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Abstract

We present JPHARMATRON, a Japanese
domain-specific large language model (LLM)
for the pharmaceutical field, developed through
continual pre-training on two billion Japanese
pharmaceutical tokens and eight billion En-
glish biomedical tokens. For rigorous evalua-
tion, we introduce JPHARMABENCH, a bench-
mark suite consisting of three new benchmarks:
YakugakuQA, based on national pharmacist li-
censing exams; NayoseQA, which tests cross-
lingual synonym and terminology normaliza-
tion; and SogoCheck, a novel task involving
cross-document consistency checking. We eval-
uate our model against open-source medical
LLMs and commercial models, including GPT-
4o. Experimental results show that JPHARMA-
TRON outperforms existing open models and
achieves competitive performance with com-
mercial ones. Interestingly, even GPT-4o per-
forms poorly on SogoCheck, suggesting that
cross-sentence consistency reasoning remains
an open challenge. JPHARMATRON enables
secure and local model deployment for phar-
maceutical tasks, where privacy and legal con-
straints limit the use of closed models. Besides,
JPHARMABENCH offers a reproducible frame-
work for evaluating Japanese pharmaceutical
natural language processing. Together, they
demonstrate the feasibility of practical and cost-
efficient language models for Japanese health-
care and pharmaceutical sectors. Our model,
codes, and datasets are available on Hugging-
Face1.

1 Introduction

Large language models (LLMs) have achieved
remarkable performance across a wide range of
general-purpose natural language processing (NLP)
tasks. However, their effectiveness remains lim-
ited in domain-specific settings such as manufac-

*Equal contributions. ∗∗Independent researcher.
1https://huggingface.co/collections/EQUES/

jpharmatron and /jpharmabench.

Figure 1: JPHARMATRON and JPHARMABENCH.
The pipeline for data curation, continual pre-training,
and evaluation of JPHARMATRON.

turing, finance, and medicine (Islam et al., 2023;
Hager et al., 2024; Zhang et al., 2024), where
deep contextual understanding and precise termi-
nology handling are required. In these domains,
general-purpose LLMs often fall short due to inad-
equate domain knowledge and difficulty handling
complex or specialized queries. Moreover, while
domain-specific fine-tuning can enhance surface-
level performance, it has been shown that this does
not necessarily lead to genuine knowledge acquisi-
tion (Zhou et al., 2023).

The pharmaceutical domain is no exception. In
particular, the Japanese pharmaceutical industry
faces significant administrative overhead in tasks
such as document preparation, verification, and reg-
ulatory compliance, often governed by standards
such as Good Manufacturing Practices (Chaloner-
Larsson et al., 1999) and the International Council
for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use guidelines2. De-
spite these challenges, little work has been done to
develop LLMs tailored for pharmaceutical opera-

2https://www.ich.org/page/ich-guidelines
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Figure 2: Performance comparison with Med-
itron. JPHARMATRON consistently achieves higher
scores than Meditron (Chen et al., 2023) across
JPHARMABENCH, IgakuQA (Kasai et al., 2023), and
JMMLU (Yin et al., 2024).

tions, especially in Japanese.
In this work, we provide a complete methodol-

ogy from data collection to evaluation, as depicted
in Figure 1. First, we present JPHARMATRON, a
Japanese LLM specialized for pharmaceutical op-
erations. To build JPHARMATRON, we perform
continual pre-training (CPT) of the Qwen2.5 (Yang
et al., 2024) model using a curated corpus con-
sisting of Japanese pharmaceutical journals, web
resources, and synthetic data (Appendix C). Unlike
prior work focusing on drug discovery (Chaves
et al., 2024; Tsuruta et al., 2024), our model tar-
gets real-world operational tasks, such as document
standardization and terminology normalization.

To evaluate pharmaceutical capabilities, we in-
troduce three novel benchmarks: (1) YakugakuQA
(§3.1): a multiple-choice question-answering (QA)
benchmark based on the Japanese National Li-
cense Examination for Pharmacists; (2) NayoseQA
(§3.2): a paraphrasing benchmark for standardizing
drug names and active substances; (3) SogoCheck
(§3.3): a cross-document consistency check task
that reflects real administrative workflows.

These benchmarks, collectively referred to as
JPHARMABENCH, are designed to reflect practical
scenarios encountered in pharmaceutical compa-
nies, particularly in regulatory and clerical opera-
tions. To the best of our knowledge, this is the first
benchmark suite for evaluating LLMs in Japanese
pharmaceutical applications.

We evaluated JPHARMATRON using in-context

learning with JPHARMABENCH and two existing
benchmarks. Without task-specific fine-tuning,
JPHARMATRON outperformed similar-sized LLMs
including Meditron (Chen et al., 2023), a medical
domain-specific model, by 7.9% on YakugakuQA
and by 23.3% on the pharmaceutical subset of
JMMLU (Yin et al., 2024), as highlighted in Fig-
ure 2. These results demonstrate the limited trans-
fer ability of medical domain-specific LLMs, as
well as underscoring the need for pharmaceutical-
specific models.

In summary, our contributions are threefold:

• We introduce the first LLM and evalua-
tion benchmarks specifically designed for
Japanese pharmaceutical NLP.

• Our benchmark design is inspired by concrete
industrial problems, ensuring alignment with
real-world regulatory and operational work-
flows.

• Together, the model and benchmarks provide
a practical and reproducible foundation for de-
veloping domain-specific LLMs in regulated
industries such as pharmacy.

2 Related Work

Models and benchmarks in healthcare. There
has been growing interest in the development of
domain-specific LLMs and evaluation benchmarks
in the medical and clinical fields. This trend spans
multiple languages with significant efforts in En-
glish (Singhal et al., 2023a,b; Chen et al., 2023),
Chinese (Li et al., 2023; Chen et al., 2025), and
also Japanese (Sukeda et al., 2023, 2024a,b) to
align LLM capabilities with healthcare expertise.

