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Abstract

In related work section of a scientific paper,
authors collect relevant citations and structure
them into coherent paragraphs that follow a
logical order. Previous studies have addressed
citation recommendation and related work sec-
tion generation in settings where both the cita-
tions and their order are provided in advance.
However, they have not adequately addressed
the optimal ordering of these citations, which
is a critical step for achieving fully automated
related work section generation. In this study,
we propose a new task, citation arrangement,
which focuses on determining the optimal or-
der of cited papers to enable fully automated
related work section generation. Our approach
decomposes citation arrangement into three
tasks: citation clustering, paragraph ordering,
and citation ordering within a paragraph. For
each task, we propose a method that uses a
large language model (LLM) in combination
with a graph-based technique to comprehen-
sively consider the context of each paper and
the relationships among all cited papers. The
experimental results show that our method is
more effective than methods that generate out-
puts for each task using only an LLM.1

1 Introduction

Related work section of scientific papers plays a
crucial role in demonstrating the positioning and
novelty of the research. However, simply citing
relevant papers is not sufficient for readers to fully
understand the research; it is also necessary to con-
sider the relationships among these papers and to
arrange them in well-structured, logically ordered
paragraphs. Existing work aimed at the automatic
related work section generation includes research
on citation recommendation and section genera-
tion. However, citation recommendation research
has generally focused on selecting which papers to

1We have released our code and dataset at https://
github.com/masashi-o8/Citation-Arrangement
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Figure 1: Overview of the citation arrangement.

cite from a set of candidates, not on determining
their order within the text (McNee et al., 2002; Os-
tendorff et al., 2022; Ghosh Roy and Han, 2024).
In addition, many studies on related work section
generation use a predefined citation order (Hoang
and Kan, 2010; Chen et al., 2022; Li and Ouyang,
2025). Consequently, previous research has not
addressed how to arrange or structure the cited pa-
pers, and thus has not yet achieved fully automated
related work section generation (Li and Ouyang,
2024).

Although recent LLMs can generate high-quality
text, their attempts to produce an entire related
work section in a single pass still lag behind human-
written sections.2 This suggests that, in order to
achieve a level of quality comparable to human-
written sections, it is necessary to decompose the
related work section into smaller units and generate
each one separately. By doing so, it becomes easier
to construct a coherent structure and incorporate
relevant citations more effectively.

To address these issues, we propose a new task,
citation arrangement, which focuses on optimally
arranging cited papers in the related work section.
Figure 1 shows an overview of this task. Given a
set of papers to be cited, this task involves cluster-

2Experimental results are shown in Table 7.
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ing them into appropriate paragraphs, determining
a coherent order of paragraphs, and ordering the
citations within each paragraph. By accomplishing
this, we address a previously underexplored as-
pect of related work generation and move one step
closer to complete automation. We further propose
a three-step approach to achieve this goal, as de-
picted in Figure 1. First, we cluster the cited papers
into paragraphs; second, we determine the order in
which these paragraphs should appear; and third,
we decide the citation order within each paragraph.

When determining the citation order within the
related work section, it is important not only to
consider the content of each paper but also to ac-
count for the interrelations among them and the
relationships between paragraphs. To achieve these
requirements, we propose a method that integrates
an LLM with a graph-based approach. By con-
structing a weighted graph based on LLM outputs,
our method assigns context-aware scores and com-
prehensively captures the relationships among all
citations, thereby enabling a more coherent arrange-
ment of the cited papers.

2 Dataset

To train and evaluate our model, we used a dataset
that includes lists of papers cited in the related
work sections, along with the corresponding para-
graph structures and the citation orders within those
sections. Our dataset was constructed from two re-
sources: ACL OCL (Rohatgi et al., 2023), which
is a corpus of 80,013 papers published in the ACL
Anthology up to August 2022; and S2ORC (Lo
et al., 2020), which provides metadata for papers
on Semantic Scholar.

The steps for creating the dataset are as follows:

1. Extract papers published in ACL, EMNLP,
NAACL, or TACL between 2013 and 2022
from ACL OCL (12,564 papers).

2. Convert each paper to text using PDFNLT,3

and then select those that contain a “Related
Work” section (3,741 papers).

3. Filter the subset to include only papers whose
“Related Work” section comprising multiple
units,4 where each unit cites at least two ci-

3https://github.com/KMCS-NII/PDFNLT-1.0
4Here, a “unit” denotes the highest-level division within

the related work section. Accordingly, a single unit may cor-
respond to a paragraph or, in some cases, to a subsection.
However, for simplicity, we consistently refer to each unit as
a “paragraph” throughout this paper.

