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Abstract

Large language models (LLMs) are increas-
ingly applied in domains that demand reli-
able and interpretable reasoning. While for-
mal methods can generate provably correct
proofs, these proofs are often inaccessible to
non-expert users. This raises a natural ques-
tion: can LLMs, when given a verified proof,
faithfully interpret its reasoning and communi-
cate it clearly? We introduce ProofTeller,
a benchmark that evaluates this ability across
three tasks: (1) identifying key proof steps,
(2) summarizing the reasoning, and (3) ex-
plaining the result in concise natural language.
The benchmark covers three domains: Biology,
Drones, and Recipes, representing scientific,
safety-critical, and everyday reasoning scenar-
i0s. We find a consistent near-conclusion bias:
LLMs tend to focus on steps closest to the final
proof conclusion rather than on the most infor-
mative ones. A targeted human study confirms
that explanations based on such steps are rated
less appropriate for end users. These findings
indicate that even when reasoning is provided,
current LLMs face challenges in communicat-
ing key information in a useful manner, high-
lighting the need for LLMs that can communi-
cate important details reliably.

1 Introduction

Large language models (LLMs) are increasingly
being considered for use in domains where deci-
sions have real consequences, from medical ap-
plications (Bang et al., 2025) and autonomous
vehicles (Cui et al., 2024) to network infrastruc-
ture (Manocchio et al., 2024). In such settings, reli-
ability and consistency are essential. Although in-
context learning (Brown et al., 2020) enables LLMs
to adapt flexibly to new tasks, and methods such
as retrieval-augmented generation (RAG) (Lewis
et al., 2020) have extended their scope, their out-
puts remain unpredictable (Abbasi Yadkori et al.,
2024). Small changes in phrasing or ordering can

lead to inconsistent answers (Sclar et al., 2024,
Elazar et al., 2021), and explanations often appear
plausible yet fail to reflect the reasoning behind the
prediction (Turpin et al., 2023).

Recent “thinking” LLMs, including DeepSeek-
R1 (Guo et al., 2025), Qwen3 (Yang et al., 2025a),
and Gemini-2.5 (Comanici et al., 2025), have
demonstrated more structured reasoning traces, but
they still do not implement explicit algorithms and
often produce ill-founded or inconsistent justifica-
tions (Shojaee et al., 2025). Such behaviour lim-
its their applicability in domains where reasoning
steps must be verifiable and interpretable.

A natural way to enforce reliability is to draw
on formal methods, which provide symbolic proofs
with guaranteed correctness. If an LLM is supplied
with such a proof as input, the reasoning path is
already complete and verifiable; the LLM’s task is
to interpret the proof, identify its essential steps,
and communicate them clearly. This setting iso-
lates the linguistic and communicative aspects of
reasoning from the purely deductive ones, allowing
us to study whether LLMs can serve as effective
interfaces between formal reasoning systems and
human users (Kassner et al., 2021). However, as
Turpin et al. (2023) observes, faithfulness in current
LLMs is easily influenced by superficial cues in
the input, and the proofs themselves do not always
encode every relevant detail of a scenario (Mondorf
and Plank, 2024). When LLMs attempt to fill these
gaps with background knowledge (Sun et al., 2025;
Xie et al., 2024), they may produce inconsistent or
misleading explanations.

These observations lead to a concrete question:

Can LLMs reliably interpret a formal
proof, identify the key reasoning steps,
and restate them faithfully and intelligi-
bly for a non-expert?

In principle, this capability should be achievable.
Proofs contain explicit reasoning steps, leaving lit-
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Drone Rotor Damage and Imbalance
"finalConclusion": "warninglvl(d,5)@[e,0]",
"conclusion": "warninglvl(d,5)@[e,0]",

"ruleName": "inclusion",
"premises": ["warninglvl(d,5)e[-2,08]"],

"conclusion”:

"riskofphysicaldamage(d)@[-2,01"]
"conclusio

"ruleName"

"warninglvl(d,5)e[-2,0]",
warninglvl(X,5):-warning(X)",
"premises": ["warning(d)e[-2,8]"],

“drone(d)@[-300, +inf)",
“conclusion": "warning(d)e[-2,8]",
warning(X) : -warningofdronedamage(X)",

"premises": ["warningofdronedamage(d)e[-2,0]"],

"ruleName" :

(human & gpt-4.1-mini)

"conclusion": "warningofdronedamage(d)@[-2,0]",

"ruleName": "warningofdronedamage(Y):-rotordamage(Y,X),
riskofphysicaldamage(Y)",

"premises": ["rotordamage(d,p1)@[-2,+inf)",

"riskofphysicaldamage(d)e[-2,8]"], "premises": ["warning(d)@[-2,0]"]

"conclusion”: "rotordamage(d,p1)@[-2,+inf)", (gpt-4o-mini & others)
"ruleName": "rotordamage(Y,X):-haspart(Y,X), drone(Y),

damage(X), rotor(X)", « non-informative steps
"premises": ["haspart(d,p1)e[-300,+inf)",

"drone(d)6[-300, +inf)", ...] « missing key steps

Find steps with
key contributions

"warningofdronedamage(d)@[-2,01",
“"premises": ["rotordamage(d,p1)@[-2,+inf)",

“"conclusion": "rotordamage(d,p1)@[-2,+inf)",
"premises”: ["haspart(d,p1)@[-300, +inf)",

"damage(p1)@[-2,+inf)", "rotor(p1)@[-300, +inf)"]

“conclusion": "warninglvl(d,5)@0,01",
“premises": ["warninglvi(d,5)@[-2,0]"]

"conclusion": "warninglvi(d,5)@[-2,01",

Summarize the
proof

Short message for
the target user

The proof concludes that the drone 'd' has a
warning level 5 at time 0. This conclusion was
reached by first establishing that there is a
warning of drone damage due to rotor damage
combined with a risk of ... The risk of physical
damage was deduced by identifying an
imbalance in the drone, linked to a low balance
score, confirming a hazardous physical

condition.
(human* & gpt-4.1-mini) ﬁ‘

The final conclusion 'warninglvi(d,5)@[0,0]' is
derived by first including 'warninglvi(d,5)@[-2,01'
(Rule: inclusion).... (Rule: warninglvi(X,5):-
warning(X)). Finally, 'warning(d)@[-2,01' is
obtained from ‘warningofdronedamage(d) @[-2,01'
(Rule: warning(X):-warningofdronedamage(X)).

Warning! Propeller p1 has
detached and drone d is
unbalanced!

