biographical

POS Head Entity Tail Entity Head Entity Tail Entity Head Entity Tail Entity

PROPN 77.4 55.6 98.4 98.8 87.7 60.5
PRON 16.8 6.2 – – 0.1 0.2
NOUN 2.4 16.8 0.2 0.4 1.7 5.4
ADJ 1.2 4.5 0.2 – 0.7 0.9
ADP 0.7 1.6 0.2 0.3 0.3 1.1
NUM 0.0 8.5 – – 6.4 25.5
DET 0.3 1.0 0.2 0.1 0.8 2.3
VERB 0.4 0.7 – – 0.1 0.1

Table 22: (Top 8) POS Distribution Across TACRED-RE, NYT, and Biographical Test Sets with all Biographical
Relations (%). POS tags are obtained with spaCy’s transformer-based en_core_web_trf model.
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G Misclassification Analysis

Issue Description Representative Example Misclassifications
on

Models Affected

Overpredicting
‘None’

Overpredicting
‘None’ and strug-
gling with even
clear relations with
cues like ‘born’
or‘died’

“My name is
<e1>Ruben</e1> and I
am from <e2>Holland</e2>”
(GT: place_lived, Pred: None;
TACRED-RE sample ID:
‘098f6f318bc468878bbb’)

TACRED-RE and
Biographical

NYT- and
Biographical-
adapted models

Failure to Cap-
ture Implicit Re-
lations

Models struggling
to detect implicit
relations requiring
reasoning

“<e1>Gross</e1> [...] was
sent to <e2>Cuba</e2> as a
spy” (GT: place_lived, Pred:
None; TACRED-RE sample
ID: ‘098f6f318be29eddb182’)

TACRED-RE NYT-and
Biographical-
adapted models

Expected world
knowledge

For NYT and Bio-
graphical this issue
is also frequently
paired with detat-
able ground truth la-
bels

“<e1>Augustus</e1> also
amassed an impressive art
collection and built lavish
baroque palaces in Dresden
and <e2>Warsaw</e2>” (GT:
dplace_name, Pred: None;
Biographical sample ID:
‘mS2/247724’)

NYT, TACRED-
RE, Biographical

models adapted
on all 3 datasets
affected

Relation Present
in Sentence but
Not Between
Specified Entities

This issue raises
concerns about the
framing of the RE
task itself

“Jan Malte, [...] resident of
<e1>Bridgehampton</e1>,
died [...] in <e2>San Fran-
cisco</e2>” (GT: None,
Pred: place_of_death;
NYT article ID:
‘/m/vinci8/data1/riedel/projects
/relation/kb/nyt1/docstore/nyt-
2005-2006.backup
/1777142.xml.pb’)

NYT, TACRED-
RE, Biographical

models adapted
on all 3 datasets
affected

Debatable ground
truth (GT) labels

Caused by distantly
or semi-supervised
manner in which
NYT and Biograph-
ical were created

“<e1>Ida Freund</e1> was
born in <e2>Austria</e2>”
(GT: Other, Pred:
place_of_birth; Biographical
sample ID: ‘mS10/37387826’)

TACRED-RE, Bi-
ographical

NYT- and
Biographical-
adapted models

Single-Label An-
notation Limita-
tion

Sentences labeled
with a single re-
lation may contain
additional relations
that remain unla-
beled

“<e1>Gross</e1>, who is
himself Jewish [...] was sent
to <e2>Cuba</e2>” (GT:
place_lived, Pred: None;
TACRED-RE sample ID:
‘098f6f318b69f98c850c’)

NYT, TACRED-
RE, Biographical

models adapted
on all 3 datasets
affected

Relation missing
in annotation
schema

Lack of granularity
needed to fully cap-
ture an individual’s
biography

“Wen was detained in August
and accused of protecting the
gang operations masterminded
by his sister-in-law, <e1>Xie
Caiping</e1>, 46, known
as the “godmother” of the
<e2>Chinese</e2> under-
world (GT: place_lived,
Pred: nationality;
TACRED-RE sample ID:
‘098f637935e6e6d1d093’)

NYT, TACRED-
RE, Biographical

—

Failure to Cap-
ture Relations in
Long, Compound
Sentences

Models struggling
with long-term rela-
tional dependencies

“Ecoffey told jurors that he
and another federal agent met
with <e1>Graham</e1> in
April 1994 in Yellowknife,
the city in northwest
<e2>Canada</e2> where
Graham lived at the time”
(GT: place_lived, Pred: None;
TACRED-RE sample ID:
‘098f6f318b3ea9531448’)

TACRED-RE NYT-adapted
models

Table 23: Common Misclassification Patterns Across TACRED-RE, NYT, and Biographical.
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Relation NYT TACRED-RE Biographical
None year, york, united, mr,

like, states, president,
company, work, city

year, national, president,
group, include, state,
percent, million, amer-
ican, china

release, contract, an-
nounce, song, star,
award, series, role, sign,
championship

children father, son, higgins,
clark, favre, richard,
mary, daughter, carol,
daley

son, daughter, grand-
child, survive, wife,
year, child, include,
gude, jr

daughter, son, child, li,
father, mother, wife,
give, marry, actor

religion islam, muhammad,
prophet, religion, con-
vert, leader, school, al,
church, close

jewish, al, islam, shiite,
christian, group, mus-
lim, sunni, mohammed,
tantawi

–

place_lived senator, republican,
state, year, representa-
tive, gov, democrat, city,
john, mr

year, state, die, home,
york, city, president,
live, iran, old

–

place_of_birth city, year, orleans,
chicago, bear, bill,
attorney, general, mr,
california

bear, grow, family, child,
york, year, native, july,
old, son

bear, raise, née, grow,
family, youth, york, cal-
ifornia, city, mother

place_of_death die, year, home, city,
london, los, angeles, mr,
yesterday, paris

die, home, hospital, can-
cer, paris, wednesday,
sunday, find, early, dead

die, home, paris, age,
california, near, october,
london, live, move

Table 24: Top 10 tokens per overlapping relation in NYT, TACRED-RE, and Biographical datasets, following
lemmatisation and stop word removal using spaCy’s transformer-based en_core_web_trf model.
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