# of source papers 2,869
# of paragraphs 8,709 (3.0)
# of cited papers 56,765 (19.8)

Table 1: Statistics of the dataset. The values in ( )
represent averages per paper.
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Figure 2: Overview of citation clustering.

tations and the section contains at least 10
citations (2,869 papers).

4. Use the titles of the cited papers to retrieve
author information and citation relationships
from S2ORC.

Table 1 shows the statistics of our dataset.

3 Citation Clustering

We address citation clustering, which groups the
set of cited papers into paragraphs. As illustrated
in Figure 2, we construct a graph in which each
node represents a cited paper. This graph structure
allows us to capture the relationships among papers
during clustering.

3.1 Graph Construction

To incorporate information from all cited papers,
we construct a complete graph G = (V,E), where
each node corresponds to a cited paper and every
pair of nodes is connected by an edge. The weight
of each edge indicates how likely it is that the two
papers would appear in the same paragraph, and
we compute this weight using an LLM.

Specifically, we fine-tune an LLM on a binary
classification task. Given a pair of cited papers,
the model outputs 1 if they are cited in the same
paragraph and 0 otherwise. After fine-tuning, we
score every pair of cited papers with the model.
We then apply a softmax function to the two-class
logits and take the output score as the edge weight.

We compare two configurations of model inputs.
The base model Mbase uses only the title and ab-
stract of each cited paper. The extended model
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Mextd additionally incorporates the title and ab-
stract of the source paper, the publication year, au-
thor information of each cited paper, and a flag
indicating whether a citation relationship exists be-
tween the two papers. Additionally, we construct
four variants of Mextd as an ablation study, each
omitting one of its additional input features. Specif-
ically, M\year omits the publication year, M\auth
excludes the author information, M\cite leaves out
the citation relationship, and M\seed does not in-
clude the source paper information.5

3.2 Clustering Method
For graph clustering, we employ the normalized
cut (Ncut) method (Shi and Malik, 2000), which
partitions the graph so that the total weight of
intra-cluster edges is maximized while that of inter-
cluster edges is minimized. Let wij denote the
weight between nodes i and j. Given two clusters
A and Ā resulting from the partition, we define the
cut between them as:

Cut(A, Ā) =
∑

i∈A,j∈Ā
wij , (1)

Vol(A) =
∑

i∈A,j∈V
wij . (2)

The Ncut is given by:

Ncut(A, Ā) =
Cut(A, Ā)

Vol(A)
+

Cut(A, Ā)

Vol(Ā)
, (3)

and the Ncut method seeks to minimize this value.
By applying Ncut to the graph G, we obtain clus-
ters that correspond to the paragraphs of the related
work section.

3.3 Experiments
Settings We used the dataset described in Sec-
tion 2, divided into three sets: training, develop-
ment, and test, at a ratio of 8:1:1. Table 2 shows the
statistics of the three sets in the constructed dataset.
Since Ncut requires the number of clusters to be
specified in advance, we set it to the actual number
of paragraphs in the source paper. As evaluation
metrics, we adopted the B-Cubed F1-score (Bagga
and Baldwin, 1998) and CEAFm F-score (Luo,
2005). For the LLM, we used the LLaMA3.1-8B-
Instruct,6 Mistral-7B-Instruct-v0.2,7 and Qwen2.5-

5Appendix A shows a summary of the inputs.
6https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct
7https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.2

Training Development Test

# of source papers 2,296 287 286
# of paragraphs 9,205 1,166 1,207
# of cited papers 45,447 5,691 5,627
# of pairs of
paragraphs 16,388 2,072 2,426

# of pairs of
cited papers 493,367 62,211 60,198

Table 2: Statistics of the train/dev/test splits.

7B-Instruct.8 We used LoRA (Hu et al., 2022) for
fine-tuning, applying it to all linear layers in the
model, with hyperparameters set to r = 8 and α
= 16. The learning rate for fine-tuning was de-
cayed linearly from an initial rate of 1e-4. We
set the batch size to 8 and used AdamW as the
optimization method. Fine-tuning was performed
for 1 epoch.9 We used five different prompts with
both the Mbase and Mextd, then chose the one that
achieved the highest binary-classification F-score
on the development set. We applied the best prompt
found for Mbase to all other models. Prompt tuning
was performed only on LLaMA; Mistral and Qwen
used the same prompt optimized for LLaMA.10