(human) ﬁ

The drone 'd' was flagged as
warning of drone damage due to
‘warningofdronedamage(d)',
which triggered a warning level 5
due to 'warning(d)"

(smolim3-3b) ’

« too long (>20 words)

« includes formal language

« notinformative: no mention of
cause of warning

(smollm3-3b)

« includes formal language
« missing key information

Figure 1: An example datapoint showcasing limitations of LLMs on our benchmark tasks.

tle ambiguity about logical structure, while LLMs
are designed to handle natural language fluently.
Combining the two should play to each compo-
nent’s strengths: the proof provides correctness,
and the LLM focuses on communication. An LLM
does not need to invent new reasoning but only to
verbalize what is already entailed, using domain
knowledge when necessary to make the explana-
tion meaningful. Whether current LLMs can meet
this expectation is an open empirical question.

To investigate this question, we introduce
ProofTeller, a benchmark that evaluates how
well LLMs interpret and communicate verified
proofs. We use symbolic proofs generated by an
automated reasoner and ask LL.Ms to:

1. Highlight the key steps leading to the proof’s
conclusion,

2. Summarize the overall reasoning faithfully

3. Explain the result in concise natural language
to a specific user group.

We instantiate these tasks in three domains: Bi-
ology, Drones, and Recipes, which together span
scientific, safety-critical, and everyday reasoning
scenarios. This diversity enables us to analyse both
the accuracy of the interpretations and the suitabil-
ity of the resulting explanations.

Our evaluation of nine LLMs (seven open-
weight and two proprietary) shows a consistent pat-
tern: LLMs tend to focus on steps located near the
final conclusion of the proof, whereas human anno-
tators select informative steps distributed across the
reasoning chain. This “near-conclusion bias” leads

to explanations that are formally correct but less
appropriate for end users. A targeted human study
confirms this effect, showing that messages based
on such steps are rated as less helpful, particularly
in the Drone domain. These results suggest that
even when the reasoning is provided, current LLMs
face challenges in communicating it faithfully and
pragmatically.

ProofTeller thus offers a controlled setting
for examining these limitations and for guiding
the development of LLMs that can communicate
formal reasoning in a reliable and user-friendly
manner. We also release our benchmark dataset
along with the inferences from all models'.

2 Related Work

Symbolic text understanding Many recent
works evaluate the symbolic reasoning abilities
of LLMs. For example, Shalyt et al. (2025) tests
LLMSs’ abilities for mathematical problem-solving
using symbolic perturbations, Kulkarni et al. (2025)
makes use of SQL for robust tabular reasoning, and
Vo et al. (2025) evaluates LLMs for an abstract
causal discovery task from natural language text.
Our benchmark focuses on evaluating LLMs’ abil-
ity to explain formal proofs.

Data-To-Text generation Our work also shares
similarity with data-to-text (D2T) generation since
we also generate natural language text from struc-
tured data (i.e., JSON proofs). In the D2T literature,
the ToTTo (Parikh et al., 2020) benchmark assesses

'https://github.com/mayankjobanputra/
ProofTeller
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the faithful generation of text from tables. An-
other such benchmark is DART (Nan et al., 2021),
which focuses on generating text from complex
RDF triples. Our work introduces a different struc-
tured input (i.e., logic proofs), which requires mod-
els to understand logical operators and inferences
to create a summary and a user-targeted message.

Explaining logical proofs Colombo et al. (2025)
generate explanations for Datalog proofs in finance
using a template pipeline: a fixed set of templates
determines which proof steps appear, and an LLM
fills the templates. In contrast, we do not preselect
steps. ProofTeller evaluates whether an LLM
can identify key steps from the full proof, summa-
rize the reasoning, and generate a concise message
for the target user, across multiple domains and
description logic formalisms.

3 Benchmark Creation

We start by generating different types of logic
proofs. Our proof data come from three distinct do-
mains — Biology, Recipe, and Drone — the latter is
a concise label for “Critical Situations in Drones”.
We selected these domains for two primary reasons.
First, the domains are accessible for annotation,
being sufficiently close to common knowledge for
people to engage with, yet complex enough to be
intellectually meaningful. Second, each domain
has a recognized real-world ontology, ensuring the
logical proofs and their annotations are relevant to
their respective fields. For this benchmark, we ex-
plore real-world scenarios and user groups that are
different for each domain. For each target domain,
we randomly sample 50 proofs for annotation. In
this section, we describe our benchmark creation
process step by step.

3.1 Generating Logical Proofs

Our benchmark relies on verified proofs derived
from well-established logical formalisms that en-
able automated reasoning. For the Biology and
Recipe domains, we use the description logics
(DLs) £L and ALC (Baader et al., 2017), which
are decidable fragments of first-order logic widely
used for ontological reasoning. They support con-
structors such as conjunction, existential restriction,
and (for ALC) negation and disjunction, allowing
the representation of hierarchical and relational
knowledge. For the Drone domain, we use Data-
logMTL (Brandt et al., 2018), an extension of Dat-
alog with metric temporal operators for modeling

"conclusion :
"ruleName" :
"premises" :

"drone (d)@[-300,+c0) ",
"reverse H",
["E[0,+0c0)drone (d)@[-300,-300]"],

Figure 2: Additional inference step for the proof frag-
ment in Figure 1.

temporal dependencies and event sequences. These
formalisms provide a balance between expressive
power and computational tractability, making them
suitable for large-scale, verifiable reasoning.
Proofs are automatically generated using exist-
ing reasoners: ELK (Kazakov et al., 2014; Kaza-
kov and Klinov, 2014) for ££, LETHE (Koopmann,
2020; Alrabbaa et al., 2020) for ALC, and Me-
TeoR (Wang et al., 2022) for DatalogMTL, with
EVEE (Alrabbaa et al., 2022a) used to extract size-
minimal proofs. The formal definitions of the log-
ics and full example proofs for each domain are
provided in Appendix A and B, respectively.

3.2 Proofs, Target User Group and Scenarios

Table 1 provides quantitative information about
the domains and the extracted proofs. Although
Drones are formally specified in DatalogMTL
rather than DL, we adopt DL terminology through-
out this work for consistency. The proof size is the
number of conclusions, see Figure 1 (left).

Biology. Our first domain is based on the Cell
Line Ontology,” a community-driven ontology de-
veloped to standardize and integrate cell line infor-
mation and support computer-assisted reasoning.
Scenario: a 10th-grade student learning about the
characteristics of various cells.

Recipe. We created a food and recipe ontology
a formal semantic model to represent and reason
about culinary recipes, dietary restrictions, and al-
lergen content. This ontology builds upon estab-
lished recipe and food ontologies (Qi et al., 2018;
Dooley et al., 2018).

Scenario: a 6th-grade student learning about food
allergens and and dietary classifications (vegan,
vegetarian, non-vegetarian).

Drone. The drone ontology models complex situa-
tions occurring during a drone flight.

Scenario: a drone pilot monitoring an autonomous
drone, needing help identifying (potential) critical
situations.

