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Abstract

In recent years, dense retrieval has been the
focus of information retrieval (IR) research.
While effective, dense retrieval produces unin-
terpretable dense vectors, and suffers from the
drawback of large index size. Learned sparse
retrieval (LSR) has emerged as promising al-
ternative, achieving competitive retrieval per-
formance while also being able to leverage the
classical inverted index data structure for effi-
cient retrieval. However, limited works have
explored scaling LSR beyond BERT scale. In
this work, we identify two challenges in train-
ing large language models (LLM) for LSR:
(1) training instability during the early stage
of contrastive training; (2) suboptimal perfor-
mance due to pre-trained LLM’s unidirectional
attention. To address these challenges, we
propose two corresponding techniques: (1) a
lightweight adaptation training phase to elimi-
nate training instability; (2) two model variants
to enable bidirectional information. With these
techniques, we are able to train LSR models
with 8B scale LLM, and achieve competitive
retrieval performance with reduced index size.
Furthermore, we are among the first to analyze
the performance-efficiency tradeoff of LLM-
based LSR model through the lens of model
quantization. Our findings provide insights into
adapting LLMs for efficient retrieval modeling.

1 Introduction

Recently, the main research focus in information
retrieval (IR) has been on dense retrieval and re-
lated techniques (Karpukhin et al., 2020; Lin et al.,
2022; Zhu et al., 2023a; Xu et al., 2025b, inter
alia). Dense retrieval encodes queries and docu-
ments into high-dimensional sparse vectors. Al-
though effective, these dense vectors are difficult
for humans to interpret in terms of their seman-
tic meanings. Moreover, encoding and storing the
dense vectors for the whole document collection
can be resource-intensive. For example, encoded
flat index of MS MARCO passage corpus (Bajaj

et al., 2016) with Llama-2-7b dense retriever takes
up 135G disk space (Ma et al., 2024), which is over
50 times larger than the 2.6G Lucene index from
Lucene’s implementation of BM25.

To mitigate these drawbacks of dense retrieval, a
different line of works investigates learned sparse
retrieval (LSR). Inspired by traditional sparse re-
trieval models (Sparck Jones, 1972; Robertson
et al., 1995), LSR encodes queries and documents
into vocabulary-sized vectors with a backbone lan-
guage model and the language model head, where
each dimension of the vector represents the “im-
pact” of the corresponding token (Formal et al.,
2021b,a; Mallia et al., 2021). A canonical exam-
ple of LSR is SPLADE (Formal et al., 2021b,a).
It encodes text with BERT (Devlin et al., 2019),
then applies pooling and log-saturation (Fang et al.,
2004) to ensure the resulting vocabulary-sized vec-
tor contains non-negative values in each dimen-
sion, making it suitable for use in an inverted index.
Combined with established training methodologies
in dense retrieval such as contrastive learning (Oord
et al., 2018), hard negatives mining (Karpukhin
et al., 2020; Xiong et al., 2021) and knowledge dis-
tillation (Hofstätter et al., 2020), LSR has demon-
strated competitive performance with BERT-style
encoder-only masked language models (Kong et al.,
2023; Lassance et al., 2024).

Scaling has been a winning recipe for natural
language processing (NLP) and IR (Kaplan et al.,
2020; Hoffmann et al., 2022; Fang et al., 2024). Re-
cent works (Ma et al., 2024; Lee et al., 2024; Wang
et al., 2024a; Xu et al., 2025a; Zhang et al., 2025,
inter alia) have explored scaling dense retrieval and
reranking with pre-trained decoder-only large lan-
guage models (LLM) such as Llama (Touvron et al.,
2023) and Mistral (Jiang et al., 2023), which have
demonstrated superior performance compared to
BERT family models. However, there has been lim-
ited effort in training LSR models beyond BERT
scale, i.e., 110M and 330M. In our preliminary
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experiments, we identified two key challenges in
training LSR with decoder-only LLMs: (1) the
ReLU activation function used in log-saturation
of SPLADE leads to training instability problem
in early stage of contrastive training, commonly
referred to as the dying ReLU problem (Lu et al.,
2019); (2) the unidirectional attention of decoder-
only LLMs leads to suboptimal retrieval perfor-
mance (Lee et al., 2024; BehnamGhader et al.,
2024). To address these two challenges, in this
paper we propose two techniques:

• We propose a lightweight adaptation phase
training, where we adapt the pre-trained lan-
guage model on unlabeled texts with a combi-
nation of causal language modeling loss and
log-saturation loss. Experimental results show
that as few as 10k adaptation steps can elimi-
nate the training instability problem in subse-
quent contrastive training.

• We explore two variants to able unidirectional
LMs to capture bidirectional information: (1)
applying the echo embedding idea (Springer
et al., 2024), where we repeat the input se-
quence and only gather the representation
from the second occurrence of text sequence;
(2) directly disabling the causal language mod-
eling (CLM) mask, and letting the language
model adapt to bidirectional information in
the contrastive training phase, similar to Lee
et al. (2024). Our experiments show that both
variants significantly improve upon causal lan-
guage model with unidirectional information.