Compared Methods We constructed two base-
line methods to verify the effectiveness of our ap-
proach. The first baseline is a K-means clustering
approach applied to the embeddings of the cited
papers. For the K-means method, we obtained em-
beddings of the cited papers using SciNCL (Osten-
dorff et al., 2022), which was pre-trained to handle
scientific papers. Specifically, we concatenated the
title and abstract of each cited paper using <sep>
and then encoded the text with SciNCL. The sec-
ond method is an LLM-based method (LLMbase).
The LLMbase takes the source paper and all cited
papers as input, and is fine-tuned to generate the
cluster assignment for each cited paper. This base-
line also employs LLaMA3.1-8B-Instruct, Mistral-
7B-Instruct-v0.2, and Qwen2.5-7B-Instruct and is
fine-tuned via LoRA. We set the batch size to 1,
fine-tuned for 3 epochs, selecting the model with
the smallest loss on the development set for evalua-
tion. All other parameters were the same as those
used in the proposed method, and the input features
are identical to those in M\cite. We fine-tuned
models using five different prompts and selected

8https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

9More details are shown in Appendix B.
10The actual prompts are shown in Appendix C.
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You are a researcher specializing Natural Language Processing. I am writing scientific paper with the following
title and abstract.
Title:{Title of Source Paper}
Abstract:{Abstract of Source Paper}
Please cluster the following {# of references} references for {# of paragraphs} clusters. You can determine cluster
membership according to the topic of the references.
**references**
Title:{Tit. of paper1}, Abstract:{Abs. of paper1}, Author:{Auth. of paper1}, Year of Publication:{Year of Pub. of paper1}
Title:{Tit. of paper2}, Abstract:{Abs. of paper2}, Author:{Auth. of paper2}, Year of Publication:{Year of Pub. of paper2}
Title:{Tit. of paper3}, Abstract:{Abs. of paper3}, . . .

Table 3: Prompt used in LLMbase of citation clustering. All cited papers are input after **references**.

B3 CEAFm

K-means .637 .625

LLaMA Mistral Qwen
B3 CEAFm B3 CEAFm B3 CEAFm

LLMbase .697 .709 .689 .703 .688 .707
Mbase .715 .727 .696 .706 .702 .717
Mextd .717 .730 .711 .721 .713 .725
M\year .715 .726 .713 .727 .719 .734
M\auth .717 .731 .717 .729 .714 .720
M\cite .708 .718 .715 .729 .602 .624
M\seed .716 .726 .704 .715 .717 .728

Table 4: Experimental results of citation clustering.

the one with the lowest loss on the development set
for evaluation. Prompt tuning was also performed
exclusively on LLaMA; Mistral and Qwen used
the same prompt optimized for LLaMA. The actual
prompt is shown in Table 3.

Results Table 4 shows the results of citation clus-
tering. K-means showed a lower score than meth-
ods using LLM, demonstrating that the LLM can
adequately account for the context of cited papers.
Compared to the LLMbase and proposed methods,
almost all proposed methods achieve a higher F-
score than the baseline, confirming the effective-
ness of the graph-based method that takes the rela-
tionships among cited papers into account.

Comparing Mbase and Mextd, we observed
score improvements across all models. This in-
dicates that clustering performance is improved
by increasing the amount of input features. More-
over, the results of our ablation study indicate that
Mbase tends to perform worse than other variants,
further confirming the benefit of augmenting paper
features. However, the features that prove effective
for clustering differ across LLMs, so it is essential
to employ the most suitable ones.

4 Paragraph Ordering

Next, we address paragraph ordering, which deter-
mines the order in which the clustered paragraphs
appear in the related work section. As shown in
Figure 3, we construct a directed graph in which
each node represents a paragraph.

4.1 Graph Construction

We build a directed graph by treating each para-
graph as a node and connecting every pair of nodes
with edges in both directions. We then compute
and assign a weight to each edge using an LLM,
which indicates how likely one paragraph is to im-
mediately precede another.

Concretely, we fine-tune an LLM on a binary
classification task where the input consists of two
paragraphs, A and B. Each paragraph is formed
by concatenating the cited papers within it. The
model outputs 1 if paragraph A directly precedes
paragraph B in the source paper and 0 otherwise.
After fine-tuning, we score a paragraph pair (A,B)
with the model. We then apply a softmax function
to the two-class logits, and use the resulting score
as the directed edge weight wAB .

We compare five configurations: Mbase, Mextd,
M\year, M\auth, M\seed. In paragraph ordering,
since each paragraph is composed of the entire con-
catenated text of cited papers, citation relationships
are not separately considered and thus are not uti-
lized.