“https://obofoundry.org/ontology/clo.
html
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Ontology Proofs
Domain #Predicates (Arity) #Axioms #Proofs (DL) Proof Size
Biology 43,327 (unary), 249 (binary) 72,830 2,429 (EL) 4-100
Recipe 35,369 (unary), 195 (binary) 52,248 74 (EL), 12 (ALC) 4-100
Drone 201 (of maximal arity 4) 332 50 (DatalogMTL) 9-59

Table 1: Metrics of Ontologies and Logical Proofs. £L is a lightweight Description Logic and ALC is a more
complex Description Logic. More details on these description logics are available in Appendix A.

The ontology uses metric temporal operators
as well as numerical predicates. The associated
proofs incorporate different urgency levels to
prioritize critical situations. Figure 1 (left) together
with Figure 2 provide a proof fragment for the
drone domain. The proof begins with the final
conclusion warninglvl(d,5)@[0,0] and traces
its supporting reasons backwards until reaching
asserted statements. We use the convention that
capital letters (e.g., X, Y) represent variables,
and lowercase letters (e.g., d, pl) represent
constants.  The notation warning(d)Q[-2,0]
indicates that object d is in a warning state
during the time interval [-2,0], i.e., in the pre-
vious two seconds. If prefixed with a temporal
operator, e.g. H[0, +00)drone(d)@[-300,-300],
it means the complex expression holds for a
time interval. In this example, the fact that
d is a drone holds from time —300 onwards.
Rules here must be read from right to left, e.g.
rotordamage(Y,X) :— haspart(Y,X),drone(Y),
damage(X), rotor(X) means that upon detection
of damage to any rotor(X) of drone(Y), the
system shall trigger a rotordamage(Y, X) event.

3.3 Task Annotation

To annotate these proofs for all three tasks (high-
light, summarize, explain), we recruited two
graduate-level students. We divide the task-specific
annotation into two phases: Pilot and Main. In
the pilot phase, we gave each human annotator
10 proofs per domain and asked them to anno-
tate the generated proofs for the following tasks:
(i) identify the key contributing steps to the con-
clusion from the proof (maximum up to 3 steps),
(i) summarize proofs, and (iii) generate a short
user-targeted message.

At the end of the pilot phase, we asked our ex-
pert annotator to review the pilot annotations from
both our annotators and share detailed feedback
on their annotations. We then asked our student

annotators to incorporate the feedback. This feed-
back particularly helped align the most contributing
steps between the student annotators. Finally, we
divided the remaining 120 proofs equally among
them for individual annotations. Throughout the
annotation process, the student annotators were
prohibited from using any Al tools for annotation
purposes. By the end of this annotation process,
we collected over 68,000 human-annotated tokens>
across domains and tasks. We provide detailed
annotation statistics in Table 2.

We provide the final version of our annotation
guidelines in the Appendix I. We plan to release our
full benchmark dataset and code with the camera-
ready version of this work.

4 Experiments

We evaluate LLM performance on three explana-
tion tasks given a verified proof as input. Because
the tasks are connected, we run each condition
both without and with the outputs of earlier tasks
included in the context.

4.1 Prompting strategy

We vary two factors: the number of examples in
context (zero shot or one shot) and the interaction
structure (atomic single turn or chained multi turn).
In chained settings we use the sequence highlight
key steps, then summarise the proof, then generate
the user message. The key steps task is always first
and uses no example, so its outputs are identical
across strategies. We restrict chained settings to
one shot to control context length. All prompt
templates are given verbatim in Appendix C.

4.2 LLM coverage

We evaluate nine LLMs: GPT 4.1 mini, GPT 40
mini (Achiam et al., 2023), SmolLM3 3B (Bak-
ouch et al., 2025), Llama 3.1 8B, Llama 3.3

3We use GPT-4.1-mini tokenizer to count the number of
tokens throughout our work.
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Domain Steps Steps Summary Summary Target User Msg Target User Msg
(in tokens) (in words) (in tokens) (in words) (in tokens) (in words)

Biology 13331 5530 5691 4674 900 698

Drone 14320 1315 4080 3326 878 688

Recipe 24488 10352 3858 3254 903 649

Total 52139 17197 13629 11254 2681 2035

Table 2: Token and word statistics for human-annotated proofs, summaries, and target user messages.

70B (Grattafiori et al., 2024), Mistral 3.2 24B,
Magistral 24B (Rastogi et al., 2025), Qwen3 8B,
and Qwen3 32B (Yang et al., 2025b). Further de-
tails, including LLM properties and inference set-
tings, are provided in Appendix D.

4.3 Inputs and context length

Proof lengths vary by domain (Table 3). This moti-
vates the one-shot choice in chained settings, which
balances comparability across LLMs with input
size constraints.

Domain Min Max Avg
tokens tokens tokens
Biology 296 2612 1180
Drone 466 3267 1307
Recipe 1272 4058 2021

Table 3: Token statistics of proof input lengths

4.4 Implementation Details

We use VLLM (Kwon et al., 2023) to perform in-
ference on all open-source models in their native
precision (i.e., fp16/bf16). For each model, we use
the recommended inference parameters (refer to
the Appendix E) provided in their model card. We
use 4x H100 GPUs to perform all our experiments
with open-source models. For the closed-source
models, we use OpenAl hosted API services. For
both open and closed-source models, we prompt
LLM:s to generate a JSON response and use a fixed
seed value for reproducible outputs.

4.5 Metrics

Steps similarity To quantitatively evaluate the
similarity in choosing the most contributing steps,
we measure the average depth of the selected proof
steps within the reference proof. We represent each
proof as a Directed Acyclic Graph (DAG), G =
(V, E)), where vertices v € V are the inferences
and a directed edge (u,v) € E indicates that the
conclusion of v is a premise for u.

The depth of a step v, denoted d(v), is the length
of the longest path from the proof’s final conclusion
(Vroot) to v. To standardize this measure across

different proofs, we compute a normalized depth,
d(v), as:

i) = — 20
maxyecy d(u)

This ensures that d(v) € [0, 1], where 0 corre-
sponds to the root (final conclusion) and 1 to the
deepest leaf nodes (asserted conditions). For a
given explanation consisting of a set of selected
steps S = {s1,..., Sk}, we calculate the mean
normalized depth d(S):

|

_ 15
a(s) =~ 3 ds:)
=1

By analyzing the distributions of d(.S) for each
LLM and human annotators, we can identify biases
in their selection preferences and measure their
alignment with human reasoning patterns. The
justification for this metric and additional exact
match results are provided in Appendix F.

Summary & target user message We evaluate
similarity between the LLM-generated text and
the human annotations using the following stan-
dard metrics, such as BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), chrF++ (Popovi¢, 2017),
and BERTScore (Zhang et al., 2020).

