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Abstract

In the deployment of Large Language Mod-
els (LLMs), “spurious correctness”—where
answers are correct but reasoning contains
errors—poses a critical risk by creating an il-
lusion of reliability. While prior work on
LLM confidence estimation focuses on answer-
level or entire reasoning path confidence,
these coarse-grained approaches fail to identify
which specific parts of the reasoning contain er-
rors. We propose a fine-grained confidence es-
timation framework that computes confidence
scores for individual evidence triplets within
reasoning chains, enabling precise localization
of errors. Using carefully designed prompts,
we generate answers, evidence in triplet for-
mat, and their respective confidence scores
simultaneously, allowing automatic detection
of spurious correctness patterns where partial
evidence contains factual errors. Evaluated
on both Japanese and English multi-hop QA
benchmarks across multiple models from three
model families representing different architec-
tures and training approaches, we show that
our approach exhibits superior calibration per-
formance for evidence confidence and demon-
strates effective ability to detect spurious cor-
rect answers (up to 0.84 on our primary dis-
crimination metric). The consistent improve-
ments across languages demonstrate the gener-
alizability of our method. As a secondary ben-
efit, joint generation of confidence scores im-
proves answer confidence calibration by up to
43%. This prompt-based approach requires no
model retraining and is immediately applicable
to existing LLMs.

1 Introduction

As Large Language Models (LLMs) become in-
creasingly deployed in real-world applications, the
challenge of factuality—where LLMs generate in-
formation contradicting facts—remains one of the
most critical issues (Huang et al., 2025; Min et al.,
2023). One promising solution to this problem

Question: 7 TV T 4 v « X T VT 4 — /7 & B
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Which director won the Academy Award first, Quentin Tarantino or Akira Kurosawa?

Long CoT reasoning

Fine-grained confidence estimation
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ino, first Academy Award winner, 1994, Pulp Fiction)
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Akira Kurosawa, first Academy Award winner, 1980, Kagemusha)

> Evidence 2 Conf.

Answer: 2 (Correct)

Akira Kurosawa

Answer: 50 (Spurious correct)

kira Kurosawa
Answer Conf. (] but
Evidence 2 is incorrect.

Answer Conf.([F5

(computed over the entire reasoning)

Figure 1: Overview: Fine-grained triplet-based confi-
dence scores enable precise error localization (e.g., in-
correct year with confidence 0.3), unlike coarse-grained
confidence that masks specific mistakes within reason-
ing chains.

is confidence estimation, which aims to quantify
the model’s certainty in its outputs (Liu et al.,
2025). Various approaches have been proposed to
elicit well-calibrated confidence that aligns closely
with the correctness of the model’s outputs. These
approaches range from token probability-based
methods (Kadavath et al., 2022), verbalized con-
fidence (Tian et al., 2023) to consistency-based
methods (Manakul et al., 2023).

A significant limitation of existing methods is
that they estimate confidence at the level of en-
tire output. In practice, however, responses from
LLMs often consist of various components, includ-
ing not just final answers but also intermediate rea-
soning steps, such as those produced in Chain-of-
Thought (CoT) prompting (Wei et al., 2022). Con-
sequently, assessing the confidence of each compo-
nent separately allows LLMs to be more trustwor-
thy, enabling users to better localize and interpret
potential errors in LLM responses.

To address this limitation, we study methods
for eliciting well-calibrated confidence for both
intermediate reasoning steps and final answers
from LLMs. As shown in Fig. 1, given a ques-
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tion (e.g., Which director won...), our method pro-
duces semi-structured evidence triplet as interme-
diate steps (e.g., (Tarantino, first academy award
winner, 1994)) along with real-valued confidence
scores (e.g., 0.9) and then outputs the final an-
swer. Unlike prior confidence calibration over
whole chains or free-text claims, we operate at
the triplet level: (Subject, Relation, Object) evi-
dence units jointly generated with the answer. For
confidence extraction, we adapt token-probability
and prompt-based methods (Tian et al., 2023) for
fine-grained confidence estimation over individual
triplets.

To show the practical utility of fine-grained con-
fidence, we apply it to the task of detecting spu-
riously correct answers, cases in which the fi-
nal answers are correct but supported by incor-
rect evidence. This issue is particularly prominent
in multi-hop QA task (Ishii et al., 2024a), with
prior work observing it in 31% of instances in the
JEMHopQA dataset (Ishii et al., 2024b).

Our main contributions are as follows:

1. We present the first study on fine-grained
confidence estimation at the evidence triplet
level for multi-hop reasoning. Through a
comprehensive analysis of five confidence
extraction methods across three LLMs, we
find that sampling-based methods yield better-
calibrated confidence than other methods.

2. We demonstrate that fine-grained confidence
scores better identify spuriously correct
answers compared to conventional whole-
output confidence scores, achieving an
ROC-AUC of up to 0.84.

We release code and JP/EN prompts to facilitate
reproduction.

2 Related Work

2.1 LLM Confidence Estimation

LLM confidence estimation methods can be
broadly categorized into three approaches:

Token probability-based methods: Kadavath
et al. (2022) proposed estimating uncertainty di-
rectly from generation probabilities. Tian et al.
(2023) observed that probability distributions can
be affected by human preference optimization
(HPO) in certain model configurations.

"https://github.com /aiishii/finegrained_ conf

Linguistic confidence expression: Tian et al.
(2023) demonstrated that prompting models to self-
report their confidence produces better-calibrated
scores than relying on token probabilities alone,
particularly in HPO-trained models. Confidence
can be expressed either as explicit numerical prob-
abilities or as qualitative phrases (e.g., “almost cer-
tain”or “likely”).

Consistency-based methods: Manakul et al.
(2023) proposed estimating confidence from agree-
ment across multiple generation results. While
computationally expensive, this enables more reli-
able estimation.

The relative effectiveness of these approaches
depends on model architecture and task character-
istics. Importantly, none of these methods provide
confidence scores at a granularity that identifies
specific erroneous components within reasoning
chains. Our work addresses this gap by introducing
fine-grained confidence estimation at the evidence
triplet level.

2.2 Using Reasoning Process for Confidence
Estimation

While several approaches leverage reasoning pro-
cesses to improve answer confidence, they operate
at coarse granularities:

Self-Consistency: Wang et al. (2022) samples
multiple CoT reasoning paths and selects the most
frequent answer. While each reasoning path can be
considered evidence, it does not score the correct-
ness or reliability of the individual evidence.

Cycles of Thought: Becker and Soatto (2024)
generates “answer + explanation” multiple times
and quantifies uncertainty from explanation set sta-
bility. Their method uses explanation implication
probabilities for weighting, but does not output
confidence scores for the explanations.

Confidence-based Self-Consistency: Tauben-
feld et al. (2025) adds numerical confidence to the
end of each reasoning path and selects final an-
swers through weighted sums of identical answers.
However, confidence evaluation of individual evi-
dence elements is out of scope in this work.

These methods demonstrate the value of rea-
soning in confidence estimation but lack the crit-
ical granularity needed to pinpoint specific errors
within reasoning chains.

Closely related, Zhang et al. (2024) introduce
calibration over free-text “atomic” claims in long-
form outputs. While their approach achieves
fine-grained calibration, the free-text format can
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make deterministic alignment to gold evidence and
step-specific error localization non-trivial in many
settings. In contrast, we elicit generation-time
confidence on (Subject, Relation, Object) triplets
jointly with the answer, enabling one-to-one align-
ment to gold evidence and real-time assessment.
This structured unit preserves relation-aware hop
dependencies and demonstrates progressive im-
provements with finer granularity in spurious-
correctness detection—without retraining.

2.3 The Spurious Correctness Problem

In multihop QA, the problem of “spurious
correctness”—correct answers with incorrect
reasoning—is severe. Prior research reports such
cases amount to 31% of total instances (Ishii et al.,
2024a).