Despite advances in medicine, the pharma-
ceutical domain remains relatively underexplored
in LLM research. Only a handful of models
such as PharmaGPT (Chen et al., 2024) and Tx-
LLM (Chaves et al., 2024) have been developed
with a pharmaceutical focus, and none of them
are publicly available. Evaluation benchmarks for
pharmaceutical LLMs are also notably limited, es-
pecially in non-English contexts. Existing evalu-
ations have largely relied on the North American
Pharmacist Licensure Examination (Ehlert et al.,
2024; Chen et al., 2024), with no publicly available
pharmaceutical QA datasets in Japanese. Existing
benchmarks including medical topics (Hendrycks
et al., 2021; Yin et al., 2024; Kasai et al., 2023) do
not feature pharmaceutics as a distinct category.
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Even with the rapid progress of LLMs by 2025,
relatively basic multiple-choice exam–style bench-
marks remain important for evaluating core do-
main knowledge before addressing more complex
tasks. In pharmaceutics, where terminology, reg-
ulations, and practical contexts differ from those
in medicine, such controlled tasks serve as reliable
diagnostics of foundational understanding. Still,
these benchmarks alone are insufficient to assess a
model’s practical applicability. To bridge this gap
between academic evaluation and real-world utility,
we constructed three complementary datasets: one
emphasizing academic coverage and two reflecting
practical, real-world use cases.

Mid-training of LLMs. Recent studies have ex-
plored mid-training as an efficient approach to fur-
ther develop the capability of a pre-trained LLM
(Abdin et al., 2024). Specifically, continual pre-
training (CPT) is a promising method of domain
adaptation (Fujii et al., 2024). Instead of training
from scratch, which is computationally prohibitive,
CPT continues the pre-training process using high-
quality, domain-specific corpora. This approach
allows the model to maintain broad linguistic and
reasoning capabilities while incrementally acquir-
ing specialized knowledge. CPT particularly suits
our setting because the Japanese pharmaceutical
domain requires precise terminology understand-
ing and document-style fluency. This domain is
poorly represented in general web data, yet lacks
the massive domain corpora needed for full-scale
training. CPT therefore enables effective special-
ization under limited compute and data availability.

3 JPHARMABENCH

To evaluate language models in the Japanese phar-
maceutical domain, we constructed three novel
benchmarks. Each of them reflects a different type
of reasoning or knowledge required in real-world
pharmaceutical practice: factual recall, terminol-
ogy normalization, and inconsistency detection (Ta-
ble 1). All benchmarks are based on publicly avail-
able data and are processed by LLMs and human
experts. In addition, they are structured as QA
tasks, allowing automated evaluation.

3.1 YakugakuQA: National Licensing Exam

YakugakuQA is a QA dataset based on the Japanese
National License Examination for Pharmacists ad-
ministered by the Ministry of Health, Labour and
Welfare. While most questions follow a five-choice

� �
Which of the following is not an ideal property
of a dilute solution? Choose one.
1. Vapor pressure lowering
2. Freezing point depression
3. Boiling point elevation
4. Surface tension reduction
5. Osmotic pressure� �

Figure 3: An example question from the Japanese
National License Examination for Pharmacists. The
model is required to output “4” in this case.

single-answer format, some questions allow mul-
tiple selections or include more than five options
(Figure 3).

To construct YakugakuQA, we collected the
exam data (i.e., questions, answers and commen-
taries) from 2012 to 2024, available at yakugaku
lab3. These samples were then cleansed using
HTML parsing, space removal, and word normal-
ization.

Further, to ensure the authenticity of the bench-
mark and facilitate the future use, we manually
added metadata indicating whether a question is
valid, based on the announcement issued after the
examination from the Ministry of Health, Labour
and Welfare. An invalid question may include
contradiction in itself or allow multiple answers
even for a single-choice question. Another meta-
data field manually added contains the category
of a problem, spanning across nine related areas:
pharmacy, pharmacology, chemistry, pathology, hy-
giene, physics, practice, law, and biology (Table 4
in Appendix).

3.2 NayoseQA: Synonym and Terminology
Normalization

NayoseQA evaluates LLMs’ ability to handle lexi-
cal variation and term normalization in pharmaceu-
tical texts written in Japanese. The task focuses on
resolving different surface forms of the same under-
lying drug or chemical entity, including Japanese
name ↔ English name, brand name ↔ generic
name, and chemical name ↔ common name.

This type of task, conventionally referred to as
“nayose” in Japanese, is routinely performed in
the pharmaceutical industry. It involves linguistic
and domain-specific reasoning to recognize syn-
onymous terms for pharmaceutical compounds. In

3https://yakugakulab.info/
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Benchmark Format Main Skill Source #Examples Language(s)

YakugakuQA 5-or-more-choice QA Factual recall Licensing exams 3,021 Japanese
NayoseQA 5-choice QA Terminology normalization KEGG DRUG Database 34,769 Japanese / English
SogoCheck Sentence pair Inconsistency detection Japanese Pharmacopoeia 200 Japanese

Table 1: An overview of JPHARMABENCH, the three pharmaceutical benchmarks for evaluation. Each task is
designed to assess different capabilities of LLMs in domain-specific settings.

real-world pharmaceutical practices in Japan, such
variations are common due to regulatory terminol-
ogy, manufacturer-specific branding, and historical
naming conventions. Accurately interpreting and
normalizing these variations is essential for drug
interaction checks, medical record standardization,
and multilingual information retrieval.

NayoseQA is also a multiple-choice bench-
mark. To construct NayoseQA, we first collected
headline entries and the corresponding different
names from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database4. Next, we used a
Japanese LLM, DeepSeek-R1-Distill-Qwen-32B-
Japanese (Ishigami, 2025), to generate incorrect
choices. These choices were further verified by
Qwen2.5-72B and human participants to ensure
authenticity.

3.3 SogoCheck: Inconsistency Detection in
Paired Documents

SogoCheck is a multiple-choice, multiple-answer
benchmark assessing how accurately LLMs can de-
tect logical or factual inconsistencies5 between two
pieces of pharmaceutical text. Unlike factual bench-
marks asking whether a synthetic document con-
tains factual errors (Zhao et al., 2023), SogoCheck
focuses on cross-text consistency.