4.2 Ordering Method

We determine the paragraph order by exhaustively
searching all possible permutations to find the per-
mutation π that maximizes the objective function
defined in Equation (4) :

argmax
π

∑

1≤i<j≤n

wπ(i)π(j), (4)
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Figure 3: Overview of the paragraph ordering. In the
right graph, the solid-line relationships are learned dur-
ing fine-tuning, while the dashed-line weights are taken
into account when determining the order.

where π(i) is the paragraph at position i in the
ordering, and wπ(i)π(j) is the weight of the di-
rected edge from paragraph π(i) to paragraph π(j).
Here, the edge weight indicates how likely two
paragraphs are to be adjacent, and by maximizing
the sum of these weights as in Equation (4), our
method effectively captures the desired adjacency
relationships. Please note that when learning the
weights, only adjacencies are considered, whereas
in Equation (4) all backward nodes are taken into
account. We also experimented with a setting that
only considered adjacencies, but this resulted in an
average score about 0.024 lower.

4.3 Experiments

Settings We employed LLaMA3.1-8B-Instruct,
Mistral-7B-Instruct-v0.2, and Qwen2.5-7B-
Instruct and adopted LoRA for fine-tuning. We
set the batch size to 2 and fine-tuned the model
for 3 epochs. The model with the smallest loss on
the development set was used for evaluation. All
other parameters and settings were the same as
those used in citation clustering. For the evaluation
metric, we used Spearman’s rank correlation coef-
ficient ρ and Kendall rank correlation coefficient τ .
The prompt tuning followed the same setting as in
citation clustering.

Compared Methods We constructed three base-
line methods for comparison. The first method is
Mean-Publication-Year. In this method, we com-
puted the average publication year of the cited pa-
pers in each paragraph, then obtained the paragraph
order by sorting these averages in ascending or-
der. The second method is Paragraph-Size. In this
method, we determined the paragraph order by sort-
ing the paragraphs in descending order based on
the number of cited papers in each paragraph. The
LLMbase took the source paper and all paragraphs
as input and is fine-tuned to generate a paragraph

ρ τ

Mean-Publication-Year .253 .229
Paragraph-Size .304 .287

LLaMA Mistral Qwen
ρ τ ρ τ ρ τ

LLMbase .573 .537 .522 .490 .467 .440
Mbase .470 .444 .494 .460 .486 .460
Mextd .554 .524 .572 .541 .567 .532
M\year .559 .521 .541 .511 .533 .501
M\auth .573 .543 .542 .504 .533 .498
M\seed .507 .475 .513 .480 .507 .477

Table 5: Experimental results of paragraph ordering.

order. The fine-tuning settings were identical to
those used for the LLMbase in citation clustering,
and the input features were the same as those used
for Mextd in paragraph ordering. The prompt tun-
ing was done in the same setting as for citation
clustering.

Results Table 5 shows the experimental results.
From the lower scores of the Mean-Publication-
Year and Paragraph-Size, it appears difficult to
determine paragraph order solely from such sta-
tistical features. Similar to the findings in cita-
tion clustering, the methods that employ an LLM
achieve higher scores, indicating that LLM-based
approaches can accurately determine paragraph or-
der.

When comparing the LLMbase with our pro-
posed method, we find that our approach gener-
ally achieves higher scores; however, for LLaMA,
the LLMbase shows the highest score. This sug-
gests that directly generating paragraph order with
an LLM can be an effective strategy for this task.
Within our proposed method, the Mbase yields the
lowest score, indicating that augmenting the num-
ber of paper features leads to more accurate para-
graph ordering. In addition, in the ablation study,
M\seed consistently shows low scores across all
variants, demonstrating that incorporating informa-
tion from the source paper is essential for determin-
ing paragraph order.

5 Citation Ordering within a Paragraph

Then, we address citation ordering within a para-
graph, which arranges the cited papers within each
paragraph in the order they should be mentioned.
As shown in Figure 4, we construct a directed graph
whose nodes correspond to cited papers, and then
we determine an optimal ordering of these nodes.
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5.1 Graph Construction

We build a directed graph in which each node rep-
resents a cited paper and every pair of nodes is
connected by edges in both directions. When de-
termining the order of cited papers within a para-
graph, their relative positions should be taken into
account. Swapping papers that are far apart is gen-
erally unproblematic, as they often cover different
topics. In contrast, swapping adjacent papers can
disrupt the logical flow. Accordingly, we assign
edge weights that decrease with distance, impos-
ing higher penalties on adjacent swaps and lower
penalties on distant ones.

Specifically, we fine-tune an LLM on a regres-
sion task where, given two papers a and b in that or-
der, the model predicts vab = 1

π−1(b)−π−1(a)
. Here,

π−1(x) denotes the mention position of paper x
within the paragraph. vab is positive when two pa-
pers are input in the same order as given in the
related work section, and negative when they are
input in reverse order; its absolute value decreases
as the distance between their citation positions in-
creases. For example, if the papers with citation
orders one and two are input in that order, v outputs
1, and if the papers with citation orders three and
one are input in that order, v outputs −0.5.