However, these studies rely on manual evalua-
tion, and to our knowledge no method targets au-
tomatic detection of spurious correctness in multi-
hop QA using confidence scores.? In this work, we
enable automatic assessment of evidence/answer
correctness and their confidence scores, allowing
systematic spurious correctness detection through
confidence analysis.

3 Proposed Method

3.1 Overview

We propose a framework for fine-grained confi-
dence estimation that enables LLMs to output con-
fidence scores at the individual evidence triplet
level. Given a question ¢, our framework produces
(i) an answer a along with confidence score ¢, €
[0, 1], and (ii) a sequence of n evidence-confidence
pairs [(eq, cgl)), (e, 022)), ey (€n, cﬁ,,"))], where
each e; is a triplet composed of a subject, relation,
and object (e.g., (Tokyo Tower, height, 333m)), and
e [0,1].

To compute the confidence scores, we adopt
two methods from Tian et al. (2023): (i) model-
based methods (83.2), which derive confidence
from the model’s intrinsic uncertainty during re-
sponse generation, and (ii) verbalized methods
(§3.3), which elicit self-reported confidence scores
from the model via natural language prompts.

’General hallucination detectors such as SelfCheck-
GPT (Manakul et al., 2023) focus on sentence-level factuality
and do not distinguish correct answers with incorrect reason-

ing.

3.2 Model-based Methods

Given the question ¢, we estimate the con-
ditional generation probabilities of the ev-
idence triplets and the final answer, i.e.,
p(e1lq), plez|g, e1), ... p(enlq, €1, €2, ..., en—1)

and p(alq, e1, €2, ..., €,,), in two ways and then use

these probabilities as confidence scores.

First, Token prob. first prompts the model to
generate the full reasoning sequence, including a
sequence of evidence triplets and the final answer.
For each component, we then extract the token-
level probabilities associated with that component
(e.g., p(eilq), p(e?|q, el), ... for the first evidence
triplet), and compute the geometric mean of these
token probabilities.

Second, Label prob. samples n reasoning se-
quences from the model. The final answers and
sequences of evidence triplets are then separately
grouped into clusters after strong normalization,’
and the most frequent cluster is selected as the fi-
nal output. The confidence score for the final an-
swer is the number of cluster elements divided by n.
For evidence confidence, we select the evidence set
FE* that appears most frequently among the n sam-
pled trajectories, thereby preserving structural co-
herence. Each evidence triplet e € E* is assigned
a reliability score p(e | ¢) = 1 3°7  I[e € ED],
which disentangles path-level coherence from the
certainty of individual evidence pieces.

3.3 Verbalized Methods

Unlike model-based approaches, verbalized meth-
ods elicit confidence scores directly via prompting,
using three variants.

First, Verb. IS prompts the model to gener-
ate a sequence of evidence triplets and the final
answer along with confidence scores in a single
response. Second, Verb. IS CoT first elicits
CoT reasoning, then asks for confidence estima-
tion. Third, Ling. 1S uses a similar prompt to Verb.
1S but replaces numerical scores with a 13-level
linguistic scale (e.g., “almost certain,” “likely”)
adapted from Fagen-Ulmschneider and translated
into Japanese.

3We first normalize numerals and symbols (e.g., full-/half-
width unification), remove non-essential parenthetical seg-
ments and punctuation, collapse whitespace, lowercase, and
convert Japanese numerals to Arabic. Semantically identi-
cal strings that become identical after this normalization are
merged.
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3.4 Prompt Design

To enable these confidence estimation methods, we
design prompts that require models to simultane-
ously generate: (1) evidence as structured triplets
in (Subject, Relation, Object) format, (2) confi-
dence scores for each triplet, and (3) the final
answer with its confidence score—all in a sin-
gle forward pass to maintain contextual coher-
ence. The evidence-first ordering and explicit
confidence requirements for each component en-
able fine-grained uncertainty quantification. We in-
clude few-shot examples to ensure correct format-
ting and independent confidence evaluation. Full
prompt templates are provided in Appendix Ta-
ble 5.

4 Experimental Settings

This section describes our experimental setup, in-
cluding the dataset, evaluation models, automated
evaluation procedures, and metrics used to assess
fine-grained confidence estimation performance.
Additional implementation details, hyperparame-
ter settings, and reproducibility information are
provided in Appendix A.1.

4.1 Dataset

We conduct our main experiments on
JEMHopQA (Ishii et al., 2024b), a Japanese
multi-hop QA benchmark whose training split
contains 1,059 questions. We reserve 1,000
questions as our evaluation set and select three
questions from the remaining 59 as few-shot ex-
emplars for in-context prompting. Each question
requires two to three reasoning hops, and the gold
annotations provide, on average, 2.2 subject—
relation—object triples as supporting evidence.

For example, given the question “7 L ¥ 7
4RI T o= L BEBEWH, THT
I-EZRIRELEDRBEYLLOEE
fESHT L x 9 2?7 (Which director won the
Academy Award first, Kurosawa or Tarantino?),
the gold evidence includes triplets such as (52
1% BA/Akira Kurosawa, ] 7 7 7 I — E X &
4 /year of first Academy Award, 1951) and (X 7
> 7 4 — / /Quentin Tarantino, #] 7 4 7 I —
B 2 B 1E, 1994), leading to the answer “HE {2
BH/Akira Kurosawa”. This structured format en-

4Since our evaluation uses the Japanese JEMHopQA

dataset (Ishii et al., 2024b), all prompts were originally de-
signed in Japanese and translated to English for presentation.

ables precise evaluation of each reasoning compo-
nent.

Because these triple-level evidence annotations
let us verify the correctness of every individual
reasoning component, JEMHopQA is well suited
for evaluating the validity of our proposed fine-
grained confidence scores and for analysing spuri-
ously correct answers whose evidence is partially
erroneous.

To confirm language generality, we further ap-
plied our pipeline to 2WikiMultiHopQA (Ho et al.,
2020) (English, 300 examples). Both datasets pro-
vide gold evidence in triplet format, allowing con-
sistent evaluation across languages.

4.2 Baseline Model

As a chain-level baseline model, we collapse all
evidence triplets into a single reasoning unit and
obtain a single confidence score verbalized by the
model for the entire chain. We choose verbal-
ized confidence (rather than sampling-based aggre-
gation) because variable-length, free-form chains
make clustering-based estimation impractical, in
contrast to short, structured outputs (answers or
triplets). This baseline model provides a granular-
ity ladder—answer-only — chain-level — triplet-
level—used in our comparisons. Prompt templates
for this baseline model and other settings are listed
in Appendix Table 5.

4.3 Models

We evaluate the following models spanning differ-
ent scales, training paradigms, and architectures:>

JEMHopQA (Japanese):

* GPT—4.1-mini (OpenAl, 2025) (ver. 2025-
04-14; dense model, likely HPO)

* GPT—4.1-nano (OpenAl, 2025) (ver. 2025-
04-14)

e Llama-4-Maverick-17B-128E-Instruct-
FP8 (Meta Al, 2025) (SFT +
instruction-tuned Mixture-of-Experts with
128 experts)®

* Phi—4 (Abdin et al., 2024) (14B-parameter
SFT-trained dense model)’

2WikiMultiHopQA (English):

>The number of model parameters for GPT-4.1 variants is
not publicly disclosed.

®Azure internal model version 1; created Oct 1 2024, up-
dated May 7 2025.