The task is inspired by a common practice in
pharmaceutical quality assurance in Japan, where
experts conduct consistency reviews to cross-
validate information across documents such as
package inserts, internal quality assurance logs,
and regulatory submissions. This benchmark is par-
ticularly valuable because detecting inconsistencies
is crucial in practical workflows such as regulatory
review, where conflicting information can lead to
severe medical or legal consequences.

In this task, we provide a model with a pair of
Japanese documents. The model is then asked to
check their explicit and implicit consistency. Some
inconsistencies are trivial (e.g., numerical mistakes,
see Figure 4), while others require pharmacological

4https://www.genome.jp/kegg/drug/
5Referred to as “sogo” in the industry.

� �
Text A: Storage method: sealed container. Temperature

below 25◦C. Humidity below 60%.

Text B: Storage method: sealed container. Temperature

below 26◦C. Humidity below 61%.

Label: Change in temperature, Change in humidity� �
Figure 4: One of the simplest examples from So-
goCheck. The numbers are inconsistent across two
inputs. Note that most of the questions involve longer
text pairs (1858 Japanese letters on average) which con-
tain multiple discrepancies with different labels.

reasoning or recognition of subtle semantic contra-
dictions (Figure 8 in Appendix). Note that a pair
may even contain multiple types of inconsistencies.
The model also needs to classify each inconsistency
into a predefined set of labels (Appendix B.3). The
evaluation metric is the accuracy of the detected
line and predicted label.

To construct SogoCheck, we used the Japanese
Pharmacopoeia6 as the primary source. It provides
detailed information on individual pharmaceuticals
circulating in Japan, such as a general description,
chemical information (e.g., the chemical formula),
an identification test to confirm the identity of the
substance, and a purity test to detect impurities.
We then randomly sampled 200 medicines and ex-
tracted the identification test section, which we
used as one of a pair for each sample. Then, we
used the same LLM as we used for NayoseQA to
generate inconsistencies based on the candidate la-
bels, before undergoing the same validation process
as NayoseQA. The labels and the specific prompt
we used are shown in Appendix B.3.

3.4 Statements on Data Contamination

The original sources used for creating our pro-
posed benchmarks, particularly YakugakuQA and
NayoseQA, may be contained in the pre-training
data of some of the models we evaluate, such as
GPT-4o and Qwen2.5, which is an acknowledged

6https://www.mhlw.go.jp/stf/seisakunitsuite/
bunya/0000066530.html
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challenge in the literature. However, our experi-
ments did not show any explicit signs of contami-
nation, such as 100% accuracy. This indicates that
the utility of our benchmarks is not impaired. Since
the current literature lacks even simple, multiple-
choice benchmarks for the pharmaceutical domain,
we believe that our benchmark will be an important
contribution to the community.

Moreover, our SogoCheck benchmark consists
of synthetic examples that are novel and highly
unlikely to be present in any model’s training data.
The low overall performance on this task shown in
Section 5.2, even by GPT-4o, suggests that it poses
an unsolved challenge that cannot be overcome
simply by memorization.

4 JPHARMATRON

We developed JPHARMATRON through CPT based
on Qwen2.5-7B (Yang et al., 2024), a multilingual
open-source LLM that also supports Japanese, and
evolutionary merging. This base model was cho-
sen for its strong general performance, multilingual
capacity, and availability under a commercially per-
missible license. See Appendix C.4 for further
details.

We curated the training corpus from publicly
available sources chosen to enhance the model’s ca-
pability to solve practical tasks using professional
knowledge. See Appendix C for details on the data
curation process. We prepared three variations of
the training corpus, resulting in these three models:

2B tokens: Approximately 2B Japanese tokens
sourced from pharmaceutical-related documents
such as journal papers and drug package inserts.

10B tokens: The above 2B Japanese tokens com-
bined with an additional 8B English tokens from
PubMed abstracts (Appendix C.1).

9B tokens (deduped): Based on the 10B-token
corpus, further augmented with 1.2B tokens from
the CC100 multilingual dataset (Conneau et al.,
2020; Wenzek et al., 2020). After removing dupli-
cates, the number of tokens was finally 9B tokens.
This corpus is expected to be of higher quality than
the 10B variant.

We emphasize that our goal was not to outper-
form proprietary LLMs such as GPT-4o, but to
develop a practically deployable model as the first
baseline that balances accuracy, efficiency, and pri-
vacy for real-world use in Japanese pharmaceutical

contexts. This lightweight domain adaptation strat-
egy enables enterprises to build specialized models
without large-scale resources (§6.2).

5 Evaluation

5.1 Experimental Setups
We evaluated our domain-specific model against
(1) general-purpose Japanese LLMs (viz., Swal-
low series or equivalent), (2) a medical LLM
(viz., Meditron)7, and (3) GPT-4o via the Ope-
nAI API. The evaluation was conducted across
JPHARMABENCH, toghether with two existing
Japanese medical benchmarks: IgakuQA (Kasai
et al., 2023) and the pharmaceutical subset of
JMMLU. This setup enables direct comparison
with prior work.

Each model was prompted once with three-shot
examples (Appendix B) using identical hyperpa-
rameters (temperature = 0.8, top-p = 0.95, max
tokens = 4096). Accuracy was computed by exact
match, with models selecting one or more answers
as appropriate.

Note that some questions in YakugakuQA re-
quire visual input, e.g., identifying a chemical re-
action depicted in the image. Such image-based
questions are outside the scope of our research and
were therefore excluded from the experiments. Fi-
nally, see Table 4 for the number of questions by
year and category used in our experiments.

5.2 Quantitative Results
Table 2 shows the models’ accuracy on each bench-
mark. While GPT-4o achieved the highest over-
all accuracy, as expected from a frontier com-
mercial LLM, our domain-specific model consis-
tently outperformed both Meditron and the general-
purpose Japanese models across all tasks. This
highlights the effectiveness of domain-specific CPT
in Japanese, and establishes our model as the
strongest open baseline for Japanese pharmaceuti-
cal NLP tasks.