We refer to our method as Causal SPLADE
(CSPLADE). With the proposed techniques, we
are able to train LSR model with up to 8B scale
pre-trained LM (Llama-3.1-8B), while achieving
competitive performance with only MS MARCO
passage retrieval training set (41.3 MRR on MS
MARCO passage retrieval, 55.3 NDCG@10 on
BEIR) and reduced index size (<8G Lucene index
of MS MARCO passage corpus versus 135G flat
dense index).

A significant challenge in adopting LLMs for
retrieval lies in the scalability and inference la-
tency. We examine several popular quantiza-
tion methods such as LLM.int8 (Dettmers et al.,
2022), torchao (torchao team, 2024), and report the
performance-efficiency tradeoff when applying on
CSPLADE. We find while calibration-free quan-
tization methods achieve reduced GPU memory

usage, they does not necessarily lead to inference
speedup in small batch sizes. Our findings under-
score the importance of in-depth study of model
quantization methods specifically designed and op-
timized for neural retrieval models.

2 Background and Notations

In this section we introduce the task definition and
notations used in this paper, and further provide
background for learned sparse retrieval, with a spe-
cial focus on SPLADE (Formal et al., 2021b,a).

2.1 Task Definition and Notations
Given a query Q, the task is to find a ranked list of k
documents, denoted by {D1, D2, . . . , Dk}, that ex-
hibit high relevance to Q. Retrieval is performed by
finding top-k documents from document collection
C, where |C| ≫ k. We denote the retrieval model
parameterized by θ as fθ(·). To support efficient
retrieval, the document collection is typically pre-
encoded offline by the retrieval model, resulting in
what is referred to as the document index. At re-
trieval time, the incoming query is first encoded by
the retrieval model, after which a similarity search
is performed against the pre-built document index.

2.2 Sparse Retrieval
Different from the prevalent dense retrieval
method (Karpukhin et al., 2020; Xiong et al., 2021,
inter alia) that represents a document with a dense
vector, the sparse retrieval method represents a
document with a vocabulary-sized vector where
most of the elements are zeros, hence the term
“sparse”. This sparse vector representation can
be subsequently used in an inverted index for
efficient retrieval. Examples of sparse retrieval
include classical methods such as the boolean
model (Salton, 1984) and probabilistic retrieval
models like BM25 (Robertson et al., 1995).

Traditional sparse retrieval methods focus on
capturing lexical match signals, which hinders per-
formance is finding semantically relevant docu-
ments (Yates et al., 2024). Learned sparse retrieval
emerges as a way to leverage pre-trained language
models to mitigate this weakness. At a higher level,
LSR can be viewed as a way to learn token impor-
tance or “impact” scores from data (Dai and Callan,
2019; Bai et al., 2020; Mallia et al., 2021).

2.3 SPLADE
We detail the formulation of SPLADE (Formal
et al., 2021b,a), which serves as the basis of the pro-
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posed method (Section 3). Denote vocabulary as V ,
a document as D, tokens as {t1, t2, . . . t|D|}, where
ti is the i-th token, and its corresponding contextu-
alized representation (e.g., from pre-trained BERT)
{h1,h2, . . .h|D|}. For each hi, we project the
hidden representation to a vocabulary-sized vector
Hi ∈ R|V| with the language modeling head (e.g.,
masked language modeling head for BERT). The
j-th dimension of Hi represents the importance of
token j (in vocabulary V) to token i in the input se-
quence, which in practice is the logitj from the LM
head output. Given HD = {H1,H2, . . .H|D|} of
tensor shape (|V|, |D|), SPLADE then applies a
max-pooling along the sequence length dimension,
i.e., across all tokens, followed by ReLU activa-
tion and log rescaling to get the vocabulary-sized
representation for the input document d:

D = log
(
1+ReLU

(
MaxPooling(HD)

))
∈ R|V|

(1)
A similar operation can also be applied to query
Q to get query representation Q ∈ R|V|. Denote a
similarity function as s(·) (e.g., dot product), we
can optimize SPLADE with the standard InfoNCE
loss (Oord et al., 2018) for contrastive training. De-
note a training pair (Q,D+), where D+ is relevant
to query Q, and {DN} is a list of documents not
relevant to Q, the ranking loss is denoted by:

Lrank(Q,D+, {DN}) = − log p(D = D+|Q)

= − log
es(Q,D+)

es(Q,D+) +
∑

D−
i ∈{DN}

es(Q,D−
i )

In practice, {DN} often includes hard negatives
and in-batch negatives (Qu et al., 2021; Ma et al.,
2024). 1 Notice that Equation (1) already achieves
a certain degree of sparsity by ensuring the non-
negativity. In addition, SPLADE also employs
FLOPs regularization (Paria et al., 2020) to further
enhance sparsity in order to learn efficient sparse
representation. Denote FLOPs regularization loss
for Q and D as LQ

reg and LD
reg, respectively, and λQ,

λD as the corresponding coefficients, SPLADE op-
timizes the final loss as:

L = Lrank(Q,D+, {DN}) + λQLQ
reg + λDLD

reg

1Subsequent works (Formal et al., 2021a; Kong et al.,
2023) have explored other training strategies such as distil-
lation (Hofstätter et al., 2020). In this study we opted for
straightforward contrastive training, as more complex training
strategies are orthogonal to the focus of this paper.