7 Azure internal model version 7; created Oct 1 2024, up-
dated Apr 16 2025.
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GPT-4.1-mini Llama-4-Maverick Phi-4

Method ECE| ECE-t] BS-t] AUCT ECE| ECE-t] BS-t| AUCT ECE| ECE-t] BS-t] AUCT
Baseline (Chain)  0.295 0.064 0.225  0.728 0.285 0.093 0.232  0.712 0.516 0.337 0.348  0.545
Label prob. 0.172 0.139 0.197  0.781 0.190 0.145 0.218  0.733 0.107 0.188 0.204  0.695
Token prob. 0.095 0.072 0.186 0.816 - - - - - - - -

Verb. 1S 0.297 0.125 0.210  0.791 0.316 0.137 0.243  0.710 0.508 0.326 0.329 0.574
Verb. 1S CoT 0.305 0.140 0.223  0.754 0.295 0.086 0.237 0.716 0.500 0.297 0.327  0.549
Ling. 1S 0.288 0.054 0.227  0.669 0.297 0.079 0.230  0.652 0.491 0.124 0.261 0457

Table 1: Evidence confidence extraction performance at the triplet level. Baseline (Chain) represents collapsed
chain-level confidence. Bold indicates best performance per model. Token prob. shows model-dependent cali-
bration (best for GPT-4.1-mini, worse than Label prob. for GPT-4.1-nano shown in Table 8), while Label prob.
achieves consistently robust performance across all models (ECE 0.107-0.190, AUC 0.695-0.781). (Token prob.
not evaluated for Llama-4-Maverick/Phi-4 since Azure Al Foundry Serverless doesn’t expose token-level probs.)

* GPT—-4.1 (OpenAl, 2025) (ver. 2025-04-14)

* GPT—4.1-mini

* Llama-4-Maverick-17B-128E-Instruct-

FP8

This diversity in model scales, architectures,
and training approaches demonstrates the general-
izability of our method across model types. We set
the decoding temperature to 0.0 for all methods ex-
cept Label prob., which uses temperature 0.7 and
top—p 0.95 for sampling—based confidence estima-
tion (see §3.2); all experiments were conducted via
the official APIs on Azure Al Foundry®

4.4 Evaluation Metrics

We evaluate our method along two dimensions:
calibration and discrimination. For calibration
metrics, following Tian et al. (2023), we report
both raw and temperature-scaled scores.

For calibration, we use Expected Calibration Er-
ror (ECE; Guo et al., 2017), which is the average
absolute difference between predicted confidence
and actual accuracy across bins, and Brier Score
(BS; BRIER, 1950), which is the mean squared
difference between predicted probabilities and out-
comes. Lower values indicate better calibration.

For discrimination, our metrics are:

AUC: Area under the selective accuracy-
coverage curve (Geifman and El-Yaniv,
2017), measuring the ability to distinguish
correct/incorrect predictions (higher is better).

ROC-AUC: Area under the Receiver Operating
Characteristic curve (Fawcett, 2006) for spurious
correctness detection (higher is better).

PR-AUC: Area under the Precision-Recall
curve (Davis and Goadrich, 2006), particularly
suitable for imbalanced spurious correctness detec-

$https://learn.microsoft.com/ja-jp/azure/
ai-foundry/

tion (higher is better).

We also apply temperature scaling to calibrate
confidence scores as p’ = o(z/T) where z =
log(p/(1 — p)), with the optimal temperature T°
found by 5-fold cross-validation minimizing ECE.
Temperature-scaled metrics are denoted by “~t”
(e.g., ECE-t, BS-t).

4.5 Automated Evaluation

We obtain binary correctness labels using GPT-4.1
via a constrained function-calling interface (tem-
perature=0.0). For evidence—gold scoring, the
model returns a JSON results array following our
rubric; prompt templates are in Table 4 and fur-
ther details in Appendix A.1. In our evaluation
set, YES/NO questions account for 33% and en-
tity questions for 67%; we assess answer correct-
ness accordingly (exact match for YES/NO, seman-
tic equivalence for entities). Manual validation on
300 samples showed 93-100% agreement with hu-
man judgments (Appendix A.2).

5 Results

This section reports quantitative results based on
the settings in Section 4, covering evidence con-
fidence extraction methods (§5.1) and spurious
correctness detection performance (§5.2). We
also briefly summarize cross-lingual validation
and model size effects, with detailed results pro-
vided in Appendix B.1.1 and B.2. Comprehensive
results for all confidence extraction methods across
all evaluated models are in Appendix Table 8.

5.1 Evidence Confidence Estimation

Table 1 presents the calibration and discrimina-
tion performance of different confidence extraction
methods for evidence at the triplet level. Among
model-based methods, both Label prob. and To-
ken prob. achieve strong calibration, though with
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model-dependent patterns: Token prob. excels for
GPT-4.1-mini (ECE 0.095) but underperforms for
GPT-4.1-nano shown in Table 8 (ECE 0.140 vs La-
bel’s 0.096) , indicating sensitivity to model char-
acteristics. In contrast, Label prob. (frequency-
based method with N=10 samplings, temperature
0.7, top-p 0.95) demonstrates consistent perfor-
mance across all models (ECE 0.096-0.190), mak-
ing it more reliable for deployment where model
selection may vary.

Table 1 also includes a chain-level baseline,
which assigns one confidence score per reasoning
chain. Triplet-level estimation yields monotoni-
cally higher AUC and lower ECE, demonstrating
the benefit of finer-grained uncertainty modeling.

Several key patterns emerge from these re-
sults. First, GPT-4.1-mini and MoE architectures
(Llama-4-Maverick) show relatively good perfor-
mance with verbalized methods, with temperature
scaling proving particularly effective for reducing
ECE. In contrast, the smaller SFT model (Phi-4)
shows poor performance with all verbalized meth-
ods (ECE > 0.5), suggesting that verbalized confi-
dence expression requires sufficient model capac-
ity. Despite this limitation, Phi-4’s Label prob.
performance remains competitive (ECE = 0.107),
demonstrating the robustness of frequency-based
approaches across model scales.

Fig. 2 visualizes the comparison between La-
bel prob. and Token prob. through reliability di-
agrams. The diagonal line represents perfect cali-
bration where predicted confidence matches actual
accuracy. The left column for all models, plus
bottom right for Phi-4 show Label prob.’s consis-
tent near-diagonal performance across all models
(nano: 0.096, mini: 0.172, Llama-4: 0.190, Phi-4:
0.107). The top and middle right for GPT-4.1 vari-
ants show Token prob., revealing model-dependent
behavior: while achieving lower ECE than Label
prob. for mini (0.095 vs 0.172), it shows higher
ECE for nano (0.140 vs 0.096).

We further confirmed that the same calibration
trends hold for the English 2WikiMultiHopQA
dataset, where Label prob. maintains the lowest
ECE among all methods, demonstrating the cross-
lingual robustness of our confidence estimation
framework (Appendix B.1.1).

5.2 Spurious Correctness Detection

Building on the evidence confidence results, we
evaluate how effectively these confidence scores
can detect spurious correctness—cases where an-
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Figure 2: Reliability diagrams for evidence confi-
dence calibration comparing Label prob. and Token
prob. (where available). Label prob. demonstrates
consistent near-diagonal calibration across all models
(ECE 0.096-0.190), while Token prob. shows model-
dependent performance (GPT-4.1-nano: 0.140; GPT-
4.1-mini: 0.095).

swers are correct but reasoning is flawed.

For detection, we aggregate triplet-level confi-
dence scores by taking the minimum value across
all evidence triplets, reflecting that reasoning valid-
ity requires all evidence to be correct.’

Table 2 shows spurious correctness detec-
tion performance using Label prob., our best-
performing confidence method (§5.1). Evidence-
level confidence consistently outperforms both
chain-level (A+0.13 to +0.30 ROC-AUC) and
answer-level (A+0.04 to +0.19) across all mod-
els, with Phi-4 achieving the highest ROC-AUC of
0.84.

The chain-level baseline assigns one verbal-
ized confidence score to the entire reasoning

"We also evaluated mean aggregation, which showed com-

parable but slightly inferior performance, particularly for PR-
AUC.
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Model Ans Chain Ev

GPT-4.1-mini 0.59 0.62 0.74
Llama-4-Maverick 0.53 0.52  0.69
Phi-4 0.65 054 0.84

Table 2: Spurious correctness detection (ROC-AUC).
Ans: answer-level, Chain: chain-level baseline (verbal-
ized), Evi: evidence-level. All use Label prob. except
Chain. Evidence-level consistently outperforms both
coarser granularities.

chain (§4.2), while answer- and evidence-level
use Label prob. (85.1). The substantial
evidence-over-chain improvements confirm that
fine-grained triplet-level confidence is necessary
—coarse-grained chain-level confidence is insuffi-
cient even when intermediate reasoning is avail-
able. To verify robustness across confidence ex-
traction methods, we additionally evaluated all
three granularities using verbalized confidence,
confirming that evidence-level consistently out-
performs answer-level across all models (Ap-
pendix B.1.3).