Breaking down by benchmark, on YakugakuQA,
our model achieved an accuracy of 62.0%, out-
performing Meditron3-Qwen2.5-7B by 7.9 points.
This result suggests that factual pharmaceutical
knowledge can be effectively captured through
CPT, even without training from scratch. In ad-
dition, specialization in the medical domain alone

7We used Meditron3-Qwen2.5-7B from OpenMeditron for
comparison, as the older version (Chen et al., 2023) lacks
sufficient Japanese support and our model is also based on
Qwen2.5-7B, ensuring fair evaluation.
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may be insufficient for handling pharmaceutical
tasks effectively. The accuracy results by categories
are listed in Table 3, together with additional larger
models for reference: Llama-3.1-Swallow-70B (Fu-
jii et al., 2024), Qwen2.5-72B-Instruct (Yang et al.,
2024), and o1-preview via OpenAI API.

In NayoseQA, which tests synonym normal-
ization and cross-lingual terminology mapping,
the performance gap between our domain-specific
model and the general-purpose model (Llama-3.1-
Swallow) was surprisingly small. This suggests
that the task primarily requires lexical and seman-
tic matching capabilities rather than deep domain-
specific pharmaceutical knowledge. Although do-
main adaptation improved performance modestly,
it appears that general-purpose LLMs with strong
multilingual and synonym handling capabilities can
already perform well on such terminology normal-
ization tasks. We thus argue that future pharmaceu-
tical LLM development efforts may benefit more
from enhancing complex reasoning and factual re-
call abilities rather than focusing solely on termi-
nology alignment.

Finally, SogoCheck proved to be challenging for
all models. While one of our models outperformed
Meditron by 7.1 points, the absolute accuracy re-
mained low. Notably, even GPT-4o achieved only
39.1% accuracy, suggesting that subtle consistency
detection in specialized domains remains an open
research challenge. Interestingly, many SogoCheck
examples were intentionally designed to be solv-
able by simple textual comparison — identifying
surface-level differences without requiring deep
reasoning (see Figure 4). Despite this, LLMs of-
ten failed to detect such inconsistencies, indicating
that current models still struggle with fine-grained
semantic alignment even when superficial textual
clues are available. This gap between human intu-
ition and model behavior highlights a critical limi-
tation in today’s LLM architectures.

5.3 Error Analysis

To identify common failure patterns and inform
future improvements in domain-specific LLMs, we
analyze the 16.4% of questions in YakugakuQA
that were answered incorrectly by GPT-4o.

Positional bias. Consistent with previous
works (Marchisio et al., 2024; Trung et al.,
2024), we observed a positional bias in GPT-4o’s
responses on YakugakuQA, where the model
exhibited a tendency to favor the first answer

choice. Specifically, it chose option “1” more
times than there were questions with the correct
option “1” (Figure 5a). This, combined with the
highest error rate of the option “1” (Figure 5b),
indicates a positional bias toward the first option.

Single vs. multiple-choice question. GPT-4o
exhibited a 4.4% higher error rate on multiple
choice questions compared to single-answer ques-
tions (Figure 5c).

Question category. Figure 5d shows that error
rates for chemistry and physics are around 25%,
while those for biology and pathology are be-
low 10%. This indicates that GPT-4o performs
better in biology and pathology, but struggles
with calculation-heavy questions in chemistry and
physics (Ahn et al., 2024; Li et al., 2024b). The
higher performance in biology and pathology may
stem from the prevalence of general knowledge,
single-answer questions in these domains. This pat-
tern is commonly observed across various LLMs,
as shown in Table 3, and also in JMMLU as shown
in Table 6.

Complex questions. Based on the previous
observation, we employed Qwen2.5-72B-
Instruct (Yang et al., 2024) to annotate questions
that require complex reasoning or calculations,
following the LLM-as-a-Judge framework (Li
et al., 2024a). Although such questions accounted
for fewer than 500 of the 3,021 total questions,
they exhibited an error rate of 34.1% (Figure 5e).
These results suggest that top-tier LLMs still
struggle with calculation-intensive tasks within the
pharmaceutical domain.

6 Discussion

6.1 Impact of Our Benchmark Suite

Our benchmark suite is designed to evaluate a di-
verse range of capabilities required for pharma-
ceutical NLP. While existing benchmarks such as
IgakuQA and JMMLU primarily focus on factual
recall, our benchmarks better reflect the demands
of real-world pharmaceutical decision-making, as
discussed in §3.

The evaluation results confirm that this broader
scope offers meaningful insights. On YakugakuQA
and NayoseQA, JPHARMATRON showed consis-
tent improvements over the baselines, suggesting
that domain-specific CPT effectively enhances fac-
tual recall and term-level understanding. In con-
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Model YakugakuQA NayoseQA SogoCheck IgakuQA JMMLU

(1) TinySwallow-1.5B-Instruct 37.2 35.3 3.1 39.0 32.1
sarashina2.2-3b-instruct 46.2 45.6 0.66 41.6 37.8
Llama-3-Swallow-8B-Instruct-v0.1 42.6 29.8 - 41.5 20.6
Llama-3.1-Swallow-8B-Instruct-v0.3 48.2 57.6 - 45.2 44.0

(2) Meditron3-Qwen2.5-7B 54.1 58.3 19.6 58.8 31.7

(3) GPT-4o 83.6 86.0 39.1 86.6 79.1

Ours JPHARMATRON-7B / 2B tokens 60.7 58.3 12.5 62.3 55.0
JPHARMATRON-7B / 10B tokens 54.8 62.6 22.0 60.1 48.7
JPHARMATRON-7B / 9B tokens (deduped) 62.0 60.9 26.7 64.7 53.2

Table 2: Performance of our LLMs in five pharmaceutical-related benchmarks, compared to (1) a general-
purpose Japanese LLM (Swallow series, or equivalent), (2) a medical LLM (Meditron), and (3) GPT-4o. Each value
shows the accuracy (%). “-” denotes the lack of instruction-following capability to solve each task. The top two
models for each task are highlighted in bold.