In practice, λQ and λD are tuned as hyperparame-
ters to balance performance and efficiency.

3 Challenges and Proposed Techniques

SPLADE’s effectiveness at BERT-scale has been
demonstrated by extensive prior studies (Formal
et al., 2021a, 2022; Kong et al., 2023; Li et al.,
2023, inter alia). However, limited studies have
explored to train SPLADE beyond BERT-scale,
i.e., to extend to pre-trained causal large lan-
guage models like Llama (Touvron et al., 2023)
or Mistral (Jiang et al., 2023) to further improve
performance with stronger backbone LMs and ex-
tensive pre-training. In our preliminary exper-
iments where we replace BERT (Devlin et al.,
2019) in original SPLADE implementation with
causal LLMs like OPT-1.3B (Zhang et al., 2022)
and Llama-3.2-1B (Grattafiori et al., 2024), we
identified key challenges (Section 3.1). We then
propose corresponding strategies to enable train-
ing SPLADE with causal language models (Sec-
tion 3.2). We name our method as Causal SPLADE
(CSPLADE).

3.1 Challenges

First, we notice the training instability problem in
early stage of contrastive training. Recall in Equa-
tion (1), the ReLU activation function is used to
ensure non-negativity of the vocabulary-sized rep-
resentation Q and D. As the training starts, ReLU
neurons quickly become inactive and only output
0 for any input. This is referred to as the dying
ReLU problem in literature (Lu et al., 2019), and
is caused because of the initialization of the pa-
rameters to be optimized, the backbone language
model in our case. To validate this hypothesis, we
also attempted to train other encoder-only mod-
els including MosaicBERT (Portes et al., 2023)
and ModernBERT (Warner et al., 2024). However,
training consistently failed for the same reason, de-
spite extensive tuning of the learning rate warmup
strategy and other hyperparameters.

Second, we observe that in the original
SPLADE implementation, the model first projects
the contextualized representation of each token into
the vocabulary space to get |D| vectors. It then
applies MaxPooling over the sequence length di-
mension to get a single vector representation. Ap-
parently, this sequence-level MaxPooling operation
becomes suboptimal for causal LLMs with unidi-
rectional attention, as early tokens in the input se-
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quence cannot attend to later ones, leading to a loss
of information in the final vector representation.
To summarize, we believe these two challenges
hinders the exploration to extend SPLADE to the
large-scale pre-trained casual LLMs.

3.2 Proposed Method
We have identified two challenges in Section 3.1,
namely, (1) the training instability problem and (2)
the unidirectional information problem. To address
these challenges, we introduce a two-phase train-
ing pipeline to get the final retrieval model: (1)
adaptation phase training to improve training sta-
bility and (2) enabling bidirectional information in
contrastive learning to capture richer context.

Adaptation Phase Training. As pointed out
by Lu et al. (2019), the reason for dying ReLU is
due to the ill-initialized model parameters. There-
fore we tackle the training instability problem by
adapting the pre-trained causal language model for
improved initialization to be used in subsequent
contrastive training phase. In particular, for an in-
put sequence D, we can compute the output logits
HD ∈ R|V|×|D|. We then apply the similar trans-
formation in Equation (1), except that we remove
the MaxPooling operation:

H∗
D = log

(
1 + ReLU(HD)

)

Here H∗
D tensor has the same shape as HD, but

all elements are non-negative. We use this non-
negative tensor to compute causal language model
loss to maximize the probability of the target se-
quence (the same input sequence in our case). De-
note this causal language modeling loss intended
for ReLU adaptation as LReLU , and the vanilla
causal language model loss as LCLM, we optimize
a final loss:

LAdapt = LCLM + λReLU · LReLU

where λReLU is a trade-off weight balancing two
loss terms, which in practice is set to 1. Note here
the vanilla causal language modeling loss is com-
puted directly between HD and target sequence.
Therefore we can compute the two loss terms with
one single forward pass. This loss form enables us
to adapt the pre-trained causal LLM for the ReLU
activation used later in contrastive training. For
ease of understanding, we show the pseudo code
(PyTorch style) in Appendix A.

This adaptation training strategy bears two
strengths: (1) it can be performed on any unlabeled

texts; (2) it can be efficiently combined with do-
main adaptation training (Gururangan et al., 2020)
to further improve downstream task performance
in the target domain. Empirically, we find as few
as 10k steps of adaptation eliminate the training
instability problem, suggesting its efficacy.

Enabling Bidirectional Information. Having
addressed the training instability problem, we move
on to improve learning representations. As we pre-
viously discussed (Section 3.1), the unidirectional
nature of pre-trained causal language models hin-
ders the capability to effectively learn sequence
representations. Different works have attempted
to tackle this problem in dense retrieval (Springer
et al., 2024; Lee et al., 2024; BehnamGhader et al.,
2024, inter alia). Motivated by these prior efforts,
we study two variants of enabling bidirectional in-
formation for pre-trained causal LLMs: (1) echo
embedding (Springer et al., 2024) and (2) directly
enabling bidirectional attention (Lee et al., 2024).