Cross-lingual evaluation on 2WikiMultiHopQA
(English) replicates these findings, with evidence-
level showing substantial improvements over
chain-level (A+0.14 to +0.32) and answer-level
(A+0.10 to +0.26), demonstrating that fine-grained
confidence addresses fundamental multi-hop rea-
soning challenges across languages (detailed re-
sults in Appendix B.1.1).

These consistent improvements across models,
methods, and languages motivates a closer exami-
nation of how confidence scores distribute for dif-
ferent correctness patterns. Fig. 3 visualizes the
relationship between answer and evidence confi-
dence for Phi-4’s Label prob. method, revealing
how spurious correctness cases can be identified
through confidence patterns.

The scatterplot reveals distinct patterns: spu-
rious correctness cases (blue) concentrate in the
upper-left region where evidence confidence is low
(ce < 0.3) but answer confidence remains high
(cq > 0.8). This separation enables effective detec-
tion using evidence confidence as a discriminator.
The quantitative effectiveness of this approach is
further demonstrated through ROC and PR curves
in Appendix Fig. 5.

count Answer Confidence (c,) vs Evidence Confidence (c.) (Triple-level)
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Figure 3: Answer confidence vs evidence confidence
scatter plot (Label prob. ). Red: Both answer and
evidence correct (true correct), Blue: Answer correct
but evidence wrong (spurious correctness), Green: Ev-
idence correct but answer wrong, Gray: Both answer
and evidence wrong. The histograms show marginal
distributions, revealing that spurious correctness cases
(blue) cluster at low evidence confidence.

6 Analysis

This section analyzes the improvement in answer
confidence calibration through joint generation
(§6.1) and patterns in evidence confidence errors

(86.2).

6.1 Answer Confidence Calibration
Improvement

A natural hypothesis emerges from our approach:
by explicitly requiring models to assess evidence
confidence, we might encourage more careful rea-
soning, potentially leading to better-calibrated an-
swer confidence as well. In other words, does the
very act of evaluating evidence confidence indeed
improve the model’s ability to assess its own an-
swer confidence?

Our results confirm this hypothesis. Table 3'°
on JEMHopQA shows that joint generation of an-
swer and evidence confidence improves answer
confidence calibration in most cases, with ECE
reductions of 26% and 43% for GPT-4.1-mini
and Llama-4-Maverick models respectively. More-
over, AUC improvements range from 12% to 32%
across three models, demonstrating better discrim-

0nly-answer and joint generation prompts are provided
in Appendix Tables 6 and 5.
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Model Method  Only- Joint- Improv.
Answer answer Rate
ECE/AUC ECE/AUC ECE/AUC

GPT-4.1- Label 53070 0.17/0.84  26%/18%

mini prob.

Llama-4-—Verb. - 11058 024/0.77  43%/32%

Maverick 1S

Phi-4 Label 6 14067 0160075 -16%/12%

prob.
Table 3:  Answer confidence performance on

JEMHopQA: ECE and AUC values for answer-
only vs. joint generation approaches. Lower ECE
indicates better calibration; higher AUC indicates
better discrimination. Improvement rates show the
relative change from answer-only to joint generation.

ination. Phi-4’s ECE worsened (-16%), which may
reflect its already-low baseline ECE (0.14) leav-
ing less room for improvement. However, the 12%
AUC improvement shows that joint generation still
enhances error detection capability.

The proposed method of jointly estimating an-
swer and evidence confidence improved not only
ECE (better calibration between predicted confi-
dence and actual accuracy) but also AUC (better
discrimination between correct and incorrect pre-
dictions) in almost all settings (see Fig. 4 for vi-
sual comparison). The improvement is particularly
notable because it demonstrates that generating ev-
idence alongside answers helps the model better
calibrate its answer confidence—even though we
might expect the additional complexity to poten-
tially harm calibration.

The consistent improvements across models sug-
gest that requiring explicit evidence assessment
fundamentally changes how models evaluate their
own certainty. By forcing models to decompose
reasoning into verifiable components and assign
confidence to each, we create a more structured
uncertainty quantification process. Our ablation
study (Appendix C.1) confirms that both evidence
generation and explicit confidence scoring con-
tribute to this improvement, with evidence gen-
eration alone improving answer accuracy by 6.8-
13.8% and additional confidence requirements fur-
ther enhancing calibration. This joint generation
maintains full context while preventing the over-
confidence often observed in answer-only gener-
ation, where models lack explicit mechanisms to
surface intermediate uncertainties. The impor-
tance of maintaining unified context is further
confirmed by our preliminary experiments (Ap-

pendix C.2), where separating generation steps
degraded performance significantly (e.g., answer
confidence AUC dropping from 0.848 to 0.722).

6.2 Evidence Confidence Error Analysis

We analyzed error patterns in Label prob. results
across three models on JEMHopQA, examining
cases where confidence scores misalign with cor-
rectness. We extracted 30 samples per model (90
samples in total) for two critical patterns: high con-
fidence despite incorrect evidence and low confi-
dence despite correct evidence.

6.2.1 High Confidence for Incorrect Evidence

We examined 90 cases where models assigned
maximum confidence (¢, = 1.0) to incorrect ev-
idence triplets, revealing four primary error pat-
terns (see Appendix Table 14 for details):

Numerical/Temporal Drift (49%): Nearly half
of high-confidence errors involve values numeri-
cally close to correct answers. The model assigns
full confidence to values it considers numerically
“close enough”, such as neighbouring years (1873
vs. 1871) or small miscounts (12 cities vs. 14
cities). Such drift occurs mainly for ages, counts,
and areas, whereas high-precision temporal facts
that require an exact calendar date (e.g. 17 May
1964) usually receive lower confidence.

Entity Conflation (38%): Models confidently
substitute entities with similar names or shared cat-
egories. This systematic confusion in entity disam-
biguation allows surface-level similarities to over-
ride factual distinctions, particularly affecting per-
son names, company names, and locations.

Question-Answer Contamination (10%):
Models exhibit a copy-paste bias, directly transfer-
ring values from questions into evidence triplets.
For example, given ”"Which of City A or City B
has azalea as its city flower?”, models generate
high-confidence triplets like (City A, city flower,
azalea) regardless of factual accuracy.

Default Value Bias (2%): Though less fre-
quent, models occasionally apply statistical priors
with high confidence, such as assuming March 31st
as the end of a fiscal year—a default particularly
common in our dataset, reflecting training data pat-
terns specific to Japanese business context.

6.2.2 Low Confidence for Correct Evidence

Analysis of 90 correct triplets with low confidence
(0.1 < ¢¢ < 0.4 for GPT-4.1-mini/Llama-4; 0.1 <
ce < 0.3 for Phi-4) reveals that conservative con-
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Figure 4: Plot of answer confidence for the baseline Answer-only method versus the Joint-Answer method (simul-

taneous evidence generation) across all models.

fidence often reflects legitimate uncertainty (de-
tailed breakdown in Appendix Table 15):

Competing Plausible Alternatives (27%):
Models reduce confidence when multiple valid
candidates exist. For instance, when generating
Don Shirley’s birthplace, near-equal sampling of
”United States” (correct), "Berlin”, and "New York
City” results in low confidence due to competing
claims in the training data.

Complex Relation Mapping (22%): Confi-
dence decreases when relations embody multi-
hop compressions (e.g., ’singer of a theme song
(of something)”) or ambiguous question-to-triplet
mapping (e.g., "Did both A and B complete gradu-
ate school?” leading to different educational status
representations).

Date/Numerical Values (21%): Specific dates
and large numbers receive low confidence even
when correct, demonstrating appropriate epistemic
humility about precise numerical facts.