As in citation clustering, we construct six models
with different input configurations: Mbase, Mextd,
M\year, M\auth, M\cite, and M\seed.

5.2 Ordering Method

We determine the final citation order within each
paragraph by exhaustively searching all possible
permutations to find the permutation π that mini-

mizes the objective defined in Equation (6):

lij =

∣∣∣∣ vπ(i)π(j) −
1

j − i

∣∣∣∣, (5)

argmin
π

∑

1≤i<j≤n

lij , (6)

where π(i) is the paper at position i of permutation
π, and lij is defined as the absolute difference be-
tween the vπ(i)π(j) and the inverse of the distance
of i, j in the permutation. This objective function
measures the predicted distance error, and the per-
mutation π that minimize this sum is taken as the
most coherent order.

5.3 Experiments

Settings The fine-tuning settings were the same
as those used for citation clustering. We evalu-
ated five different prompts for both the Mbase and
Mextd using the development set and selected the
one with the smallest mean squared error of regres-
sion task. As an evaluation metric, we used Spear-
man’s rank correlation coefficient ρ and Kendall
rank correlation coefficient τ . Exhaustively search-
ing all permutations in Equation (6) becomes com-
putationally infeasible for paragraphs with many
cited papers. Therefore, to ensure that we could
find an optimal solution, we limited our evaluation
to paragraphs with fewer than 10 cited papers (777
out of 921 total).11

Compared Methods We constructed two base-
line methods to verify the effectiveness of our ap-
proach. The first was Year only baseline (Year-
Only). This model simply sorted the cited papers
in ascending order based on their publication year.
The second was LLMbase. The LLMbase took the
source paper and all cited papers in a paragraph as
input, and was fine-tuned to generate the citation
order. The fine-tuning settings for the LLMbase

are identical to those used in the other tasks, and
the model inputs are the same as those for M\cite.
The prompt tuning was done in the same setting as
before.

11We verified that the computation is feasible when fewer
than 12 papers appear in a paragraph. In the test set, 840
instances (91% of the data) met this condition. In this study,
“paragraph” refers to the highest-level division within the re-
lated work section, as described in Section 2. It may corre-
spond to a relatively long unit such as a subsection. Paragraphs
that cite more than 12 papers are often composed of several
smaller paragraphs. Therefore, adjusting the number of clus-
ters usually addresses these cases.
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ρ τ

Year-Only .447 .418

LLaMA Mistral Qwen
ρ τ ρ τ ρ τ

LLMbase .414 .387 .376 .346 .390 .360
Mbase .354 .313 .339 .301 .352 .309
Mextd .452 .414 .446 .409 .456 .417
M\year .403 .369 .423 .390 .420 .387
M\auth .441 .402 .451 .413 .452 .413
M\cite .449 .406 .438 .399 .439 .403
M\seed .443 .408 .442 .408 .441 .404

Table 6: Experimental results of citation ordering within
a paragraph.

Results Table 6 shows the experimental results
for citation ordering within a paragraph. The
Year only baseline outperforms the LLMbase of
all LLMs, suggesting that publication year consid-
erably influences this task. Moreover, Mextd in
Qwen, the best-performing proposed method of all
LLMs, exceeds the Year baseline by about 0.09
points in ρ, but the τ is slightly lower. This indi-
cates that there is room for improvement in both
the estimation of weights and the definition of the
objective function.

Among the models that utilize an LLM, Mbase

performs worse than the LLMbase. However, incor-
porating additional paper features improves perfor-
mance and can surpass LLMbase. Within our pro-
posed methods, adding paper features consistently
improves performance compared to Mbase, indicat-
ing that titles and abstracts are insufficient for this
task. Furthermore, M\year shows the lowest score
among the models except for Mbase, suggesting
that publication year is a crucial feature. Mextd

achieves higher score overall, indicating that all
features may also be useful in citation ordering
within a paragraph.

6 Integrated Evaluation

Up to this point, we evaluated citation clustering,
paragraph ordering, and citation ordering within a
paragraph as separate tasks. Finally, we conduct an
integrated evaluation of the full pipeline.

While the weights obtained from the citation
clustering can be reused, the weights for paragraph
ordering and citation ordering within a paragraph
cannot be directly reused because the paragraph
structure changes with the clustering output. Thus,
starting from the set of paragraphs generated by
citation clustering, the paragraph order and citation

order are determined by reconstructing the graph.
Following the same framework as before, we

evaluate six LLM input configurations: Mbase,
Mextd, M\year, M\auth, M\cite, and M\seed.
Because paragraph representations do not use cita-
tion relationships, M\cite is not applicable to para-
graph ordering. Thus, in Mextd we use citation re-
lationships only for citation clustering and citation
ordering within-paragraph ordering; for paragraph
ordering we use the same inputs as M\cite.