Echo embedding does not change the model ar-
chitecture of pre-trained LLM, but instead changes
the input. It repeats the input sequence twice, and
only perform the pooling on the second occurrence
of the input sequence. This way, the earlier tokens
of the input sequence in the second occurrence
can still attend to later tokens in the first sequence,
enabling bidirectional information. On the other
hand, it essentially doubles the input length, mak-
ing it more computationally extensive in training
and also higher latency in inference.

We also experiment with the idea in Lee et al.
(2024), where we directly enable the bidirectional
attention of pre-trained causal LLM by remov-
ing the causal mask, then use the model in sub-
sequent contrastive training. This method merges
the phase of adapting for bidirectional informa-
tion into contrastive training phase, and does not
cause additional computational overhead compared
to the echo embedding variant. Empirical results
show that both variants significantly outperform
the causal LLM baseline, with the variant using
bidirectional attention yielding slightly superior
performance.

We train three variants of SPLADE model with
Llama-3 (Grattafiori et al., 2024) as the backbone
causal language models, although the techniques
discussed can also be applied to other pre-trained
causal LLMs. We refer to SPLADE with unidirec-
tional information as CSPLADE (only with adapta-
tion training), and the two bidirectioanl variants as
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CSPLADE-Echo and CSPLADE-Bi, respectively.

4 Experiment Setup

In this section we discuss datasets, baselines, im-
plementation and other experimental details.

4.1 Datasets

We focus on the task of passage retrieval. We
train the retrieval models on the training split of
MS MARCO passage retrieval dataset (Bajaj et al.,
2016) which consists of approximately 500k train-
ing queries. We use a blend of BM25 (Robertson
et al., 1995) and CoCondenser (Gao and Callan,
2022) hard negatives which is publicly available2.

For evaluation, we evaluate in-domain retrieval
performance on the official MS MARCO passage
retrieval DEV set of 6,980 queries. We also eval-
uate on TREC DL19 and DL20 that consist of 43
and 54 queries respectively, with in-depth annota-
tion. We adopt the following official evaluation
metrics: MRR@10 and Recall@1000 for DEV,
and NDCG@10 for DL19 and DL20. We also in-
clude the BEIR dataset (Thakur et al., 2021) for
out-of-domain evaluation. We evaluate the offi-
cial evaluation metric NDCG@10 on 13 publically
available testsets in the BEIR collection. We defer
more dataset details to Appendix B.

4.2 Compared Methods

We include baseline methods of both dense re-
trieval and sparse retrieval. For dense retrieval,
we include CoCondenser (Gao and Callan, 2022),
bi-SimLM (Wang et al., 2023), SGPT (Muen-
nighoff, 2022) and RepLlama (Ma et al., 2024).
RepLlama is the closest dense retrieval baseline to
our method as we use the same contrastive train-
ing objective and trainset. We include results from
the original paper with Llama-2-7b (Touvron et al.,
2023), as well as Llama-3.1-8b (Grattafiori et al.,
2024) results from Zhuang et al. (2024)3.

For sparse retrieval, we include the classical
BM25 method (Robertson et al., 1995). We also
include SPLADE++ SelfDistil as well as the latest
SPLADE-v3 variants that use complex hard nega-
tive mining and self-distillation training strategy,
reported by Formal et al. (2021a); Lassance et al.
(2024). Lastly, we include SparseEmbed (Kong

2https://huggingface.co/datasets/Tevatron/
msmarco-passage-aug

3Note we skip RepLlama-3-8B’s results on BEIR as they
are not reported by Zhuang et al. (2024).

et al., 2023) as another competitive SPLADE vari-
ant. For all the baselines, we use results reported
in their corresponding papers.

4.3 Implementation and Hyperparameters

As mentioned in Section 3.2, we examine the effec-
tiveness of the proposed method using pre-trained
Llama-3 family models as the retriever backbone.
We use 1B and 8B model sizes: Llama-3.2-1B and
Llama-3.1-8B4.

Our implementation is based on PyTorch, Hug-
gingface (Wolf et al., 2019), Tevatron (Gao et al.,
2022) and Pyserini (Lin et al., 2021)’s Lucene inte-
gration. After the model is trained, we use Lucene
to build an inverted index and do subsequent re-
trieval. For adaptation training, we adapt the pre-
trained CLMs on MS MARCO passage corpus
for 10K steps, with 2,048 sequence length and 32
global batch size. We employ a cosine learning
rate scheduling with 1k steps warmup. We use
sequence packing (Raffel et al., 2020) technique
for computational efficiency. For contrastive train-
ing, we use LoRA fine-tuning (Hu et al., 2021)
to balance in-domain and out-of-domain perfor-
mance (Biderman et al., 2024). We use a similar
training setup as RepLlama, i.e., 15 hard negatives
per positive query-passage pair, together with in-
batch negatives. We use 511 in-batch negatives for
both 1B and 8B models, implying a global batch
size of 32. We use techniques including Flash At-
tention 2 (Dao, 2023), gradient checkpointing, gra-
dient accumulation and PyTorch FSDP (Zhao et al.,
2023) for scalable training. We train 1B model for
3 epochs and 8B model for 1 epoch using cosine
learning rate scheduling. We mainly tune four hy-
perparameters: learning rate, FLOPs regularization
coefficients λQ and λD, and LoRA rank R. More
hyperparameter details and hardware information
are deferred to Appendix C. At the inference time,
we merge the LoRA adapter to the backbone model,
and use bfloat16 precision for inference.