Model Biology Chemistry Hygiene Law Pathology Pharmacology Pharmacy Physics Practice Overall

TinySwallow-1.5B-Instruct 41.1 21.9 34.4 46.5 44.3 27.8 36.9 32.4 38.0 37.2
sarashina2.2-3b-instruct 46.3 36.7 45.8 56.2 56.6 37.8 41.5 29.2 48.6 46.2
Qwen2.5-7B-Instruct 69.1 18.2 52.9 54.3 65.0 46.6 47.4 49.4 55.7 53.9
Meditron3-Qwen2.5-7B 69.1 24.0 54.4 57.5 63.8 47.4 49.1 45.1 54.0 54.1
Llama-3-Swallow-8B-Instruct-v1 46.0 26.4 45.6 56.1 47.3 31.8 34.6 30.2 46.5 42.6
Llama-3.1-Swallow-8B-Instruct-v3 56.4 18.8 48.5 57.5 56.9 42.1 39.4 34.6 49.7 48.2
Llama-3.1-Swallow-70B-Instruct-v1 81.7 41.4 71.2 70.0 82.1 71.1 66.5 55.5 68.6 70.9
Qwen2.5-72B-Instruct 89.8 51.5 72.2 72.5 84.4 76.4 68.7 62.8 70.0 73.6

GPT-4o 94.4 76.1 80.9 83.4 92.1 88.7 81.8 72.6 78.6 83.6
o1-preview 93.3 88.3 88.1 83.3 93.2 90.8 85.0 89.1 84.5 87.9

JPHARMATRON-7B / 2B tokens 80.9 28.4 55.9 66.6 71.5 55.7 55.1 55.2 58.6 60.7
JPHARMATRON-7B / 10B tokens 70.8 19.3 53.6 57.3 66.9 46.2 48.8 51.7 55.3 54.8
JPHARMATRON-7B / 9B tokens (deduped) 80.5 45.7 57.9 63.8 73.8 58.4 54.9 51.6 61.3 62.0

Table 3: Accuracy of YakugakuQA comparison by category. Each value shows the accuracy (%). The top two
categories for each model are highlighted in bold. Most models excel in biology and pathology.

trast, SogoCheck presented a more difficult chal-
lenge: the 2B-tokens variant even failed to improve.
Moreover, the surprisingly low accuracy of GPT-4o
indicates that current LLMs, even the state-of-the-
art ones, struggle with subtle consistency checks in
Japanese pharmaceutical contexts.

These findings highlight the diagnostic value
of SogoCheck. Rather than being a standard QA
task, it probes semantic understanding capabili-
ties that go beyond surface-level knowledge. This
suggests that inconsistency detection, especially in
high-stakes domains such as pharmacovigilance,
requires capabilities not captured well by general-
purpose LLMs.

6.2 Deployable Domain-Specific Models:
Challenges and Prospects

This study demonstrates the feasibility of build-
ing a high-performing, domain-specific LLM in
Japanese without relying on commercial APIs. In
pharmaceutical settings, where both data sensitivity
and operational cost are critical concerns, locally
trainable models such as ours present a practical

and privacy-conscious choice. Our open-source
setup offers a replicable framework for enterprises
and researchers seeking to prepare specialized mod-
els within secure environments. Moreover, our
benchmark suite lays the groundwork for more
practical evaluations of LLMs in healthcare and
pharmaceutical contexts. In particular, tasks like
SogoCheck capture practical detection abilities that
are not assessed by conventional QA benchmarks,
thereby suggesting promising directions for future
model and dataset development.

Despite these advances, the deployment of
domain-specific models faces a critical scalability-
performance tradeoff. On the one hand, 7B-
parameter models such as JPHARMATRON are rel-
atively feasible to deploy using a small cluster of
GPUs. However, such models inevitably fall short
of the performance levels achieved by larger mod-
els (e.g., 70B). Bridging this gap without compro-
mising deployability remains an open challenge,
and we believe our work represents a meaningful
first step toward addressing this dilemma.

Our ultimate goal in this field is to achieve a
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(a) Positional bias (count) (b) Positional bias (error rate) (c) Single-choice vs. Multiple-choice

(d) Category-wise accuracy (e) Complex questions

Figure 5: Error analysis on GPT-4o’s responses in YakugakuQA.

strong and useful pharmaceutical LLM. To this
end, we need to further strengthen open models,
as commercial models are often unavailable or re-
stricted by regulations. Our experimental results,
particularly those discussed in §5.3, suggest three
directions for future work, listed in order of priority:
(i) improving performance in core subjects to reach
parity with commercial models, (ii) enhancing the
overall capabilities of LLMs, and (iii) addressing
weaknesses in lower-performing subjects. While
the best open models already achieve acceptable
performance, they still lag clearly behind their com-
mercial counterparts (Table 3). As a next step, it is
essential to evaluate how much performance can be
improved in targeted subject areas, depending on
the intended application of the model, simply by
incorporating a substantial amount of relevant train-
ing data. For the lower-performing subjects, includ-
ing chemistry and physics, both domain knowledge
and reasoning ability must be significantly strength-
ened. However, considering development costs, we
argue that addressing these weaknesses may not
be a high priority in practice, as they can often be

circumvented by narrowing the application scope.

7 Conclusion

We presented JPHARMATRON, a Japanese
domain-specific LLM for the pharmaceutical field,
trained via CPT on a bilingual pharmaceutical
corpus. Alongside the model, we introduced
JPHARMABENCH, the first benchmark suite cov-
ering a variety of pharmaceutical NLP tasks. Our
model outperforms existing open medical LLMs
across diverse pharmaceutical tasks, highlighting
that general medical specialization alone is not
sufficient for pharmaceutical applications. In par-
ticular, our benchmark includes tasks such as So-
goCheck, which reflect real-world document vali-
dation workflows unique to the pharmaceutical do-
main. Beyond releasing a domain-specific model
and benchmark, our work demonstrates the feasi-
bility of building cost-effective, specialized LLMs
deployable in secure, resource-constrained envi-
ronments, which is critical for real-world use in
privacy-sensitive domains like pharmaceuticals.
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8 Limitations

Lack of Complete Instruction-Following Ability
in LLMs

Some smaller models tend to deviate from the in-
structions, often generating output that includes
extraneous text beyond the expected format. A
common error is the inclusion of additional phrases
or explanations following a colon or line break.
To ensure a fair comparison in our experiments,
we post-processed the model outputs by extracting
only the selected choice and discarding any extra
text.