Surface Form Variations (11%): Equivalent
expressions (e.g., ’18+” vs. "CERO D” for age rat-
ings) reduce confidence due to our automated eval-
uation’s exact match limitations rather than gen-
uine model uncertainty.

Rare/Long-tail Entities (10%): Information
about local mascots or other infrequent facts re-
ceives conservative confidence scores.

Multi-valued Relations (9%): Relations with
multiple valid values (e.g., "neighboring cities”)
trigger lower confidence as probability mass dis-
tributes across alternatives.

These patterns reveal the tendency that
high-confidence errors arise when the model
assigns a high probability to the incorrect answers
that are semantically close to the correct ones

(e.g., adjacent years, near-duplicate entity names),
presumably because those expressions occupy
neighboring regions in the model’s internal repre-
sentation, while low-confidence errors reflect the
situations in which multiple answers are equally
plausible or genuinely unknown, so the model
spreads its probability mass across them and gives
any single candidate a low score. Given that LLMs
represent knowledge in a continuous space and
fundamentally operate on probabilistic principles,
such phenomena may be inevitable. Nevertheless,
our results suggest that a key challenge lies in
finely discriminating between subtly different
facts within this latent space, while preserving
the robustness of knowledge processing to reduce
overconfidence.

7 Conclusion

This paper introduced a fine-grained confidence es-
timation framework that extends LLM uncertainty
quantification from answer-level to individual ev-
idence components. By decomposing reasoning
into triplets and assigning confidence scores to
each component, we enabled precise error detec-
tion within reasoning chains, a capability absent
from existing coarse-grained approaches.

Future work should explore alternative evidence
decomposition strategies beyond triplet format, in-
vestigate the relationship between granularity and
confidence quality, and extend evaluation to other
languages and reasoning tasks. As LLMs increas-
ingly support high-stakes decisions, fine-grained
confidence estimation will be essential for trust-
worthy deployment; practical recommendations
for deployment are provided in Appendix D.3.
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Limitations

While our results demonstrate the effectiveness of
fine-grained confidence estimation, several limita-
tions warrant discussion:

Automated evaluation reliability: While our
automated evaluation achieved high agreement
with human judgments (93-100% across different
models and metrics), this approach has inherent
limitations. The reliability may vary with differ-
ent model families or task complexities not tested
in our validation. Furthermore, our validation sam-
ple of 100 instances per model may not capture
all edge cases. Future work should explore more
robust evaluation methods, potentially combining
multiple evaluators or using specialized evaluation
models.

Dataset and language specificity: Our evalua-
tion focused on Japanese multihop QA. While the
underlying principles should transfer to other lan-
guages and tasks, empirical verification is needed.

Evidence format constraints:  Our frame-
work requires decomposable evidence units with
alignable gold annotations for automatic evalua-
tion. We instantiate this as (Subject, Relation,
Object) triplets for JEMHopQA and 2WikiMulti-
HopQA, which work well for factual multi-hop QA
but may not suit all reasoning types. However,
the core principle—assigning confidence to decom-
posable reasoning components—can be adapted to
other formats such as table rows, slot-value facts,
or knowledge graph paths, as long as each compo-
nent has clear correctness criteria and gold units al-
low one-to-one matching after normalization. Fu-
ture work should explore such extensions and in-
vestigate the trade-offs between structural expres-
siveness and evaluation scalability.

Computational tradeoffs: While our method
is more efficient than extensive resampling ap-
proaches, it still requires generating additional to-
kens for evidence and confidence. Future work
could explore more efficient confidence estimation
methods.

Calibration versus discrimination tradeoft:
While we generally see improvements in both met-
rics, some configurations show tension between
calibration and discrimination performance. Un-
derstanding and optimizing this tradeoff remains
an open challenge.

Potential risks: Over-reliance on confidence
scores without validation could lead to misplaced
trust, particularly under distribution shift or in

cross-lingual settings beyond our evaluation. We
recommend human oversight in high-stakes appli-
cations and domain-specific validation before de-
ployment.

Ethical considerations

We follow the ACL Publication Ethics and the
ARR Responsible NLP Research checklist. We
used ChatGPT 5 and Claude Sonnet 4.5 only as
assistive tools (code refactoring and copy-editing);
all content was author-verified and the models are
not authors. No new human-subject data were col-
lected and no PII or confidential information were
used; IRB approval was not required. We evaluate
on public datasets (e.g., JEMHopQA; 2WikiMulti-
HopQA) and access models via official APIs under
their terms; we do not redistribute third-party arti-
facts. Prompts and evaluation code will be released
for reproducibility.
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Models and endpoints. All experiments use
API inference only. Model versions: GPT-4.1-
mini (2025-04-14), Llama-4-Maverick-17B-128E-
Instruct-FP8 (v1, Oct 2024), Phi-4 (v7, Oct 2024).
Code ran on Linux with Python 3.11.

Prompting and decoding. Label prob. uses tem-
perature = 0.7, top-p = 0.95, n=10 samples. All
other methods use temperature = 0.0 (greedy de-
coding). Max output tokens: 2,048. No custom
stop sequences. All prompts use the same three
few-shot exemplars per dataset (fixed exemplar IDs
in repository).

Normalization. We apply a single normalization

pipeline to all content strings (answers and the sub-

ject/relation/object fields of triples) after parsing
the “(subject, relation, object)” structure:

1. Unicode normalization (NFKC;
full/half-width unification)

2. Trim leading/trailing whitespace

3. Map Japanese “IZW /WU 2 or “yes/no” pre-
fixes to YES/NO

4. Convert Japanese numerals to Arabic (JP data
only)

5. Remove non-essential bracketed annotations
(e.g., ()7, “(entity)”), not affecting structural
delimiters

6. Remove Japanese quotation marks ( ] [ )

7. Strip non-structural punctuation (triple delim-
iters are preserved for parsing)

8. Collapse internal whitespace

9. Lowercase ASCII letters
For numbers: drop thousands separators. For

dates: unify Japanese era <+ Western year map-
pings when applicable. Triples are first parsed by
splitting on the two outer commas while ignoring
commas inside parentheses; the above normaliza-
tion is then applied to each field. Normalization
code is available in the repository.

includes

Triple parsing. Triples are parsed from the
(subject, relation, object) format by split-
ting on the two outer commas (commas inside
fields/parentheses are preserved). After parsing,
normalization is applied to each field. During ag-
gregation, the order of triples within a prediction
is ignored and duplicates are preserved (multiset);
the field order within each triple is preserved.

Answer and evidence aggregation for Label
prob. Across n=10 samples, we compute empir-
ical frequencies after normalization.

Answer aggregation: The final answer is the
majority string (exact match after normalization).
Its confidence equals the majority frequency di-
vided by n. Ties are broken by first occurrence
(deterministic under a fixed seed).

Evidence aggregation: Each trajectory yields a
(multi)set of normalized triples. We canonicalize
each set by sorting triples lexicographically (sub-
ject — relation — object) and use the sorted tu-
ple as a key, which ignores within-trajectory order
while preserving duplicates. The most frequent ev-
idence set E* is selected as the final evidence (ties
broken by first occurrence).

For each triple e € E*, the evidence confidence
is

1 ¢ :
ple|q) = EZH[e e BV,
i=1

i.e., the fraction of trajectories containing e.

Evidence evaluation against gold. We evaluate
predicted triples against gold annotations using
GPT-4.1 (2025-04-14; temperature=0.0, n = 1,
max_tokens=4096) via constrained function call-
ing.

Evaluation protocol: The system prompt en-
forces calling evaluate_ triples and the fixed out-
put order “pred 1..m — gold 1..k”. The model
returns a JSON results array with one entry
per predicted and per gold triple, each includ-
ing type (“pred”/“gold”), index (1-based), triple,
matched_index (or null), and a binary score €
{0.0,1.0}.