6.1 Experiments

Settings Evaluation followed the same settings as
in citation ordering within a paragraph. If citation
clustering resulted in any paragraph being assigned
more than ten papers, that instance was excluded
from evaluation. Therefore the set of evaluable data
differs because the number of papers in each para-
graph varies with each model’s clustering results.
To ensure a fair evaluation, we considered only the
common subset of data evaluable across all mod-
els. We evaluated 105 instances with LLaMA and
Qwen, and 104 instances with Mistral (the test set
comprises 286 instances in total).

Compared Methods We constructed three base-
line methods to verify the effectiveness of our ap-
proach. The first was Year only baseline (Year-
Only). This model simply sorted papers in ascend-
ing order of their publication year. The second
baseline directly generated the related work sec-
tion in a zero-shot setting. This model provides the
LLM with a prompt to generate a related work sec-
tion based on a set of cited papers and the source
paper. The evaluation was performed by extracting
the citation order from the generated related work
section. In this study, we used OpenAI o1 (Ope-
nAI, 2024) and OpenAI o3-mini 12 as LLMs. The
third baseline was LLMbase. The LLMbase took
the source paper and all cited papers as input, and
is fine-tuned to generate the citation order. The
fine-tuning settings and the model inputs are the
same as those used for the LLMbase in the other
tasks.

6.2 Results

Table 7 shows the experimental results. While the
Year only baseline achieved high scores for citation
ordering within a paragraph, it performs poorly
when applied to the entire related work section.

12https://openai.com/index/
o3-mini-system-card/
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LLaMA Mistral Qwen
ρ τ ρ τ ρ τ

Year-Only .271 .238 .264 .233 .258 .228
OpenAI o1 .111 .091 .103 .085 .090 .074
o3-mini .128 .110 .113 .100 .116 .102

LLMbase .300 .261 .400 .323 .322 .272
Mbase .272 .239 .266 .234 .298 .257
Mextd .462 .402 .515 .438 .371 .322
M\year .435 .364 .488 .412 .467 .393
M\auth .468 .402 .480 .411 .364 .325
M\cite .428 .369 .406 .326 .064 .016
M\seed .337 .299 .348 .310 .387 .335

Table 7: Experimental results of integrated evaluation.

This finding indicates that while sorting based on
publication year is effective within a small unit
such as a single paragraph, it is not necessarily ef-
fective for the related work section as a whole. In
addition, the OpenAI o1 and OpenAI o3-mini show
the lowest scores among all models and methods.
Although current LLMs are capable of generating
high-quality text, we have shown that reproducing
the citation order of a human-written related work
section from a collection of cited papers is difficult.
In contrast, the LLMbase shows stable performance,
suggesting that fine-tuning the LLM can achieve
high performance. Most of the proposed methods
outperform the LLMbase, indicating the effective-
ness of our approach over simply using an LLM,
as shown in the individual tasks.

Within the proposed methods, Mbase shows the
lowest score, indicating that expanding the input
features can lead to more appropriate ordering. Ad-
ditionally, M\seed tends to yield a score closest to
Mbase, suggesting that information of the source
paper may be the most critical feature for citation
arrangement. Furthermore, model comparisons
reveal that Qwen generally attains lower scores
than LLaMA and Mistral. In particular, the M\cite
variant shows a markedly lower score, which we
believe is due to the influence of the citation clus-
tering performance, suggesting that prompt-tuning
may be necessary for each model.

7 Related Work

7.1 Citation Recommendation
Citation recommendation is a task that suggests
relevant research to cite during paper writing and
can be broadly categorized into local and global
citation recommendation.

Local citation recommendation, first proposed

by He et al. (2010), uses contextual information
from the source paper to recommend appropriate
citations. Initially, methods utilizing TF-IDF and
neural networks were introduced (He et al., 2010;
Huang et al., 2014). Recently, methods based on
deep neural networks and transformer-based ap-
proaches have shown high performance (Gu et al.,
2022; Ghosh Roy and Han, 2024). However, be-
cause local citation recommendation relies on con-
textual information, it is not well-suited for assist-
ing during the early stages of writing.

Global citation recommendation aims to recom-
mend relevant research for the entire paper (McNee
et al., 2002). The advancement of deep learning
has enabled high performance through models such
as SPECTER (Cohan et al., 2020) and SciNCL (Os-
tendorff et al., 2022), which are trained on scientific
papers. However, existing studies mainly focus on
whether a paper should be cited, and the determi-
nation of citation order remains underexplored.