Limitations of YakugakuQA

First, questions with images need to be addressed.
In particular, the chemistry category lacks sufficient
coverage due to the high proportion of image-based
questions. While the rise of multimodal models,
especially vision-language models, is an impor-
tant development, this study focuses exclusively on
text-only LLMs. Therefore, image-based questions
were excluded from our evaluation. In the future,
this limitation should be revisited when assessing
multimodal models.

Moreover, YakugakuQA is a multiple-choice QA
task, which may not be sufficient for practical im-
plementation, although it could serve as a minimum
requirement.

Finally, the prompting strategy can also be im-
proved. In our work, we used a simple setup as
an initial step in this field. Note that in-context
learning of LLMs has the potential to boost per-
formance, as demonstrated by Medprompt (Nori
et al., 2023) in medical QA for example. This point
remains controversial (Nori et al., 2024) and was
not addressed in this study.

Limitations of NayoseQA

Although we introduce a novel benchmark
NayoseQA, its current format is limited to multiple-
choice QA. While this format enables controlled
evaluation, it may not fully reflect the practical
needs of real-world entity normalization systems,
where open-ended or instruction-following formats
are more appropriate. To address this, we have sep-
arately released an instruction-style (SQuAD (Ra-
jpurkar et al., 2016)-type) variant of NayoseQA,
which is not included in the main results but may
serve as a valuable resource for future work on
more realistic applications.

Limitations of SogoCheck

SogoCheck is currently limited in scale, with only
a small number of consistency pairs included in
the benchmark. This restricts the statistical robust-
ness of the evaluation and may limit its confidence
across different model types and domains. In ad-
dition, generating realistic inconsistencies is inher-
ently challenging. While we employed LLM-based
generation methods to create contradictory state-
ment pairs, it remains difficult to simulate subtle,
human-like inconsistencies that naturally occur in
real-world pharmaceutical texts. Developing more
authentic and diverse inconsistency examples re-
mains an open challenge for future work. Overall,
however, we believe that our proposed benchmark
serves as a valuable first step toward evaluating
practical reasoning skills not covered by the exist-
ing benchmarks.
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A Ethical Considerations

While JPHARMATRON is designed to complete
pharmaceutical tasks resembling real tasks in phar-
maceutical companies, it is not yet confirmed to
accomplish those real tasks with a professionally
acceptable level of quality. It raises several ethical
considerations that must be addressed to ensure
responsible development and deployment.

Importantly, the model may still generate factu-
ally incorrect or misleading content. We recom-
mend further fine-tuning of our model with the
company’s real data and conduct additional use-
case alignment and testing before deploying it in
real-world practice. We further emphasize that the
model is not intended for clinical use. Instead, it is
suitable for document processing tasks, where po-
tential risks can be mitigated through human review
and validation of the generated content.

The training data may contain biases related to
demographics, geographic representation, or com-
mercial interests. Additionally, if any data were
to originate from patents, proprietary databases,
or unpublished sources, there would be a risk of
inadvertently disclosing protected content or facil-
itating unauthorized reuse. Although all training
data used in this study were sourced from publicly
available datasets, we acknowledge that this issue
was not directly addressed in the current work.

B Supplementary Information on
JPHARMABENCH and JMMLU

This section describes additional details on our eval-
uation method.

We conducted our experiments in a three-shot
manner. The evaluation prompt for each bench-
mark was constructed by concatenating (1) general
benchmark description, (2) three-shot examples
and (3) a question and its choices.

B.1 YakugakuQA
As discussed in §3.1, we tallied the number of ques-
tions in YakugakuQA per category. See Table 4 for
details.

General benchmark description. Here is the
benchmark description text used for the Yaku-
gakuQA evaluation, translated into English:

Solve the Japanese National License Ex-
amination for Pharmacists. Choose all of
the correct answers.

Three-shot examples. Below are the three-shot
examples included in the prompt throughout our
experiments. All of them are originally in Japanese,
but translated into English by ChatGPT-4o mini for
this article.

Question: Which of the following
insomnia medications inhibits the orexin
receptor? Please select exactly one from
the options 1, 2, 3, 4, or 5.
1: Brotizolam
2: Flunitrazepam
3: Eszopiclone
4: Ramelteon
5: Lemborexant
Answer: 5
Question: Which two mechanisms of
action describe the effects of sacubi-
tril/valsartan? Please select exactly two
from the options 1, 2, 3, 4, or 5.
1: Inhibits neprilysin, thereby preventing
the breakdown of endogenous natriuretic
peptides, resulting in vasodilation and
diuretic effects.
2: Inhibits angiotensin II receptors,
suppressing aldosterone secretion from
the adrenal cortex, thereby causing
vasodilation.
3: Acts on ANP receptors in the blood
vessels and kidneys, activating guanylate
cyclase, resulting in vasodilation and
diuretic effects.
4: Blocks aldosterone receptors in the
collecting ducts, leading to diuretic
effects.
5: Inhibits angiotensin-converting
enzyme, thereby preventing the for-
mation of angiotensin II, resulting in
vasodilation.
Answer: 1,2
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Year Biology Chemistry Hygiene Law Pathology Pharmacology Pharmacy Physics Practice Total

2012 17 4 30 29 37 38 36 17 65 273
2013 16 3 32 28 36 34 33 11 63 256
2014 15 4 28 29 35 37 28 13 63 252
2015 8 3 26 27 35 35 31 9 60 234
2016 10 3 30 27 37 40 29 12 50 238
2017 11 2 28 26 37 36 27 10 54 231
2018 11 4 31 27 36 35 25 10 53 232
2019 9 1 28 28 32 33 26 12 46 215
2020 12 4 25 26 33 33 17 12 42 204
2021 6 2 30 27 35 30 19 10 55 214
2022 9 3 25 27 33 33 24 15 48 217
2023 10 3 23 25 27 33 22 15 47 205
2024 11 11 33 23 28 36 31 18 59 250

Table 4: The number of questions used in our experiments by year and category. Questions with visual inputs
have been excluded from this table and our experiments.

Question: Which of the following
migraine prophylactic drugs inhibits
calcitonin gene-related peptide (CGRP)?
Please select exactly one from the
options 1, 2, 3, 4, or 5.
1: Basiliximab
2: Trastuzumab
3: Benralizumab
4: Galcanezumab
5: Tocilizumab
Answer: 4

Sample question from YakugakuQA. Figure 6
is the original Japanese format corresponding to
Figure 3 in the main text.