Exact sequence match: Before invoking the
LLM, if the entire sequence of predicted triples ex-
actly matches the gold sequence after normalizing
parenthesis glyphs (& O / ASCII()) , we syn-
thesize per-entry outputs without an API call by as-
signing score=1.0 to all predicted and gold entries
and setting matched_ index=1..m accordingly.

Scoring rubric: Summarized in Table 4
(e.g., synonyms/abbreviations and unit/granularity
equivalence count as correct; format violations and
factual errors are incorrect).

Metrics and calibration. We report Expected
Calibration Error (ECE; 10 equal-width bins),
Brier Score (BS), and Selective AUC (area un-
der the accuracy—coverage curve). For discrimina-
tion, we also report ROC-AUC and PR-AUC for
evidence-level spurious-correctness detection.
Temperature scaling is evaluated with 5-fold
cross-validation (KFold with shuffling; seed 42).
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In each fold, a temperature is fitted on the training
split and ECE is computed on the held-out split; we
report the mean ECE across folds together with the
mean and standard deviation of the fitted tempera-
tures.

Randomness and retries. Cross-validation uses
KFold with shuffling (seed=42). For Label prob.
generation we use temperature=0.7, top-p=0.95,
and n=10; the API does not expose a stable ran-
dom seed, so small run-to-run variation is possi-
ble, and all reported numbers come from a single
run. Evidence evaluation via function calling uses
temperature=0.0 and n=1 (effectively determinis-
tic modulo API behavior). All API calls include
retry logic (up to 3 retries); items that still fail are
excluded from analysis.

Code and data release. We release: (1) all
prompt templates (Japanese and English); (2) eval-
uation scripts for automated judgment and met-
ric computation; (3) few-shot exemplars embed-
ded as IDs within the prompt templates; (4) nor-
malization and triple-parsing utilities; and (5)
runnable configuration (CLI arguments and sam-
ple scripts) specifying model identifiers/versions
and decoding parameters (the model version can
be passed as an argument). We do not redis-
tribute third-party datasets or model weights; users
should obtain them from the official sources cited
in the paper. Access to commercial APIs (e.g.,
GPT-4.1/ GPT-4.1-mini) must be obtained via the
providers’standard procedures; API keys and pri-
vate endpoints are not included in our release. The
public repository is available at https://github.
com/aiishii/finegrained_ conf and includes the
LICENSE file.

A.2 Automated Evaluation

All evaluation metrics require binary correctness
labels for each answer and evidence triplet. We ob-
tain these labels using GPT-4.1 with a constrained
function-calling interface (details in §A.1). Ta-
ble 4 presents the prompt template used for evi-
dence evaluation with one-to-one matching and bi-
nary scoring.

Answer evaluation. We use exact match for
YES/NO questions (33% of JEMHopQA). For
entity-based questions (67%), we employ GPT-4.1
to judge semantic equivalence when exact match
fails.

Evidence evaluation. The model performs one-
to-one matching between predicted and gold
triples, assigning binary scores (1.0 or 0.0) based
on the rubric in Table 4. The rubric toler-
ates surface-form variation (synonyms, abbrevi-
ations, subject-object swaps for symmetric rela-
tions) while requiring semantic equivalence.

Reliability assessment. To validate the auto-
mated evaluation, one author manually labeled 100
randomly sampled instances per model (300 total).
Agreement rates: answer correctness 98% (GPT-
4.1-mini), 100% (Llama-4-Maverick), 98% (Phi-
4); evidence correctness 93%, 94%, 95% respec-
tively. While these error rates are non-negligible,
they affect all methods equally, preserving the va-
lidity of relative comparisons.

A.3 Prompt Templates

This section presents the prompts used in our exper-
iments. As our evaluation was conducted on the
Japanese JEMHopQA dataset, all prompts were
originally written in Japanese. We provide English
translations for clarity, followed by Japanese exam-
ples in §A.3.2.

A.3.1 English Translation

The following tables present the prompt templates
used in our experiments. Table 5 shows the
prompts for our main joint generation approach,
while Table 6 contains the prompts for the answer-
only baseline used in the ablation study (§6.1) to
demonstrate the improvement from joint evidence-
confidence generation. As our evaluation was con-
ducted on the Japanese JEMHopQA dataset, all
prompts were originally written in Japanese and
have been translated to English for this presenta-
tion. The actual experiments used the Japanese ver-
sions of these prompts.

A.3.2 Japanese Prompt Examples

For reference, we provide examples of the actual
Japanese prompts used in our experiments. These
correspond to the English translations of the Label
prob. prompt in §A.3.1.

B Additional Experimental Results

B.1 Comprehensive Evidence Confidence
Results

Table 8 presents complete results for evidence con-
fidence across all methods, models, and datasets.
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Component  Prompt Template

System

You evaluate evidence triples for multi-hop QA. Given lists of gold and predicted triples, first establish an

optimal one-to-one alignment that maximizes overall semantic equivalence, then return a JSON results array in
which each item represents either a predicted or a gold triple, including fields type (“pred” or “gold”), index
(1-based), triple (“(subject, relation, object)””), matched__index (or null), and score (either 1.0 or 0.0).

Scoring is binary per matched pair.

User Gold triples (1-based):

1. ({GOLD_SUBJECT_ 1}, {GOLD_RELATION_ 1}, {GOLD_OBJECT 1})
2. ({GOLD_SUBJECT 2}, {GOLD_RELATION_ 2}, {GOLD_OBJECT_2})

Predicted triples (1-based):

1. ({GEN_SUBJECT 1}, {GEN_RELATION_1}, {GEN_OBJECT_1})
2. ({GEN_SUBJECT 2}, {GEN_RELATION_2}, {GEN_OBJECT_2})

Judging rules for score = 1.0 (equivalence allowed):

* Synonyms / spelling variants / abbreviations; entity surface-form differences

 Information equivalence sufficient to answer the question (unit/granularity differences acceptable)
* Subject<>Object swap for symmetric relations (e.g., spouse)

* Presuppositions and necessary inference elements for reasoning chains

* Boundary values of ranges; components of composite (AND) conditions

Cases for score = 0.0:

* Missing/misidentified core information; only a fragment that does not contribute to derivation

* Factually incorrect statements (beyond conventional/format variation)

* Improper format (no entity/value; boolean or free-text sentence), vague terms (“around”, “many”’)
* Irrelevant to the question or to the aligned gold triple; missing elements in a composite chain

Output JSON schema (abbreviated):
{“results”: [

{“type”:“pred”,“index”:1, “triple”:“(S,R,0)”, “matched_index”:2, “score”:1.0},
{“type”:“gold”,“index”:2, “triple”:*(S,R,0)”, “matched__index”:1, “score”:1.0},

W

Table 4: Prompt template for automated evidence evaluation with one-to-one alignment and binary scoring.
{GOLD_*} and {GEN_*} placeholders are replaced with actual components. The complete JSON schema is pro-

vided in the appendix.

Accuracy indicates the proportion of correctly gen-
erated evidence triplets, while other metrics eval-
uate calibration (ECE, BS) and discrimination
(AUC, ROC, PR).

B.1.1 Cross-lingual Validation Results

To validate the generalizability of our approach
across languages, we evaluated on 2WikiMulti-
HopQA (English, 300 dev samples) in addition to
JEMHopQA (Japanese, 1,000 samples). Complete
results for both datasets, including all calibration
and discrimination metrics, are presented in Ta-
ble 8 (§B.1). This section focuses on cross-lingual
comparisons and robustness analysis.

B.1.2 Granularity Effects Across Languages

Table 9 shows spurious correctness detection per-
formance (ROC-AUC, Label prob.) across all gran-
ularity levels for both datasets.