7.2 Scientific Paper Generation

Related work section of scientific papers has been a
particular focus in research on automatic text gener-
ation. Research on generating the related work sec-
tion was first undertaken by Hoang and Kan (2010).
With the development of deep learning techniques,
many generative methods employing transformer-
based models have been proposed (AbuRa’ed et al.,
2020; Chen et al., 2022). In recent years, research
has also focused on the automatic generation of
related work section using LLMs such as GPT-
4, which enables high-quality sentence genera-
tion (Martin-Boyle et al., 2024; Li and Ouyang,
2025). However, most existing methods predefine
the citation order of cited papers, and a mecha-
nism to automatically determine the citation order
remains underexplored (Li and Ouyang, 2024).

Some studies have attempted to generate entire
scientific papers (Taylor et al., 2022; Lu et al., 2024;
Yamada et al., 2025). Taylor et al. (2022) devel-
oped a model called Galactica and released a demo
that automatically generates survey papers. Addi-
tionally, Lu et al. (2024) introduced a model called
The AI Scientist, in which an LLM handles every-
thing from idea generation to full paper creation.
However, the quality of the papers automatically
generated by these models is insufficient, and that
scientific paper generation requires a more fine-
grained approach.
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8 Conclusion

In this paper, we proposed a novel task, citation
arrangement, which aims to enable fully automatic
generation of related work sections by arranging
cited papers in an appropriate order. To address
this task, we decomposed citation arrangement into
three tasks: citation clustering, paragraph ordering,
and citation ordering within a paragraph, and pro-
posed an approach that incorporates LLM and a
graph-based method for each task. For our experi-
ments, we constructed a dataset from PDFs of pa-
pers published at conferences on natural language
processing. Our experimental results demonstrated
that our method achieves performance comparable
to or better than the baselines for each of the tasks,
and in addition, for the integrated evaluation, it con-
siderably outperforms some of the baselines. Fur-
thermore, we demonstrated that task performance
is influenced by the input features, and ablation
studies identified that publication year and source
paper information are often particularly beneficial.

Limitations

This study has three main limitations. The first
limitation concerns estimating the number of para-
graphs. In our current approach, we extract the
number of paragraphs directly from the source pa-
per during citation clustering. However, fully au-
tomating the process would require automatically
estimating the appropriate number of paragraphs.
Although we believe it may be possible to esti-
mate the number of paragraphs based on the edge
weights of the constructed graph, we leave this
topic outside the scope of this paper.

The second limitation concerns the development
of an effective algorithm for paper ordering when
a paragraph contains a large number of cited pa-
pers. For our evaluation, we excluded cases with
a high number of citations per paragraph. In prac-
tice, paragraphs containing a large number of cited
papers are relatively rare, and clustering allows
us to control the number of papers per paragraph;
therefore we do not consider this to be a notable
limitation.

The third limitation is that our evaluation does
not assess the performance of generating the re-
lated work section. In this study, we focused on
citation arrangement as a crucial step toward fully
automatic related work section generation. How-
ever, the extent to which our approach improves
the overall quality of automatically generated re-

lated work sections remains unclear. Future work
will evaluate the integration of our method with
complete related work section generation.
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Method Title Abstract Year of publication Author Citation linkage Source paper

Citation
clustering,
Citation
ordering
within a
paragraph

Mbase ✓ ✓
Mextd ✓ ✓ ✓ ✓ ✓ ✓
M\year ✓ ✓ ✓ ✓ ✓
M\auth ✓ ✓ ✓ ✓ ✓
M\cite ✓ ✓ ✓ ✓ ✓
M\seed ✓ ✓ ✓ ✓ ✓
LLMbase ✓ ✓ ✓ ✓ ✓

Paragraph
ordering

Mbase ✓ ✓
Mextd ✓ ✓ ✓ ✓ ✓
M\year ✓ ✓ ✓ ✓
M\auth ✓ ✓ ✓ ✓
M\cite ✓ ✓ ✓ ✓ ✓
M\seed ✓ ✓ ✓ ✓
LLMbase ✓ ✓ ✓ ✓ ✓

Table 8: Input information used by each proposed method.