5 Results and Analysis

We discuss in-domain evaluation results (Sec-
tion 5.1) and out-of-domain results (Section 5.2).
We detail the setup and results of quantization eval-
uation (Section 5.3) and finally discuss unsuccess-
ful attempts (Section 5.4).
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Table 1: Performance and index size for MS MARCO in-domain evaluation. We highlight the highest performance
within each section except for the index size column.

Model Size Dev
MRR@10 Recall@1k

DL19
NDCG@10

DL20
NDCG@10

Index Size
GB (↓)

Dense Retrieval
CoCondenser (Gao and Callan, 2022) 110M 38.2 98.4 71.7 68.4 25
bi-SimLM (Wang et al., 2023) 110M 39.1 98.6 69.8 69.2 25
GTR-XXL (Ni et al., 2022) 4.8B 38.8 99.0 - - 25
RepLlama-2-7B (Ma et al., 2024) 7B 41.2 99.4 74.3 72.1 135
RepLlama-3-8B (Zhuang et al., 2024) 8B 42.8 - 74.5 73.9 135
Sparse Retrieval
BM25 (k1 = 0.9, b = 0.4) - 18.4 85.4 50.6 48.0 2.6
SPLADE++ (Formal et al., 2021a) 110M 37.8 98.5 73.6 72.8 2.6
SparseEmbed (Kong et al., 2023) 110M 39.2 98.1 - - -
SPLADE-v3 (Lassance et al., 2024) 110M 40.2 - 72.3 75.4 3.1
Proposed Method
CSPLADE-1B 1.3B 38.2 98.5 73.2 68.9 2.6
CSPLADE-Echo-1B 1.3B 38.8 98.9 72.9 69.5 4.6
CSPLADE-Bi-1B 1.3B 40.4 99.0 73.8 69.8 5.6

CSPLADE-8B 8B 39.5 99.0 73.0 68.0 7.5
CSPLADE-Echo-8B 8B 40.8 98.9 73.5 70.7 4.5
CSPLADE-Bi-8B 8B 41.3 99.1 74.1 72.8 6.7

5.1 In-domain Retrieval

We show the in-domain results in Table 1. For
dense retrieval baselines, we find RepLlama-3-8B
improves upon RepLlama-2-7B, suggesting the
backbone language model’s capacity is critical for
retrieval performance. In terms of sparse retrieval
baselines, SPLADE-v3 achieves the highest perfor-
mance, surpassing RepLlama-3-8B on the DL20
benchmark. This observation suggests knowledge
distillation from a strong cross-encoder teacher is
effective for improving BERT-sized model’s per-
formance.

For the proposed method, we find that
CSPLADE-Echo and CSPLADE-Bi significantly
outperforms CSPLADE variant. For example,
CSPLADE-Bi-1B achieves 40.4 MRR@10 on
DEV compared to CSPLADE-1b. This sug-
gests the importance of enabling bidirectioanl
information. In addition, we observe that 8B
models outperform the 1B counterparts, reiter-
ating the importance of backbone model capac-
ity. Between CSPLADE-Echo and CSPLADE-Bi,
CSPLADE-Bi performs slightly better. Although
we note it also requires more careful hyperparame-
ter tuning to achieve strong performance. Finally,
we note that the best performing CSPLADE-Bi-8B
still lags behind its dense retrieval counterpart. We
hypothesize this performance gap stems from is
RepLlama-3-8B’s use of a single 4,096-dimension

4https://huggingface.co/meta-llama

dense vector, which offers greater representational
capacity compared to CSPLADE’s sparse repre-
sentation. We intend to control the size of inverted
index for efficient retrieval. A more comprehensive
investigation into the trade-off between retrieval
effectiveness and index size is left for future work.

5.2 Zero-shot Retrieval

We show the zero-shot retrieval performance in Ta-
ble 2. Due to space constraints, we report results
only for SPLADE-v3 and RepLlama-2 as represen-
tative baselines, and refer readers to Appendix D
for the full set of baseline comparisons.

We find that RepLlama-2-7b achieves better
out-of-domain performance compared to other
dense retrieval baselines (avg. 55.1 NDCG@10),
and is also better compared to the most competi-
tive sparse retrieval method SPLADE-v3. Mean-
while, CSPLADE-Echo-1B and CSPLADE-Bi-1B
achieve average NDCG@10 scores of 49.5 and
49.4, respectively, underperforming SPLADE-v3.
This again suggests the effectiveness of distilla-
tion training especially when backbone LM’s ca-
pacity is limited. However, when we increase
the capacity of backbone language model, the
performance significantly improved. For exam-
ple, CSPLADE-Echo-8B and CSplade-bi-8b out-
perform SPLADE-v3 by a large margin, and
are able to achieve performance on par with
RepLlama-2-7b. This observation suggests that
the proposed method’s effectiveness is also gener-
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Table 2: Results for zero-shot passage retrieval evaluation. We highlight the best performance within each section.
SPLADE-v3 RepLlama-2 CSPLADE-Echo-1B CSPLADE-Bi-1B CSPLADE-Echo-8B CSPLADE-Bi-8b