Figure 6: A sample question from YakugakuQA, in
its original Japanese text.

B.2 NayoseQA
General benchmark description. Here is the
general benchmark description used for NayoseQA,
translated in English:

Please select one of the following op-
tions. Do not output your reasoning, only

provide the answer.

Sample questions from NayoseQA. Figure 7
shows three sample questions from NayoseQA.
The first question is about a chemical compound,
while the remaining two involve translation tasks
between English and Japanese.

Figure 7: Three sample questions from NayoseQA.
The first question asks the chemical formula for
water. The second and third questions are about
Japanese/English translation for water.
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B.3 SogoCheck
General benchmark description. Below is
the general benchmark description used for So-
goCheck, translated into English.

The provided [Test Method Document]
is highly likely to contain discrepancies
such as those listed in the [List of Poten-
tial Discrepancy Aspects]. Please extract
and point out any discrepancies in the
[Test Method Document] by referring to
the [Reference Document], and present
them in bullet-point format.

[List of Potential Discrepancy Aspects]:

(Omitted. See below.)

Inconsistency labels. These are the inconsis-
tency labels we employ to generate synthetic docu-
ments and to evaluate models on SogoCheck:

• Typographical errors or omissions
• Changes in numerical values
• Changes in materials
• Changes in ingredient names
• Changes in time or temperature
• Changes in evaluation criteria
• Changes in expiration dates
• Changes in process control
• Changes in raw material control
• Changes in operating procedures
• Changes in specifications and test methods
• Changes in factory names
• Changes in parameters
• Deletion of substances
• Changes in the calculation of the starting date

of the expiration period
• Changes in sampling timing
• Deletion or modification of test items, test

methods, or test outsourcing parties
As for the distribution of labels, 54.21% out of

2,841 labels are marked as “Numerical changes”.
Other frequently appearing labels are “Expiration
date changes” (3.41%), “Temperature changes”
(3.34%), “Judgment criteria changes” (2.04%), and
“Component name changes” (1.87%). We observe
the clear tendency that changes in terms of numbers
are predominant, which we suppose is reasonable
in light of real-world discrepancies.

Sample task from SogoCheck. In addition to
the example shown in Figure 4, Figure 8 presents a
longer sample of the original Japanese text along
with its English translation.

Category The number of questions

clinical_knowledge 150
college_biology 143

college_chemistry 99
college_medicine 150
college_physics 100

high_school_biology 148
high_school_chemistry 149
high_school_physics 150
high_school_statistics 150

medical_genetics 99
nutrition 149

professional_medicine 150
virology 150

Total 1787

Table 5: The number of questions by categories in-
cluded in pharmaceutical-related JMMLU.

B.4 Pharmaceutical-related subset of
JMMLU

The number of questions included in each category
of JMMLU in our evaluation experiments is listed
in Table 5. The category-wise accuracy is shown
in Table 6. Consistent with the results for Yaku-
gakuQA (Table 3), we can observe the overall trend
that biology tends to score higher than chemistry
and physics.

C Model & Training

C.1 Training Data Curation

The CPT corpus used for JPHARMATRON is com-
posed of five categories of text, collected from pub-
licly available sources. Each data type was selected
to contribute domain-relevant knowledge or gen-
eral linguistic fluency. An overview is provided
below:

Journal articles. Academic papers and review
articles related to pharmacology, pharmacy prac-
tice, and clinical medicine. These texts provide
rich domain-specific vocabulary and formal written
structures.

PubMed abstract subset. A curated selection of
English abstracts from the PubMed database, fo-
cusing on drug-related publications. This source
contributes approximately 8 billion tokens and pro-
vides a biomedical foundation to complement the
Japanese data.

Package inserts approved by PMDA. Texts
published by Japan’s Pharmaceuticals and Medical
Devices Agency (PMDA), such as drug approval
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Figure 8: Sample task from SogoCheck.
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Model clinical_ college_ college_ college_ college_ high_school_ high_school_ high_school_ high_school_ medical_ nutrition professional_ virology Over
knowledge biology chemistry medicine physics biology chemistry physics statistics genetics medicine -all

TinySwallow-1.5B-Instruct 41.3 28.0 29.3 36.0 28.0 40.5 26.8 25.3 28.7 31.3 34.2 30.7 34.0 32.1
sarashina2.2-3b-instruct 39.3 45.5 29.3 42.0 35.0 52.7 26.2 27.3 34.0 40.4 47.7 44.7 24.7 37.8
Qwen2.5-7B-Instruct 52.7 46.9 30.3 41.3 37.0 50.7 36.2 28.7 32.7 48.5 57.7 49.3 41.3 42.9
Meditron3-Qwen2.5-7B 48.7 27.3 19.2 26.7 33.0 37.8 23.5 28.7 34.7 28.3 44.3 33.3 22.0 31.7
Llama-3-Swallow-8B-Instruct-v0.1 30.7 12.6 17.2 25.3 11.0 26.4 20.1 21.3 27.3 11.1 16.1 30.0 11.3 20.6
Llama-3.1-Swallow-8B-Instruct-v0.3 52.0 45.5 35.4 47.3 37.0 55.4 35.6 30.0 36.7 55.6 53.7 44.7 42.0 44.0

GPT-4o 82.7 93.0 60.6 81.3 69.0 85.1 76.5 70.0 82.0 88.9 82.6 94.7 56.7 79.1

Ours (best) 58.7 64.3 44.4 48.7 50.0 65.5 48.3 46.0 64.7 59.6 62.4 58.7 40.7 55.0

Table 6: Accuracy comparison on JMMLU across different subject categories and different LLMs.

summaries, review reports, and safety alerts. These
documents contribute approximately 87 million to-
kens and reflect regulatory terminology.

Official documents from governmental insti-
tutes. Documents from government-affiliated or-
ganizations including the Pharmaceuticals and
Medical Devices Act. This includes practical busi-
ness data such as guidelines on the general manu-
facturing process or risk management plan.