Key observations. (1) Evidence-level superior-
ity over chain-level: Evidence-level consistently
and substantially outperforms chain-level across

all six combinations (A+.129 to +.316 ROC-AUC,
mean +.225). This demonstrates that fine-grained
triplet-level confidence is necessary even when
chain-level reasoning is available—coarse-grained
chain-level confidence is insufficient for effective
spurious correctness detection. (2) Evidence-
level superiority over answer-level: Evidence-
level also consistently outperforms answer-level
across all combinations (A+.099 to +.261 ROC-
AUC, mean +.176), confirming that structured in-
termediate reasoning confidence provides substan-
tial benefits over final-answer confidence alone.
(3) Chain-level baseline variability: Chain-level
shows mixed performance relative to answer-level
(higher in 2/6 cases), reflecting the challenges
of obtaining reliable verbalized confidence for
variable-length reasoning chains. (4) Cross-
lingual robustness: The evidence-level advan-
tages persist across Japanese and English datasets
and across diverse model architectures (GPT-4
variants, Llama-4-Maverick), indicating that the
benefits of fine-grained confidence are fundamen-
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Method Template (Joint)

Baseline Provide the answer and the supporting triples that lead to your conclusion. First, show your reasoning
(Chain) process step by step, then output the supporting triples and the final answer. Triples must be in the form
(Subject, Relation, Object). The subject must be an entity, and the object must be either an entity or a specific
value (date, number, etc.). Use short single phrases for all fields. Finally, report your confidence (0.00-1.00,
two decimals) in your overall reasoning process (Thought + Triples) and, separately, your confidence in the
answer.
Output in the following format:
Thought: [reasoning process]
Triple 1: (Subject, Relation, Object)
Triple 2: (Subject, Relation, Object)

Overall reasoning confidence: 0.00-1.00

Answer: YES|NO|<short single phrase> 0.00-1.00
[Examples omitted]

Question: {THE_QUESTION}

Label prob. /  Provide an answer to the question and the supporting evidence as triples. Triples should be in the format
Token prob. (Subject, Relation, Object). Subject is an entity, Object is an entity or concrete value (date, number, etc.),
both as short single phrases.
Output in the following format:
Triplel: (Subject, Relation, Object)
Triple2: (Subject, Relation, Object)

Answer: YES|NO|<short single phrase>
[Examples omitted]
Question: {THE_QUESTION}

Verb. 1S (same as 1st row of Label prob.) Triples should be in the format (Subject, Relation, Object). Subject is an
entity, Object is an entity or concrete value (date, number, etc.), both as short single phrases.
Include a confidence score (0.00-1.00, two decimals) for each triple and for the final answer.
Output in the following format:
Triplel: (Subject, Relation, Object) 0.00-1.00
Triple2: (Subject, Relation, Object) 0.00-1.00

Answer: YES|NOJ<short single phrase> 0.00-1.00
[Examples omitted]
Question: {THE_QUESTION}

Verb. 1S CoT  (same as 1st row of Label prob.) First show your thinking process concisely, then output the evidence triples
and answer.
Triples should be in the format (Subject, Relation, Object). Subject is an entity, Object is an entity or
concrete value (date, number, etc.), both as short single phrases.
Include a confidence score (0.00-1.00, two decimals) for each triple and for the final answer.
Output in the following format:
Thought: [reasoning process]
Triplel: (Subject, Relation, Object) 0.00-1.00
Triple2: (Subject, Relation, Object) 0.00-1.00

Answer: YES|NO|<short single phrase> 0.00-1.00
[Examples omitted]
Question: {THE_QUESTION}

Ling. 1S (same as 1st row of Label prob.) First show your thinking process, then output the evidence triples and
answer.
Triples should be in the format (Subject, Relation, Object).
Subject is an entity, Object is an entity or concrete value (date, number, etc.), both as short single phrases.
Express confidence for each triple and the answer using one of these expressions:
{EXPRESSION_LIST}
Output in the following format:
Triplel: (Subject, Relation, Object) Almost certain|Very likely|...|Almost impossible
Triple2: (Subject, Relation, Object) Almost certain|Very likely|...|Almost impossible

Answer: YES|NOJ<short single phrase> Almost certain|Very likely|...|Almost impossible
[Examples omitted]
Question: {THE_QUESTION}

Table 5: Prompt templates for Joint configuration. All methods require evidence generation before the final answer.
{THE_QUESTION} is replaced with the actual question, and {EXPRESSION_LIST} contains the 13-level linguis-
tic expressions.
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Method

Template (Only-Answer)

Label prob. /
Token prob.

Provide the best answer to the following question. Output ONLY the answer, without any other words or
explanations.

Question: {THE_QUESTION}

Answer in the following format: Answer: <most likely answer, as short as possible; not a complete sentence,
just the answer!>

Verb. 1S

Provide the best answer to the following question and the probability that it is correct (0.0 to 1.0). Output
ONLY the answer and probability, without any other words or explanations.

Question: {THE_QUESTION}

Answer in the following format:

Answer: <most likely answer, as short as possible; not a complete sentence, just the answer!> Probability:
<probability your answer is correct (between 0.0 and 1.0), no additional comments; just the probability!>

Verb. 1S CoT

Show your step-by-step thinking process for the following question. Then provide the answer and the prob-

ability that it is correct (0.0 to 1.0).
Question: {THE_QUESTION}
Answer in the following format:

Thought: <explain your thinking process in one concise sentence>
Answer: <most likely answer, as short as possible; not a complete sentence, just the answer!>
Probability: <probability your answer is correct (between 0.0 and 1.0), no additional comments; just the

probability !>

Ling. 1S
{EXPRESSION_LIST}
Question: {THE_QUESTION}
Answer in the following format:

Provide the best answer to the following question and express your confidence using one of these expressions:

Answer: <most likely answer, as short as possible; not a complete sentence, just the answer!>
Answer Confidence: <confidence expression, no additional comments; just the short phrase!>

Table 6: Prompt templates for Only-Answer configuration. {THE_QUESTION} is replaced with the actual ques-
tion, and {EXPRESSION_LIST} contains the 13-level linguistic expressions adapted from Fagen-Ulmschneider.

tal rather than language- or model-specific.

B.1.3 Robustness Across Confidence Methods

To confirm that granularity effects are method-
independent, Table 10 shows results using verbal-
ized confidence across all granularities on both
datasets.

B.1.4 Cross-lingual Summary

The cross-lingual evaluation confirms: (1) Mono-
tonic improvement: Evidence-level consistently
outperforms answer-level across both Japanese and
English for all evaluated models. (2) Robustness
across model families: Benefits persist across
GPT-4 variants, Llama-4, and Phi-4. (3) Cal-
ibration improvements replicate: Label prob.
achieves ECE of 0.111-0.165 on 2WikiMulti-
HopQA compared to 0.173-0.191 on JEMHopQA
(Table 8). (4) Method independence: Granular-
ity effects persist across both sampling-based (La-
bel prob.) and verbalized confidence methods (Ta-
ble 10). These results validate that our structured
triplet-based approach addresses fundamental chal-
lenges that transcend language boundaries.

B.2 Model Size Effects

Table 11 compares different sizes within the GPT-
4.1 family. Both nano and mini show similar im-
provement patterns with Label prob., suggesting
robustness across model scales.

C Ablation Studies
C.1 Ablation Study on Evidence and
Confidence Generation

To investigate the mechanism behind the calibra-
tion improvements observed in our main experi-
ments, we conducted an ablation study with four
configurations:

* C1: Answer only with confidence (baseline)

e C2:
scores

Answer + Evidence, no confidence

¢ C3: Answer + Evidence, answer confidence
only

e C4: Answer + Evidence, both answer and ev-
idence confidence (our full method)

Table 12 reveals two key findings:
Evidence generation improves accuracy:
Comparing C1 to C2, we observe substantial
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Method Template (Joint)

Label prob. /
Token prob.

ROBINIX T BEE Y, ZOMICE B 722 b Y FABRMEELTL X0,
kU U (FEE, BIfR, BIVEE) oIE,

TRV A 7 4. HIGRET Y7 1 7 4 FR3BANRIE (A, 205 2L, winb

BWHE—7L - 33,
TRoRcHALTLZEn:
b U 1 (EFE, BR, HIUEE
bV v 2: (FEE, Bk, HRVEE)

0] YESINO|< FHWVWH—71 — X >
i :

HE: Wii U =7 Y F—F—aFa—7, HERTOAKELRINHTEDS — LY 7 MDBZ W

DRIELLTLED?