Dataset
110M 7B 1.3B 1.3B 8B 8B

Arguana 50.9 48.6 46.7 45.0 48.1 48.9
Climate-FEVER 23.3 31.0 23.8 21.8 29.5 29.4
DBPedia 45.0 43.7 39.5 39.0 45.2 44.5
FEVER 79.6 83.4 71.3 74.8 85.2 86.5
FiQA 37.4 45.8 35.0 36.3 39.9 40.5
HotpotQA 69.2 68.5 61.0 62.4 69.4 69.8
NFCorpus 35.7 37.8 33.2 32.4 37.7 37.2
NQ 58.6 62.4 54.5 55.4 59.8 60.9
Quora 81.4 86.8 81.5 79.6 86.9 87.1
SCIDOCS 15.8 18.1 16.0 15.1 17.4 17.6
SciFact 71.0 75.6 71.1 71.1 73.2 73.9
TREC-COVID 74.8 84.7 77.7 71.6 84.0 83.2
Touche-2020 29.3 30.5 32.1 37.7 38.5 38.9
Average 51.7 55.1 49.5 49.4 55.0 55.3

alizable to out-of-domain zero-shot retrieval.

5.3 Model Quantization and Latency

One big obstacle to applying LLM for real-
world retrieval applications is latency. Therefore,
we examine the efficacy of the prevalent infer-
ence optimization technique — quantization —
in the case of learned sparse retrieval. We in-
clude two calibration-free quantization methods:
LLM.int8 (Dettmers et al., 2022) and native Py-
Torch quantization implementation torchao (tor-
chao team, 2024). For LLM.int8, we use INT4 and
INT8 weight-only quantization in BitsAndBytes5.
For torchao, we use INT4 and INT8 weight-only
quantization and INT8 weight-and-activation quan-
tization implementation6. See Appendix E for
more details about these quantization methods.

For quantization methods and the bfloat16
baseline, we build the inverted index using larger
batch size with quantized models. Then we bench-
mark latency by measuring the model’s speed to
encode queries by setting batch size to 1. We report
retrieval performance MRR@10 on MS MARCO
DEV set, and use queries/second as the latency
metric7.

We show the quantization evaluation results
in Figure 1. First we notice that low bits quan-
tization hurts the model’s performance, e.g., 4-bit
quantized models show significant performance
degradation, while for 8-bit quantized models the

5https://github.com/bitsandbytes-foundation/
bitsandbytes

6https://github.com/pytorch/ao
7We opt to not include retrieval time from Lucene index

but solely focus on encoding speed from the backbone lan-
guage model, as Lucene retrieval speed is the same for all
quantization methods, and is mainly dependent on the index
size and CPU hardware capacity.

degradation is less severe. The observation is con-
sistent with existing works in quantization evalu-
ation (Dettmers and Zettlemoyer, 2023; Xu et al.,
2024a; Hong et al., 2024, inter alia). In terms of
the inference speed, we find that at 1B scale, both
quantized models actually slow down inference
speed without customized GPU kernels support,
compared to extensively optimized bfloat16 base-
line with Flash Attention 2 and torch.compile,
although they do require less GPU memory. We
also conduct experiments on quantization meth-
ods that require calibration, including GPTQ (Fran-
tar et al., 2023) and AWQ (Lin et al., 2024), but
find they lead to severe performance degradation,
i.e., <10 MRR@10. The reason is the mismatch
between the causal language modeling objective
used in calibration and ranking objective used to
fine-tune the retrieval model. To summarize, our
findings highlight the need for a more careful and
targeted investigation of quantization methods as
well as developing efficient quantized model infer-
ence kernels tailored to retrieval models.

5.4 Unsuccessful Attempts
We discuss two unsuccessful attempts throughout
the experiments of adapting pre-trained causal lan-
guage model for learned sparse retrieval.

To mitigate the dying ReLU problem, we
experimented with a biased reparameterization
trick (Wang et al., 2024b) that is inspired by
Gumbel-softmax trick (Jang et al., 2016). Here
the trick is illustrated in PyTorch style:

z = F.relu(z).detach() + F.gelu(z)

- F.gelu(z).detach()

where z.detach() eliminates the gradients of z.
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Figure 1: Quantization evaluation results for CSPLADE-Bi-1B. Left figure shows performance while right figure
shows inference speed. See Appendix E for CSPLADE-Bi-8B results.

With this trick, the forward output still equals
F.relu(z) but the gradient is computed with re-
spect to F.gelu(z) which has gradients to negative
input (Hendrycks and Gimpel, 2016). The repa-
rameterization is biased as the gradient of GeLU is
different from ReLU, which may lead to inferior
performance. However, we found this trick do not
fully mitigate training instability – the training still
fails in certain combinations of hyperparameters.

In contrastive training phase, we have also ex-
perimented with using full parameter fine-tuning
for Llama-3 instead of LoRA fine-tuning . We ob-
serve this leads to inferior results on BEIR datasets,
while the similar problem is less significant for
BERT-scale models. We hypothesize the reason is
modern causal LLMs like Llama’s extensive pre-
training make them prone to overfitting. We leave
this overfitting problem to future investigation.