5 Results

Key steps similarity Figure 3 presents the distri-
butions of the mean normalized step depth for most
contributing steps identified by humans and LLMs
across all domains. This result remains the same
across all four baseline strategies, since it is the
first step in the chain, and we also do not provide
any examples for this task.

Human-identified steps exhibit the highest mean
step depth (= 0.4) and the widest distribution, cov-
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Figure 3: Most contributing steps distribution (averaged
across domains)

ering nearly the entire normalized range. This in-
dicates that humans do not adhere to a single fixed
strategy. Instead, they flexibly select steps from all
levels of the proof graph, from high-level conclu-
sions to foundational premises. In contrast, most
LLMs display a strong and consistent bias toward
low-depth steps, indicating a preference for infer-
ences that are structurally close to the final conclu-
sion. We also observe that no model successfully
replicates the human distribution.

For this task, SmolLM3-3B comes closest to
the human average mean depth, outperforming
even larger models such as Magistral-24B and
GPT-4.1-mini, which rank second and third on this
task, respectively. One major limitation we observe
in SmolLM3-3B, GPT-40-mini, and Llama-3.1-8B
is that they sometimes pick the final conclusion step
itself as the most contributing step. We then dive
deeper to evaluate if these patterns are consistent
across domains.

1.0

leaf)

0.8

root, 1=|

0.6

0.44

Step depth (normalized; 0:

0.0

. & o Q Q o o
@& BT A A Y AT T o2
O Y o « > v <] O N
Ay N o > 2 < ) N 2 ®
</ < <& > & R & R\ N
& & @ & @ O

Figure 4: Most contributing steps distribution (Biology)
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Figure 5: Most contributing steps distribution (Drone)

We observe clear differences in distribution pat-
terns across domains. In the Biology domain (Fig-
ure 4), human-identified steps have a lower mean
depth compared to other domains, indicating a pref-
erence for steps closer to the final conclusion, while
still maintaining a wide distribution. Among the
LLMs, SmolLM3-3B again exhibits a mean depth
closest to the human average in this specific do-
main.

In the Drone domain, as shown in Figure 5,
human-selected steps have the highest mean depth
across all domains (> 0.5) and a broader distribu-
tion. On the contrary, all LLMs exhibit a strong
preference for low-depth steps, creating the most
significant gap between human and model distribu-
tions observed in our study. While SmolLM3-3B
remains the best-performing model in terms of
matching the mean, it also at times picks the fi-
nal conclusion step as the most contributing one.

1.0

root, 1=leaf)
o
©o
|

0.6 1 T

0.4

02 { | 1
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Figure 6: Most contributing steps distribution (Recipe)

Figure 6 shows the distributions for the Recipe
domain. The human distribution is similar to the
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cross-domain average, with a mean depth of =~ 0.4
and noticeable variance. Most LLMs again gravi-
tate towards steps structurally close to the conclu-
sion. In this domain, Magistral-24B outperforms
SmolLM3-3B, though all the LLMs fall short of
replicating the breadth and average depth of human-
selected steps.

In conclusion, the normalized step depth metric
reveals a fundamental difference between human
flexibility and LLM bias. While humans select key
contributing steps from all levels of a reasoning
chain, LLMs consistently favor low-depth steps
near the final conclusion. This opens up another
future research opportunity in developing LLMs
that can replicate human understanding, leading
to a more human-aligned identification of pivotal
reasoning steps.

Summary & target user message similarity
We evaluate the LLMs’ performance against
human-written references using BLEU, ROUGE-L,
chrF++, and BERTScore. The performance un-
der the one-shot atomic strategy is nearly identi-
cal, with the chained context providing a marginal
overall improvement. The results for the rest three
prompting strategies are available in Appendix G.

The results for the one-shot chained strategy
are presented in Figure 7. These results sug-
gest that, for the summary task, Llama-3.1-8B
and Mistral-3.2-24B consistently achieve the high-
est scores across all four metrics. However, for
the more constrained target user message task,
GPT-40-mini emerges as one of the top-performing
LLMs along with Mistral-3.2-24B. In contrast,
LLMs like GPT-4.1-mini and SmolLM3-3B gener-
ally rank lower on these generation tasks compared
to their performance on the step selection task.

6 Human Evaluation

While automated metrics like BLEU, ROUGE, and
BERTScore offer scalable evaluation, these met-
rics often fail to capture nuances of faithfulness,
readability, and appropriateness, which are vital
for user-facing summaries and messages. The re-
sults in Figure 7 show that top-performing mod-
els, such as Llama-3.1-8B and Mistral-3.2-24B,
achieve very similar scores. Automated metrics
alone make it difficult to determine if these small
numerical differences translate into meaningful im-
provements in quality or to verify if the generated
content is factually correct and truly useful.

To address these limitations and provide a more

robust assessment, we conduct a human evalua-
tion study. We select a diverse set of models
for comparison against a Human baseline: the
two top performers according to automated met-
rics (Mistral-3.2-24B and Llama-3.1-8B), a larger
model from the same family (Llama-3.3-70B), and
a recent proprietary model (GPT-4.1-mini). This
selection allows us to validate whether the top au-
tomated scores correspond to actual qualitative im-
provements, and to explore the performance dif-
ferences between various model types and sizes.
To carry out the evaluation, we recruit five human
annotators to rate the outputs for both tasks, using
the following task-specific criteria.*

Summary criteria The evaluators rate the sum-
mary based on the following aspects. Faithfulness
assesses the degree to which the reference proof
factually supports every statement in the summary.
Readability judges the summary based on its clarity,
grammar, and ease of comprehension. Conciseness
assesses if the summary only contains essential
information or not. Coverage determines if the
summary captures all key reasoning steps and the
main conclusion.

Target message criteria The evaluators rate the
target user message based on the following aspects.
Faithfulness assesses the degree to which the ref-
erence proof factually supports the target message.
Appropriateness judges the overall suitability of the
message for its target audience, combining aspects
of faithfulness, clarity, and conciseness. Coverage
determines if the summary target message contains
the main conclusion and at least one main reason.