General-domain corpus. A part of FineWeb
(Penedo et al., 2024) and Swallow Dataset8.

This data composition was a deliberate choice
to ensure that the trained model would be capable
of solving practical problems in daily situations
while acquiring professional academic knowledge
of pharmaceuticals. For practical reasons, the pri-
mary component of the corpus came from academic
sources.

C.2 Data Filtering
We constructed a high-quality, domain-specific cor-
pus for the pharmaceutical domain by leveraging
a multi-stage filtering pipeline built upon LLMs
and trained classifiers. Following SmolLM2 (Allal
et al., 2025), the overall procedure consists of three
steps:

1. We first sampled a subset of documents from
the Common Crawl dataset (CC100). A
high-performing LLM (Qwen2.5-72B) was
prompted to assign each page a pharmaceuti-
cal relevance score ranging from 0 (irrelevant)
to 5 (highly relevant).

2. Using 54,056 LLM-labeled samples, we
trained a classifier to predict the pharmaceuti-
cal relevance score of input documents. Pages
scoring 1 or higher were retained.

3. The retained documents were further evalu-
ated using the same LLM to assign an educa-
tional quality score (0-5). A second classifier,

8https://huggingface.co/datasets/
tokyotech-llm/swallow-magpie-ultra-v0.1

trained on 5,478 LLM-labeled samples, was
used to filter out documents with an educa-
tional quality score 3 or lower. This ensured
that the resulting data not only pertains to phar-
maceutical content but is also of pedagogical
value.

All training data for both classifiers were generated
using high-confidence outputs from the Qwen2.5-
72B model. Both classifiers were trained following
the configuration of the finemath-classifier9 frame-
work.

As a result of this filtering pipeline, we collected
904,651 high-quality, pharmaceutical-related docu-
ments (totalling 1.2 billion tokens) from the dedu-
plicated Common Crawl (llm-jp-corpus-v310).

C.3 Data Cleansing

In this study, we employed the D4 algorithm (Tiru-
mala et al., 2023) to perform data deduplication,
aiming to reduce redundant information. D4 is pri-
marily composed of SemDeDup (Semantic dedu-
plication) (Abbas et al., 2023) and SSL Prototype
(Self-Supervised Learning Prototypes) (Sorscher
et al., 2022). The former incorporates k-means
clustering to eliminate texts with cosine similarity
larger than 1 − ϵ. We set ϵ = 3 × 10−8 for the
discarding threshold in SemDeDup and R = 0.95
for the discarding proportion in SSL Prototype, re-
spectively. In summarization, the total number of
tokens was reduced from 10B to 9B.

C.4 Base Model Selection

Discussing industrial applications often leads to the
cost perspective. Different from development for
research-only purposes, the operational cost at the
inference time also should be taken into account,
otherwise no institution can afford to utilize the
trained model. Therefore, we restricted the model

9https://huggingface.co/HuggingFaceTB/
finemath-classifier

10https://gitlab.llm-jp.nii.ac.jp/datasets/
llm-jp-corpus-v3
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Training Settings

Method CPT
Base model Qwen2.5-7B
Tokenizer Qwen2.5 tokenizer

Steps 67171
Batch size 16
Optimizer hybridadam

Learning rate 1.0× 10−5

GPU 8 × NVIDIA H100
Framework Pai-Megatron-Patch
GPU hours 444

Table 7: Details of model training settings.

size to around 7B for better usability considering
the training cost and inference cost.

Secondly, we prioritized the use of a pre-trained
model that had already been trained on Japanese
data, since training an English-only model to learn
Japanese might be a difficult challenge. For exam-
ple, our evaluation experiments demonstrated that
the improvement from Qwen2.5-7B to Meditron3-
Qwen2.5-7B on YakugakuQA was only marginal.
This is possibly because Meditron3-Qwen2.5-7B
is intended for use in English, so its capability of
QA in Japanese may be limited.

Finally, we also sought a model with a com-
mercially viable license that would facilitate its
adoption within the pharmaceutical industry.

Based on these criteria, we chose Qwen2.5-7B
as the base model.

Comparison with Qwen3 (Yang et al., 2025).
We empirically observed significant degradation
in the instruction following capability when we
switched the base model to Qwen3. This is possi-
bly because the Qwen3 series is post-trained with
reinforcement learning to enhance the reasoning
ability, which we suspect makes the instruction
following ability elastic and vulnerable.

C.5 Training Settings

Training was conducted using standard autoregres-
sive language modeling objectives with the orig-
inal tokenizer of Qwen2.5. Table 7 provides an
overview of the training configuration.

Merge method YakugakuQA (%)

TIES (weight 8:2) 57.2
TIES (weight 7:3) 59.0
TIES (weight 6:4) 60.4

DARE TIES by EvoLLM 60.7

Table 8: Accuracy comparison on YakugakuQA
across different merging methods. Qwen2.5-7B-
Instruct was used as the base model and JPHARMA-
TRON-7B (ours) was used as the auxiliary model.

C.6 Enhancing Instruction Following via
Model Merging

Our domain-specific model trained through CPT
exhibited poor instruction-following capabilities.
As a result, these models struggle to answer
multiple-choice questions correctly, rendering them
ineffective for standard benchmark evaluations
which rely heavily on such tasks.

Instead of applying supervised fine-tuning,
which can be resource-intensive and require care-
fully aligned datasets, we adopt a lightweight ap-
proach by leveraging model merging. Specifi-
cally, we aim to endow a domain-adapted model
with strong instruction-following and reasoning
capabilities by merging it with a general-purpose
instruction-tuned model.

To this end, we designate Qwen2.5-7B-Instruct
as the base model, given its demonstrated strength
in instruction adherence and task generalization.
The domain-specific model, pre-trained on 2B
tokens of pharmaceutical texts, serves as the
knowledge-rich counterpart in the merge.

We employ the TIES merging strategy (Yadav
et al., 2023) provided by mergekit (Goddard et al.,
2024), and assign a weight to balance the retention
of domain knowledge while preserving the core
reasoning and output structure of the instruction-
tuned base model. Table 8 shows the superiority of
EvoLLM (Akiba et al., 2025) coupled with DARE
TIES merging.
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