6 Related Works

In this section, we discuss existing learned sparse
retrieval methods, and refer to existing survey
works for dense retrieval methods (Lin et al., 2022;
Zhu et al., 2023b; Xu et al., 2025b). Zamani
et al. (2018) propose SNRM to embed documents
and queries in a sparse high-dimensional latent
space, and enforce sparsity via l1 regularization.
DeepCT (Dai and Callan, 2019) learns to reweight
terms via learning contextualized representations;
but this method does not mitigate vocabulary mis-
match problem as it does not employ query and
document expansions. Later works further improve
retrieval performance via expansion technique and
corresponding aggregation mechanism, exempli-
fied by SparTerm (Bai et al., 2020), SPARTA (Zhao
et al., 2020) and EPIC (MacAvaney et al., 2020).

SPLADE (Formal et al., 2021b) note pre-trained
masked language model’s masked language mod-
eling head is particularly suited for projecting con-
textualized representations to vocabulary space. It
additionally draws inspiration from log(tf) (Fang
et al., 2004) and employs FLOPs (Paria et al., 2020)
regularization to improve performance. Later it-
erations of SPLADE (Formal et al., 2021a, 2022;
Lassance et al., 2024) further improve by switch-
ing to MaxPooling aggregation mechanism and
using sophisticated training strategies including
hard negatives mining and distillation from cross-
encoder teachers. Followup works propose to en-
able fine-grained query-document terms interac-
tions to better capture relevance, examplified by
SparseEmbed (Kong et al., 2023), SLIM (Li et al.,
2023) and SPLATE (Formal et al., 2024). However,
these studies are still limited to pre-trained masked
language models, especially BERT (Devlin et al.,
2019) family models. Some concurrent works
have attempted to train SPLADE-style models be-
yond encoder backbones. Qiao et al. (2025) com-
pare encoder-decoder models like Flan-T5 (Chung
et al., 2024) versus decoder-only OPT (Zhang et al.,
2022). But their experiments are limited to 3B-
scale models, and do not include stronger pre-
trained LLMs. Mistral-SPLADE (Doshi et al.,
2024) train Mistral-7B (Jiang et al., 2023) with
echo embeddings (Springer et al., 2024). In this
work we formally examine the challenges of train-
ing learned sparse retrieval models with pre-trained
LLMs as backbones, and propose corresponding
mitigation strategies.
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7 Conclusion and Future Works

In this paper, we focus on extending learned
sparse retrieval, specifically SPLADE, to pre-
trained causal language models. We identify two
challenges: the training instability problem and
the unidirectional information problem. To solve
these problems, we propose a lightweight adap-
tation training phase to eliminate training insta-
bility and design two model variants to enable
bidirectional information. With these techniques,
we achieve competitive performance by training
SPLADE with 8B scale pre-trained causal lan-
guage model, while maintaining a minimized index
size. Further, we analyze how model quantization
affects learned sparse retrieval and discuss implica-
tions for future improvement.

We envision two future work directions. From
the training perspective, the effect of dataset scal-
ing, in both unsupervised adaption phrase training,
and subsequent supervised fine-tuning should be
carefully studied (Hoffmann et al., 2022). Further,
different training strategies, such as knowledge dis-
tillation (Hinton et al., 2015) and Matryoshka Rep-
resentation Learning (Kusupati et al., 2022) remain
to be explored. From the inference perspective, the
inference latency of casual LLMs as the retriever
backbone is still prohibitive, and inference-free
learned sparse retrieval (Formal et al., 2021b,a;
Geng et al., 2025) is a promising future direction.
How to further optimize retrieval index specifically
for learned sparse retrieval is another important
question (Bruch et al., 2024).

Limitations

In this work we focus on studying causal language
models for learned sparse retrieval, specifically
SPLADE due to its high performance. We bench-
marked Llama-3 family models. Whether the pro-
posed methodology applies to other backbone lan-
guage model and learned sparse retrieval methods
requires further investigation and benchmarking.
The effectiveness of learned sparse retrieval on
long documents should also be carefully examined.
Given the limited space, we leave further investiga-
tion of model quantization to future work.

Ethical Considerations

This paper focuses on modeling improvement and
the experiments are conducted on public bench-
marks. To the best of our knowledge, this paper
does not raise potential ethical concerns or risks.
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A Code of Loss Function in Adaptation
Training

We show the pseudo code in Figure 2.

B Dataset Details

Four of the datasets we used in experiments (NF-
Corpus (Boteva et al., 2016), FiQA-2018 (Maia
et al., 2018), Quora8, Climate-Fever (Diggelmann
et al., 2020)) do not report the dataset license in the
paper or a repository. For the rest of the datasets,
we list their licenses below:

• MS MARCO (Bajaj et al., 2016): MIT License
for non-commercial research purposes.

• ArguAna (Wachsmuth et al., 2018): CC BY 4.0.

• DBPedia (Hasibi et al., 2017): CC BY-SA 3.0.

• FEVER (Thorne et al., 2018): CC BY-SA 3.0.