6.1 Results

The human evaluation statistics are presented in
Table 4. These indicate qualitative differences be-
tween the LLMs and Human annotators. Based
on this evaluation, GPT-4.1-mini and Mistral-3.2-
24B are the best-performing LLMs overall and they
score higher compared to the Llama family LL.Ms.
For the summary task, GPT-4.1-mini and Mistral-
3.2-24B obtained the highest scores for the Cover-
age criteria, but they fall short on the Conciseness
criteria. This indicate the verbose nature of these
LLMs. We confirm this by plotting average sum-
mary and target message lengths for all the LLMs.
The plots are available in Appendix H. In the Target
Message task, GPT-4.1-mini achieves the highest

*The human evaluation guide is available in Appendix I.
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Figure 7: Automated metrics of the best performing strategy (One-shot chained)
Summary criteria Target Message criteria
Model Name Conciseness Coverage Faithfulness Readability =~ Appropriateness Coverage Faithfulness
Llama-3.1-8B 4.07 3.65 3.76 4.05 3.54 3.69 3.67
Mistral-3.2-24B 4.01 4.63 3.86 3.83 3.85 4.19 4.11
GPT-4.1-mini 3.79 4.60 4.00 3.57 3.89 4.33 4.24
Llama-3.3-70B 4.14 3.84 4.00 3.84 3.62 3.46 4.44
Human 4.55 4.80 4.80 4.35 4.59 4.47 4.96

Table 4: Averaged human evaluation scores across all domains and annotators

scores across all three criteria: Appropriateness,
Coverage, and Faithfulness.

These findings diverge from the automated eval-
uation results shown in Figure 7. While auto-
mated metrics ranked Llama-3.1-8B and Mistral-
3.2-24B as having similar top-tier performance,
human annotators rated Llama-3.1-8B lower than
both Mistral-3.2-24B and GPT-4.1-mini. This sug-
gests a limitation of automated metrics in capturing
nuanced aspects of text quality and demonstrates
the utility of human judgment for such assessments.

We finally assess the reliability of the human
evaluation by calculating inter-annotator agreement
using Fleiss’ Kappa (x). The results indicate that
the five annotators reached a substantial level of
agreement, which supports the reliability of our
findings. For the Summary criteria, annotators
achieved almost perfect agreement for Faithfulness
(k = 0.813), and substantial agreement for Read-

ability (k = 0.677) and Conciseness (x = 0.721).
Agreement for Coverage (k = 0.442) was mod-
erate, suggesting a higher degree of subjectivity
for this criterion. For the Target Message cri-
teria, all three aspects showed substantial agree-
ment: Faithfulness (x = 0.774), Appropriateness
(k = 0.678), and Coverage (x = 0.656). These
agreement scores demonstrate that annotators ap-
plied the evaluation criteria consistently and that
the criteria themselves were well defined.

6.2 Error Analysis

In order to understand the ratings a bit better, we
asked our human evaluators to provide us with the
reasoning for the scores for 5 low-scoring samples
per domain per LLM. We present our findings here.

Summary We observe that almost all the LLMs
use some technical terms from the proof verbatim,
especially Mistral-3.2-24B and GPT-4.1-mini. This
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leads to lower readability scores in general. For
Llama-3.1-8B, we observed a consistent pattern of
incorrectly using the term “equivalent” when the
proof demonstrates a subclass relationship. This
recurring issue indicates a potential weakness in
understanding logical operators.

Target user message We observed that for the
GPT-4.1-mini uses left-branching sentence struc-
ture, which increases memory load and scores
lower on the appropriateness criteria. An example
target message showcasing this issue is — Because
saucy shepherd pie has carrots as ingredients, it
needs special allergen labels about carrots. Llama-
3.1-8B suffers again from its inability to under-
stand logical operators. Interestingly, Llama-3.3-
70B produces very short target messages (i.e., Cell
derivation from Mus musculus) and achieves lower
ratings for coverage criteria. This observation is
also supported by Figure 19 in the Appendix.

6.3 Downstream implications of the near
conclusion bias

Our step selection results (Section 5 show that
LLMs prefer low depth steps near the final con-
clusion. We test the practical effect of this bias
on user facing communication. We run a targeted
expert study on 20 Drone instances in which an
LLM selected near conclusion steps. The expert
rates the target messages on Appropriateness from
1 to 5 (Higher is better). Table 5 reports the scores
for one-shot atomic and one-shot chained settings.

LLM One-shot chained  One-shot atomic
GPT-4.1-mini 3.40 3.80
Llama-3.3-70B 2.50 2.60
Llama-3.1-8B 3.10 3.10
Mistral-3.2-24B 4.10 4.20

Table 5: Appropriateness in the Drone domain when
selected steps are near the final conclusion.

In both one-shot atomic and one-shot chained
settings, LLMs that relied on final conclusion steps
received consistently lower Appropriateness scores,
with Mistral-3.2-24B as the exception. The drop
arises because the messages often included unhelp-
ful technical details such as “Warning level: X
and omitted one or more causal reasons that ex-
plain the critical situation. By contrast, our student
annotators did not include any warning level details
in their target messages and never selected steps
containing warninglvl as key steps in any of the
50 annotated proofs.

7 Conclusion

We introduce ProofTeller, a benchmark to
evaluate LLM reliability in explaining formal
proofs via key step identification, summarization,
and user messaging. Our experiments with nine
LLMs reveal reliability gaps. We find that LLMs
consistently favor low depth steps near the conclu-
sion, whereas humans select steps from all over the
proof. This suggests LLMs lack a holistic under-
standing of the reasoning chain. Further, our hu-
man evaluation of summarization tasks highlights
qualitative deficiencies in faithfulness and concise-
ness not captured by automated metrics. A targeted
expert study also shows that this near conclusion
bias lowers Appropriateness in user facing mes-
sages by encouraging unhelpful technical details
and omitting causal reasons.

Overall, LLMs can interpret a formal proof and
restate it fluently, but they do not yet do so reliably
or intelligibly for a non-expert, largely because they
exhibit a recency bias when interpreting external
reasoning traces.

Limitations

Experimental limitations While we took a sys-
tematic approach, our exploration of the vast
prompt engineering space was limited. We did our
initial testing with three distinct seed variations,
which may not fully capture the possible variability
in output. Furthermore, we restricted prompt varia-
tions for each task to five, potentially overlooking
other effective phrasings or structures that could
yield superior performance. Finally, we confined
the initial evaluation of the system prompt’s influ-
ence to three language models before finalizing
the one used for this work, meaning findings may
not be consistent across all possibly suited system
prompts.

Scope limitation Our work is limited to three
domains within DL and DatalogMTL formalisms.
Moreover, to maintain the original notations, the
proof syntax employs logic-specific Unicode sym-
bols (e.g. C, H) and specialized terminology (e.g.
eliminate and IntersectionComposition)
requiring LLMs to first recognize their semantic
meaning before interpreting the logical implica-
tions.

Evaluation subjectivity Evaluation of explana-
tion quality can be inherently subjective, especially
with respect to aspects such as appropriateness and
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faithfulness. Different annotators may interpret the
relevance and accuracy of an explanation in diverse
ways, leading to potential variability in the assigned
scores. To mitigate this, we provided clear guide-
lines and examples, but acknowledge that some
level of subjectivity is unavoidable in human evalu-
ations of natural language explanations.