You are a researcher specializing Natural Language Processing.
I am writing scientific paper with the following title and abstract.
Title:{Title of Source Paper}
Abstract:{Abstract of Source Paper}
Please sort the following {# of paragraphs} clusters based on their topics to determine the order in which they should
appear in the related work section.
**references**
**Cluster1**
Title:{Tit. of paper1 in paragraph1}, Abstract:{Abs. of paper1 in paragraph1}, Author:{Auth. of paper1 in paragraph1},
Year of Publication:{Year of Pub. of paper1 in paragraph1}
Title:{Tit. of paper2 in paragraph1}, Abstract:{Abs. of paper2 in paragraph1}, Author:{Auth. of paper2 in paragraph1},
Year of Publication:{Year of Pub. of paper2 in paragraph1}
· · ·
**Cluster2**
Title:{Tit. of paper1 in paragraph2}, Abstract:{Abs. of paper1 in paragraph2}, Author:{Auth. of paper1 in paragraph2},
Year of Publication:{Year of Pub. of paper1 in paragraph2}
Title:{Tit. of paper2 in paragraph2}, Abstract:{Abs. of paper2 in paragraph2}, Author:{Auth. of paper2 in paragraph2},
Year of Publication:{Year of Pub. of paper2 in paragraph2}
· · ·

Table 9: Prompt used in LLMbase of paragraph ordering.

a paragraph. Table 11 shows the prompt for the
Mbase of citation clustering, Table 12 shows the
prompt for Mextd of citation clustering and cita-
tion ordering within a paragraph, and Table 13
shows the prompt for paragraph ordering. Table 14
show the prompt used by OpenAI o1 and OpenAI
o3-mini to generate the related work section.
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You are a researcher specializing Natural Language Processing.
I am writing scientific paper with the following title and abstract.
Title:{Title of Source Paper}
Abstract:{Abstract of Source Paper}
Please order the following {# of cited papers} references in the order they should be mentioned in the paper. You can
rely on the year of publication to order references.
**references**
Title:{Tit. of paper1}, Abstract:{Abs. of paper1}, Author:{Auth. of paper1}, Year of Publication:{Year of Pub. of paper1}
Title:{Tit. of paper2}, Abstract:{Abs. of paper2}, Author:{Auth. of paper2}, Year of Publication:{Year of Pub. of paper2}
· · ·

Table 10: Prompt used in LLMbase of citation ordering within a paragraph.

Please output 1 if **Cited Paper1** and **Cited Paper2** belong in the same paragraph in the related work section,
and 0 otherwise.
**Paper1**
Title:{Tit. of paper1}, Abstract:{Abs. of paper1}
**Paper2**
Title:{Tit. of paper2}, Abstract:{Abs. of paper2}

Table 11: Prompt used in Mbase of citation clustering.

**Seed Paper**
Title:{Title of Source Paper}
Abstract:{Abstract of Source Paper}
**Paper1**
Title:{Tit. of paper1}, Abstract:{Abs. of paper1}, Author:{Auth. of paper1}, Year of Publication:{Year of Pub. of paper1}
**Paper2**
Title:{Tit. of paper2}, Abstract:{Abs. of paper2}, Author:{Auth. of paper2}, Year of Publication:{Year of Pub. of paper2}
**Citation linkage**
{True or False}

Table 12: Prompt used in Mextd of citation clustering and all models of citation ordering within a paragraph.

**Seed Paper**
***Cluster1**
Title:{Tit. of paper1 in paragraph1}, Abstract:{Abs. of paper1 in paragraph1}, Author:{Auth. of
paper1 in paragraph1}, Year of Publication: {Year of Pub. of paper1 in paragraph1}
Title:{Tit. of paper2 in paragraph1}, Abstract:{Abs. of paper2 in paragraph1}, Author:{Auth. of
paper2 in paragraph1}, Year of Publication:{Year of Pub. of paper2 in paragraph1}
· · ·
**Cluster2**
Title:{Tit. of paper1 in paragraph2}, Abstract:{Abs. of paper1 in paragraph2}, Author:{Auth. of paper1 in paragraph2},
Year of Publication:{Year of Pub. of paper1 in paragraph2}
Title:{Tit. of paper2 in paragraph2}, Abstract:{Abs. of paper2 in paragraph2}, Author:{Auth. of paper2 in paragraph2},
Year of Publication:{Year of Pub. of paper2 in paragraph2}
· · ·

Table 13: Prompt used in proposed method of paragraph ordering.

You are a researcher specializing Natural Language Processing. I am writing scientific paper with the following
title and abstract.
Title:{Title of Source Paper}
Abstract:{Abstract of Source Paper}
Please generate the related work section of this paper in exactly {# of paragraphs} paragraphs by citing all references
only once and rearranging them in the optimal order. Also, please use markers such as [1] and [2] when citing it.
**references**
Title:{Tit. of paper1}, Abstract:{Abs. of paper1}, Author:{Auth. of paper1}, Year of Publication:{Year of Pub. of paper1}
Title:{Tit. of paper2}, Abstract:{Abs. of paper2}, Author:{Auth. of paper2}, Year of Publication:{Year of Pub. of paper2}
· · ·

Table 14: Prompt input into OpenAI o1 and OpenAI o3-mini to generate related work section.
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