• HotpotQA (Yang et al., 2018): CC BY-SA 4.0.

• NQ (Kwiatkowski et al., 2019): CC BY-SA 3.0.

• SCIDOCS (Cohan et al., 2020): GNU General
Public License v3.0.

• SciFact (Wadden et al., 2020): CC BY-NC 2.0.

• TREC-COVID (Voorhees et al., 2021): "Dataset
License Agreement".

• Touche-2020 (Bondarenko et al., 2020): CC BY
4.0.

C Hyperparameter Details

We show details of hyperparameters in Table 3. We
mainly tune four hyperparameters: learning rate,

8https://www.kaggle.com/c/
quora-question-pairs

LoRA Rank, FLOPs regularizer coefficient λQ and
λD. We notice that increasing LoRA Rank did not
improve retrieval performance, but led to perfor-
mance degradation on BEIR datasets, therefore we
use rank=16 for 8B models. 1B models are trained
on a single EC2 p4d.24xlarge intance with 8xA100
40GB GPUs, while 8B models are trained on two
p4d.24xlarge instances.

D Additional Experiment Results

We show additional BEIR results in Table 4.

E Quantization Evaluation Details

E.1 Quantization Methods
We experimented with quantization methods that re-
quire calibration, including AWQ (Lin et al., 2024)
and GPTQ (Frantar et al., 2023), but find they
led to significant performance degradation due to
the misaligned objectives in model fine-tuning and
calibration. We opted to focus on calibration-free
quantization methods.

E.2 Hardwares
The inference speed is measured on single A100
GPU with 40GB memory. We use torch.compile
and Flash Attention 2 for the bfloat16 baseline.

E.3 Results for 8B Models
We report the quantization results for 8B models
at Figure 3. We notice that at 8B scale, perfor-
mance degradation is less severe compared to 1B
models, and torchao W8A16 quantization improves
inference speed compared to bfloat16 baseline.
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# Input:
# x: input sequence of tokens, shape (batch_size, sequence_length)
# model: causal language model
# targets: target sequence, which is the same as input, shifted by 1
# loss_fn: cross-entropy loss function
# adapt_loss_factor: hyperparameter to control the balance between two terms

import torch

# Model predicts logits for each token in the sequence
logits = model(x) # (batch_size, sequence_length, vocabulary)
shift_logits = logits[:, :-1, :] # Shift the logits by 1
shift_targets = x[:, 1:] # Shift the input sequence to get the target sequence

# Compute the causal language modeling loss
# Note that the tensors need to be flattened to be used in torch CrossEntropyLoss
clm_loss = loss_fn(shift_logits.view(-1, vocab_size), shift_targets.view(-1))

adapt_logits = torch.log(1 + torch.relu(shift_logits))
adapt_loss = loss_fn(adapt_logits.view(-1, vocab_size), shift_targets.view(-1))

loss = clm_loss + adapt_loss_factor * adapt_loss

# Return the computed loss
return loss

Figure 2: Pseudo code for adaption phase training loss computation.

Table 3: Hyperparameters used in training CSPLADE. We use 5% of the total training steps for learning rate
warmup. Global BZ denotes global batch size..

Model LR LR Scheduler #Epochs Global BZ LoRA Rank λQ λD

CSPLADE-1B 5e-5 Cosine 3 32 64 0.003 0.003
CSPLADE-Echo-1B 5e-5 Cosine 3 32 64 0.003 0.003
CSPLADE-Bi-1B 5e-5 Cosine 3 32 64 0.003 0.003

CSPLADE-8B 1e-4 Cosine 1 32 16 0.03 0.03
CSPLADE-Echo-8B 1e-4 Cosine 1 32 16 0.03 0.03
CSPLADE-Bi-8B 1e-4 Cosine 1 32 16 0.03 0.03

Table 4: Additional results for zero-shot passage retrieval evaluation. We highlight the best performance within
each section.

BM25 SPLADE++ SparseEmbed SGPT CSPLADE-1B CSPLADE-8B
Dataset - 110M 110M 5.8B 1.3B 8B

Arguana 39.7 52.5 51.2 51.4 44.7 45.2
Climate-FEVER 16.5 23.0 21.8 30.5 19.5 27.2
DBPedia 31.8 43.6 45.7 39.9 39.2 41.8
FEVER 65.1 79.3 79.6 78.3 73.3 82.3
FiQA 23.6 34.8 33.5 37.2 33.2 39.5
HotpotQA 63.3 68.7 69.7 59.3 63.6 66.3
NFCorpus 32.2 34.8 34.1 36.2 36.5 35.7
NQ 30.6 53.7 54.4 52.4 52.9 58.8
Quora 78.9 83.4 84.9 84.6 81.0 87.7
SCIDOCS 14.9 15.9 16.0 19.7 15.8 17.0
SciFact 67.9 70.2 70.6 74.7 71.2 72.2
TREC-COVID 59.5 72.7 72.4 87.3 68.4 79.2
Touche-2020 44.2 24.5 27.3 25.4 34.8 38.0

Average 43.7 50.5 50.9 52.1 48.8 53.1
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Figure 3: Quantization evaluation results for CSPLADE-Bi-8B. Left figure shows performance while right figure
shows inference speed.
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