Ethics Statement

All annotators involved in the evaluation process
are either co-authors of this paper or were fairly
compensated for their time, receiving above the
minimum wage of 14.5 EUR per hour. This en-
sures ethical standards in data annotation and helps
maintain the quality and reliability of the evaluation
results.
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A Preliminaries

A.1 DL Proofs

The proofs in our benchmark are based on the
two description logics (DLs) ££ and ALC (Baader
etal., 2017) as well as DatalogMTL (Brandt et al.,
2018), an extension of Datalog with metric tempo-
ral operators for querying temporal data.

The syntax of DLs is based on disjoint, count-
ably infinite sets Nc and Nr of concept names A,
B, ...and role names r, s, ..., respectively. In EL,
concepts are built from concept names by applying
the constructors T (top), C' M D (conjunction), and
dr.C (existential restriction for a role name r). A
general concept inclusion (GCI) n is of the form
C C D, where C and D are EL concepts, and a
finite set of GCls is called a TBox or ontology. The
DL ALC extends EL by the concept constructors
L (bottom), C' U D (disjunction), ¥Vr.C' (value re-
striction), and ~C' (negation). For the semantics,
in particular when a GCI 7, is entailed by a TBox
T (written T |= 1), we refer the reader to (Baader
etal., 2017).

In contrast to £ and ALC, temporal reasoning
in DatalogMTL also takes facts about constants
into account. A (function-free first-order) atom has
the form P(7) with P a predicate of some arity n
and 7 an n-ary tuple consisting of constants and
variables. A literal (or metric atom) A takes one
of the following forms, where p is a non-empty
positive rational interval:

A=T|L|P(1)]| ©,A| &,A|B,A|
B,A | AS,A | AU,A

A rule with body literals Ay, . ..
head literal B is of the form:

,A,,n>1,and

B - Al,...,An,

with B not containing the operators &, <p, S or
U. If an atom, literal or rule contains no variable,
we call it ground. A fact F'is defined as an expres-
sion of the form AQp where A is a ground atom
and p a rational interval. Moreover, we call a fi-
nite set D of facts a dataset and a finite set IT of
rules a program. In this context, entailments are of
the form II, D = F. However, for simplicity, we
now denote entailments in DLs and DatalogMTL
uniformly by 7 = 7.

Our goal is to explain a logical consequence
T = n, where T is either a TBox or a program to-
gether with a dataset, and 7 is a GCI or a fact,

respectively. Following (Alrabbaa et al., 2020,
2022b), proofs of T = n are finite, acyclic, di-
rected hypergraphs, where vertices v are labeled
with GCIs or facts £(v) and hyperedges are of the
form (5, d), with S a tuple of vertices and d a
vertex such that {{(v) |v € S} = ¢(d); the leafs
of a proof must be labeled by elements of 7 and
the unique sink vertex by 7. In addition, an edge
labeling function (see the ruleName key in Fig-
ures 8,9, 10) indicates which logical rule derived
a conclusion ¢(d) from the premises. The size of a
proof is the number of its vertices.

A logical proof starts from a conclusion and iden-
tifies the premises that entail it. These premises are
then justified by further reasoning, building a chain
of inference that ultimately rests on assertions—
statements that are accepted as true without deriva-
tion.

For this benchmark, £L proofs were generated
using the reasoner ELK (Kazakov et al., 2014;
Kazakov and Klinov, 2014), while for ALC, we
employed the forgetting tool LETHE (Koopmann,
2020; Alrabbaa et al., 2020). For DatalogMTL, we
extended the Metric Temporal Reasoner (MeTeoR)
(Wang et al., 2022) to trace the applied reasoning
steps (Borgwardt et al., 2024). We also used EVEE
(EVincing Expressive Entailments) (Alrabbaa et al.,
2022a), a Java library that can extract size-minimal
proofs from the output of a reasoner.

B Proof Examples

Biology Example In Figure 8, one can see an
example of a proof that RMUG-S is an immortal
human cell line cell (IhCL for short). An immor-
tal cell line (ICL) is expected to be capable of an
unlimited number of divisions, and is thus able to
support indefinite propagation in vitro. RMUG-S
is a human (lat. Homo sapiens) ovarian adeno-
carcinoma cell line originated from a 62 year old
Japanese female.

Recipe example In Figure 9, one can see an ex-
ample of a vegan bread recipe.

Critical Situations in Drone example The proof
in Figure 10 show a temporal proof for the drone
probably having internal damage at time point 0 by
detecting an internal temperature above the thresh-
old temperature.
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finalConclusion: RMUG-S C IhCL,
inferences: [ {
conclusion: RMUG-S C IhCL,
ruleName: Class Hierarchy ,
premises: [ RMUG-S C (3Jderived from.dpart
of .Homo sapiens M ICL),
(3derived from.dpart of .Homo sapiens MM
ICL) C ThCL ]

conclusion: RMUG-S C (3derived from.3Jpart
of .Homo sapiens M ICL),
ruleName: Intersection Composition,
premises: [ RMUG-S C ICL,
RMUG-S C dderived from.3part of.Homo
sapiens |
conclusion: RMUG-S C ICL,

ruleName: Asserted Conclusion

conclusion: RMUG-S C Fderived from.3Ipart
of .Homo sapiens ,
ruleName: Asserted Conclusion

conclusion: (3Jderived from.3Ipart of.Homo
sapiens M ICL) C IhCL,
ruleName: Equivalent Classes Decomposition,
premises: ThCL = (3Jderived from.dpart
of .Homo sapiens MM ICL)

conclusion: ThCL = (3derived from.dpart
of .Homo sapiens M ICL),
ruleName: Asserted Conclusion } ]

Figure 8: Biology proof. The proof begin with a final
conclusion and trace its supporting reasons backwards
until reaching asserted statements. A guide to the sym-
bols used in this proof. The symbol C means “is a type
of”. The symbol = means “is the same as”. The symbol
Mmeans “and”. The symbol 3 means “some”. For exam-
ple, RMUG-S C 3dF.3p0f.Homo sapiens can be read as
RMUG-S is a type of an entity that is derived from
some part of some Homo sapience.

finalConclusion: bread T vegan recipe,
inferences: [ {
conclusion: bread C vegan recipe,
ruleName: eliminate 'flour ',
premises: [ (Vingr.(water U flour) M
bread) C vegan recipe,
bread C Vingr.(water U flour) ]

conclusion: (Vingr.(water U flour) M
bread) C vegan recipe ,

ruleName: eliminate 'vegan',

premises: [ water C vegan,
flour C vegan,
(Vingr.vegan M bread) C vegan recipe |

conclusion: water C vegan,
ruleName: asserted

conclusion: flour C vegan,
ruleName: asserted

conclusion: (Vingr.vegan M bread) C vegan
recipe ,
ruleName: eliminate 'food recipe ',
premises: [ bread C (food recipe MM
Jingr. flour M Jingr.water),
vegan recipe = (Vingr.vegan M food
recipe) ]

conclusion: bread C (food recipe MM
Jingr. flour M Jingr.water),
ruleName: asserted

conclusion: vegan recipe = (Vingr.vegan I
food recipe),
ruleName: asserted

conclusion: bread C Vingr.(water U flour),
ruleName: asserted } |

Figure 9: Recipe proof. The proof begin with a final
conclusion and trace its supporting reasons backwards
until reaching asserted conclusions. A guide to the sym-
bols used in this proof. The symbol = means “is a
type of’. The symbol = means “is the same as”. The
symbol M means “and”, LI means “or”. The symbol 3
means “some”’. The symbol V¥ means “every”. For exam-
ple, bread C Vingr.(water Ll flour) can be read as
bread is a type of entity, every ingredient of which
is either flour or water .
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finalConclusion : warninglvl(d,4)@[0,0],

inferences : [ {
conclusion : warninglvl(d,4)@[0,0],
ruleName : inclusion ,
premises : warninglvl(d,4)@[-1,9]

b A

conclusion : warninglvl(d,4)@[-1,9],
ruleName : warninglvl(X,4) :— risk(X),
premises : risk(d)@[-1,9]

b
conclusion : risk(d)@[-1,9],
ruleName : risk (X) :—
riskofinternaldamage (X) ,
premises : riskofinternaldamage (d)@[-1,9]
b
conclusion : riskofinternaldamage (d)@[-1,9],
ruleName : reverse H,
premises :
H[0,10]riskofinternaldamage (d)@[-1,-1]
b
conclusion :
H[0,10]riskofinternaldamage (d)@[-1,-1],
ruleName :
H[0,10]riskofinternaldamage (Y) :—
internaltemperature (Y,S) ,drone (Y) ,S>40,
premises : [
internaltemperature (d,48)@[-1,-1],
drone (d)@[-300,+00) ]
b
conclusion :
internaltemperature (d,48)@[-1,-1],
ruleName : Asserted
b
conclusion : drone(d)@[-300,+c0),
ruleName : reverse H,
premises : H[0,+0c0)drone (d)@[-300,-300]
b
conclusion : H[0,+00)drone(d)@[-300,-300],
ruleName : H[0,+00)drone(X) :— drone(X),
premises : drone (d)@[-300,-300]
b
conclusion : drone(d)@[-300,-300],
ruleName : Asserted } ]

Figure 10: Example proof for a critical scenario
for drones. The proof begin with a final conclusion
and trace its supporting reasons backwards until
reaching asserted statements. A guide to the symbols
used in this proof. We use the convention that
late-alphabet capital letters (e.g., X, Y) represent
variables, and early lowercase letters (e.g., d) represent
constants. The notation risk(d)@[—1,9] indicates
that object d is at risk during the time interval
[-1,9]. If prefixed with a temporal operator, e.g.
[0, 10]riskofinternaldamage(d)@[—1, —1], it
means the complex expression holds for a time interval.
For instance, for any start time within the interval
[-1,—1], the fact riskofinternaldamage(d)
will last for the next 10 consecutive time points.
Rules here must be read from right to left,
e.g. [0, 10]riskofinternaldamage(Y) :—
internaltemperature(Y,S),drone(Y),S > 40
means an internal temperature S exceeding 40 degrees
in a drone(Y) triggers a riskofinternaldamage(Y)
that persists for the following 10 consecutive time
points.

C Prompts

We provide all the prompts verbatim in Figures 11—
14.

D Models used in experiments

Table 6 summarises the LLMs used in our experi-
ments. We include whether a model is open weight
and whether it exposes a native thinking mode.

LLM Open Thinking tokens
GPT 4.1 mini No No
GPT 40 mini No No
SmolLM3 3B Yes No
Llama 3.1 8B Yes No
Mistral 3.2 24B  Yes No
Llama 3.3 70B Yes No
Qwen3 8B Yes Yes
Magistral 24B Yes Yes
Qwen3 32B Yes Yes

Table 6: LLMs used in our experiments.

E Inference details

For the open weights LLMs, we use the exact same
inference parameters mentioned in the LLM model
card on their respective HuggingFace model page.
For more details, please refer to our codebase here:

F Graph convention and additional
metrics

Graph convention. We represent each proof as
a finite, acyclic, directed hypergraph. The final
conclusion is the root at depth 0 and axioms appear
at larger depths. The opposite orientation is also
common in proof theory. Both views are equivalent
up to edge reversal and induce the same family of
trees. Any depth based statistic can be translated
between the two views by a monotone transform.
We choose the root at the conclusion because it
simplifies normalisation across domains and visual
inspection of what lies closer to the decision point.

Why average depth beyond exact match. Exact
match measures whether an LLM selects the same
steps as a human. In our setting there are many
valid subsets of informative steps and near misses
contain useful signal. Average normalised depth
captures the distributional tendency of where an
LLM looks in the proof. This metric exposed the
near conclusion bias that exact match alone did not
reveal.
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

{{proof_method_description}}

### TASK - 1 ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 2: Summarize the Proof

### TASK - 2 ###

An example summary for an example proof was written by a human expert as shown below.
Example Proof: {{example_proof}}

Example Summary: {{example_summary}}

Summarize the proof shown in Task 1 (i.e., Finding the most contributing steps) similar to a human expert.
The summary should contain the conclusion of the proof and how it was reached.

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - 3 ###

An example message for the targeted user was written by a human expert as shown below. The human expert utilized the
‘Example Proof* and the ‘Example Summary* to write this message.

Example Target Message: {{example_target_msg}}

Generate a message for the targeted user similar to a human expert for the proof shown in Task 1. The mes-
sage should be a maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final
conclusion.

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Figure 11: Prompt template for One-shot chained; same color for all tasks indicates multi-turn response chain,
adding the previous context for all the tasks.

Exact match results. For completeness, Table 7 analysis in the main paper captures the systematic
reports exact match accuracy by domain. The low  selection bias.

and variable scores confirm that exact match is

a coarse indicator for this task, while the depth
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

{{proof_method_description}}

### TASK - 1 ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 2: Summarize the Proof

### TASK - 2 ###
Summarize the proof shown in Task 1 (i.e., Finding the most contributing steps) similar to a human expert. The summary
should contain the conclusion of the proof and how it was reached.

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - 3 ###
Generate a message for the targeted user similar to a human expert for the proof shown in Task 1. The message should be a
maximum of 15-20 words long and it should explain to { {user}} what exact condition led to the final conclusion.

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Figure 12: Prompt template for Zero-shot chained; same color for all tasks indicates multi-turn response chain,
adding the previous context for all the tasks.

G Additional Results on Summary & ilarly, the BERTScore for GPT-40-mini on the tar-
Target User Message similarity get message task increases from around 57.0 to
automated metrics 57.5. While minor, this trend suggests that access

to the full reasoning path, even when generating
a summary of it, provides valuable context that
helps the models produce outputs that are more
aligned with the human-written references. This
indicates that for generation tasks grounded in a
logical proof, providing the complete proof struc-
ture is beneficial.

The results in Figure 7 and 15 show that providing
the context trail leads to a slight but consistent im-
provement across all models and metrics for both
the summary and target user message tasks. For
instance, the ROUGE-L score for Llama-3.1-8B
on the summary task improves from approximately
44.5 to 45.0 when the context trail is included. Sim-
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps
{{proof_method_description}}

### TASK - FIND THE MOST CONTRIBUTING STEPS ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 2: Summarize the Proof
### TASK - SUMMARIZE PROOF ###

An example summary for an example proof was written by a human expert as shown below.
Example Proof: {{example_proof}}
Example Summary: {{example_summary}}

Summarize the proof shown in Task 1 (i.e., Finding the most contributing steps) similar to a human expert.
The summary should contain the conclusion of the proof and how it was reached.

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 3: Generate Targeted Message
### TASK - TARGET-USER MESSAGE ###

An example message for the targeted user was written by a human expert as shown below. The human expert utilized the
‘Example Proof* and the ‘Example Summary* to write this message.
Example Target Message: {{example_target_msg}}

Generate a message for the targeted user similar to a human expert for the proof shown in Task 1. The mes-
sage should be a maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final
conclusion.

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Figure 13: Prompt template for One-shot atomic; different colors for all tasks indicate single-turn responses for
each independent task.

H Length analysis for Summary and I Annotation Guidelines

Target User Message tasks We provide the annotation guidelines for the proof

Figures 18 and 19 show this analysis. annotation task in Tables 8 and 9.
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

### TASK - FIND THE MOST CONTRIBUTING STEPS ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 2: Summarize the Proof

### TASK - SUMMARIZE PROOF ###
Summarize the proof below similar to a human expert. The summary should contain the conclusion of the proof and how it
was reached.

{{proof}}

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - TARGET-USER MESSAGE ###
Generate a message for the targeted user similar to a human expert for the proof given below. The message should be a
maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final conclusion.

{{proof}}

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Figure 14: Prompt template for Zero-shot atomic; different colors for all tasks indicate single-turn responses for
each independent task.
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Figure 17: Automated metrics of Zero-shot atomic strategy
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Model Drone Biology Recipe

GPT-4.1-mini 0.38 0.29 0.25
GPT-40-mini 0.11 0.43 0.25
Llama-3.1-8B 0.22 0.33 0.25
Llama-3.3-70B 0.12 0.20 0.26
Magistral-24B 0.21 0.33 0.25
Mistral-3.2-24B  0.12 0.34 0.26
Qwen3-32B 0.17 0.19 0.23
Qwen3-8B 0.12 0.23 0.19
SmolLM3-3B 0.25 0.42 0.18

Table 7: Exact match accuracy for key step selection by
domain.

Average Word Length for summary (mean)

-
o
S

-
I~
&

100

Avg. Word Length

£ & S & & <& S
& Ra N \},b& o é"’é & o
Model
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Figure 19: Average length of target user message for
One-shot chained strategy
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Table 8: Rubrics and Workflow for Evaluating the Summary

Input Component

Interpretation

Why It Matters

Description  Logic
Proof (JSON)

Correct reasoning chain; assume it

is the gold standard.

proof.

Used to verify whether the
Summary faithfully reflects the

Candidate Summary

Model’s attempt to compress rea-

Evaluated for clarity, precision,

soning into ~z4—5 sentences.

and faithfulness.

Structure of the Proof: JSON entries link premises via rules in inferences. Each step uses
asserted or inferred premises, applies a ruleName, and yields a conclusion, culminating in the

finalConclusion.
Field Max Length Purpose Typical Content
Summary ~ 4-5 sentences | Capture reasoning and | Key conclusions, interme-

conclusion faithfully.

diate reasoning, essential
facts.

Rating Rubrics (5-point scale):

¢ Faithfulness — Must directly align with the proof.

* Readability — Clear structure, appropriate tone.

* Conciseness — No unnecessary content.

* Coverage — Includes all essential reasoning steps.

Summary Scoring Guidelines

Score| Faithfulness Readability Conciseness Coverage

5 Fully supported by | Flawless writing Essential info only | All key steps in-
proof cluded

4 Minor paraphrases | Very clear Slight redundancy | Misses one trivial
(> 95%) step

3 Several weakly sup- | Understandable Some extra phras- | Omits > 2 sec-
ported statements ing ondary steps

2 Misstates key facts | Hard to follow Verbose Onmits a critical step

1 Major contradic- | Incoherent Irrelevant or long | Misses main conclu-
tions sion

Summary Annotation Workflow:

1. Read the proof; determine the main conclusion and key steps.

2. Evaluate the Summary under all rubric criteria.

3. Ensure accuracy and completeness (no contradictions).

4. Click “Save all” before moving on.
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Table 9: Rubrics and Workflow for Evaluating the Target Message

Input Component Interpretation Why It Matters

Description  Logic | Ground-truth reasoning and final | Ensures the target message

Proof (JSON) conclusion. does not misrepresent or exceed
the proof.

Target Message > 20-word alert to the user. Must be precise, actionable,
and fully supported.

Structure of the Proof: JSON inference steps derive conclusions from premises; the Target
Message should reflect only the core actionable outcome.

Field Max Length Purpose Typical Content
Target Message | > 20-words Deliver a concise user- | Trigger condition, effect, or
facing alert. simple instruction.

Rating Rubrics (5-point scale):

¢ Faithfulness — Must follow directly from the proof.

* Appropriateness — Clear, safe, user-oriented.

¢ Coverage — Includes the essential actionable element.

Target Message Scoring Guidelines

Score| Faithfulness Appropriateness Coverage
5 Fully justified by | Perfect tone; no overreach All essential actionable
proof info
4 Minor paraphrase Very good tone; small phrasing issue | One trivial omission / ad-
dition
3 Weak support here or | Understandable; awkward Missing > 1 important
there detail
2 Misstates crucial fact | Hard to interpret safely Misses core actionable
element
1 Contradiction / hallu- | Inappropriate or confusing Not based on proof
cination

Target Message Annotation Workflow:

1. Identify the final actionable conclusion in the proof.

2. Check the Target Message for faithfulness and safety.

3. Ensure brevity and clarity within the 20-word limit.

4. Click “Save all” before moving on.
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