FU L1 (WiiU, HERTORKLFRFETZDY 7 ML, 11 B4 F )
MY 2 (=T Y R—F—aFa—7, HERTORKLERRETZOY 7 VL, 2A)

[F%: Wii U
[Two examples omitted]
‘B [M: {THE_QUESTION}

Verb. 1S (same as the first three rows of Label prob.)

Z MU T AIEDIERESIINT 2HEE (0.00-1.00, /MI2H) dRT I,

UFoERtHAOL T ZEwn:

kU 70V 1 (e, Bk, HIIYEE) 0.00-1.00
b U v 2 (FFE, Bk, HAYEE) 0.00-1.00

[B%: YESINO|< FH\WH—7 L — X > 0.00-1.00

Bl

HRE:WiUe=VvT7 Y F=F—sFa—7, HRTORKLFARFETZEDT —LY 7 ML Z W

DIFEBELTL LD ?

FY T 1 (Wil U, HRTORKLFERFEED Y 7 M, 11 XA bov) [[E(SE] B
FUVTN2 (=T Y R=F—bFa—7T, HRTORKLRARETLOY 7 MY, 2K) [FEEE]

B Wii U [FE(SEE]
[Two examples omitted]
[B%%: YES [MES ]
'E*: {THE_QUESTION}

Table 7: Example Japanese prompt (Label prob. / Token prob. and Verb. 1S method). All methods require evidence
generation before the final answer. {THE_QUESTION} is replaced with the actual question.

accuracy improvements across all models (GPT-
4.1-mini: +13.8%, Llama-4-Maverick: +10.6%,
Phi-4: +6.8%), confirming that explicit evidence
generation enhances reasoning.

Evidence confidence scoring improves an-
swer calibration: Comparing C3 to C4, adding
evidence confidence requirements consistently im-
proves answer confidence calibration (ECE re-
duction: GPT-4.1-mini: 0.280—0.266, Llama-4-
Maverick: 0.326—0.240, Phi-4: 0.440—0.426).

The minor variations in accuracy between C2,
C3, and C4 suggest that confidence scoring itself
does not significantly impact answer correctness,
but rather improves calibration through more real-
istic uncertainty expressions.

C.2 Preliminary Experiments on Generation
Strategies

To validate our joint generation approach, we con-
ducted preliminary experiments comparing three
generation strategies on 120 samples from the

JEMHopQA development set:

* Joint generation (verb_1s): Generate an-
swer, evidence, and confidence scores in a sin-
gle response

* Sequential dialogue (verb_2s): Generate an-
swer and evidence first, then request confi-
dence scores in the same message

* Independent steps: Generate confidence
scores in a separate message

Table 13 shows that maintaining unified context
throughout the generation process is crucial for ac-
curate confidence estimation. Even the sequential
approach within the same message shows perfor-
mance degradation compared to joint generation,
suggesting that the model benefits from consider-
ing confidence while generating the content itself.

Note: These preliminary experiments used a
smaller dataset and slightly different evaluation cri-
teria than the main experiments, hence the abso-
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Dataset Model Method Acct ECE| ECE-tf BS| BS-t] AUCt ROC{ PR?T
Baseline .569 313 .044 325 238 .683 576 420

Label prob. 516 .096 128 217 233 677 751 673

GPT-4.1 Token prob. 496 .140 .065 235 216 .666 521 407

-nano Verb. 1S .500 322 .109 327 237 667 723 17

Verb. 1S CoT  .540 346 114 346 241 .679 672 624

Ling. 1S 542 294 .049 330 246 536 .549 544

Baseline .626 295 .064 307 225 728 615 528

Label prob. .621 172 139 221 197 781 744 565

GPT-4.1 Token prob. .645 .095 072 192 186 816 537 292

< ~ -mini Verb. 1S .629 297 125 300 210 791 733 .598
2 % Verb. 1S CdT  .628 .305 .140 312 223 754 707 576
= i Ling. 1S 615 .288 054 307 227 .669 673 670
5 S Baseline .645 285 .093 299 232 712 524 386
Llama-d Label prob. 611 190 .145 245 218 733 693 552

Maverick Verb. 1S .602 316 137 317 243 710 .679 613

Verb. 1S CoT 618 .295 .086 302 237 716 .685 .614

Ling. 1S .589 297 079 309 230 .652 659 .617

Baseline 458 516 337 507 348 .545 .535 488

Label prob. 449 107 .188 178 204 .695 839 825

Phi-4 Verb. 1S 459 .508 326 495 329 574 622 584

Verb. 1S CoT' 463 .500 297 491 327 .549 .647 .587

Ling. 1S 447 491 124 486 261 457 .549 .606

Baseline 11 245 047 259 199 179 .508 157

GPT-4.1 Label prob. 17 108 122 145 154 .844 824 .689

) Token prob. 674 156 .106 210 192 .801 S13 337

Verb. 1S 746 212 .064 226 .178 .860 .691 295

< Baseline 510 427 .060 428 253 496 478 174
= GPT-4.1 Label prob. S11 163 158 204 206 704 771 703
E = -mini Token prob. 481 232 122 282 239 .607 578 487
= L%D Verb. 1S .506 405 .076 402 246 .600 .645 544
E = Llama-4 Baseline 455 493 218 483 291 535 .548 494
Maverick Label prob. .395 140 209 194 220 .605 730 720

Verb. 1S 319 .564 277 543320 .568 677 .636

Table 8: Comprehensive evidence confidence results across all methods, models, and datasets. Acc: evidence
triplet accuracy; ECE/BS: calibration metrics; AUC/ROC/PR: discrimination metrics (ROC and PR for spurious
correctness detection at evidence level). Bold indicates best performance per model-dataset combination. For GPT-
4.1 variants on JEMHopQA, Token prob. achieves the lowest calibration error for mini (ECE .095) but shows
model-dependent behavior with higher error for nano (.140 vs Label’s .096). Label prob. demonstrates consis-
tent performance across all models (ECE .096-.190) and superior spurious correctness detection (highest ROC/PR
across all models). Note that high accuracy does not guarantee good spurious correctness detection (ROC/PR),

highlighting the importance of fine-grained confidence estimation.

Answer Chain Evidence A A

Dataset Model -level -level -level Evi-Chain  Evi-Ans
GPT-4.1-mini 594 615 744 +.129 +.150
gEMaﬂgng Llama-4-Maverick 533 524 693 +.169 +.160
p Phi-4 651 535 839 +.304 +.188
o GPT-4.1 563 508 824 +316 +261
(2;:’! ‘ﬁ;ls\fl;ﬂ“H"pQA GPT-4.1-mini 572 478 771 +292 +.198
g Llama-4-Maverick .630 592 730 +.138 +.099

Table 9: Cross-lingual comparison of spurious correctness detection (ROC-AUC, Label prob.). Evidence-level
confidence consistently and substantially outperforms both chain-level (A+.129 to +.316) and answer-level (A+.099
to +.261) across all six model-dataset combinations. Chain-level baseline uses verbalized confidence and shows

variable performance relative to answer-level.
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Configuration GPT-4.1-mini Llama-4-Maverick Phi-4
Accuracy ECE | | Accuracy ECE| | Accuracy ECE|
C1: Answer only + conf. 0.528 0.363 0.544 0.422 0.473 0.495
C2: Answer + Evidence, no conf. 0.666 — 0.650 — 0.541 —
C3: Answer + Evidence, answer conf. only 0.650 0.280 0.659 0.326 0.526 0.440
C4: Answer + Evidence + both conf. 0.654 0.266 0.660 0.240 0.542 0.426

Table 12: Ablation study on incremental effects of evidence and confidence generation using the Verb. 1S method.
ECE values are not applicable for C2 as no confidence scores are generated.

Dataset  Model Ans Chain Evi A(E-A)
GPT-4.1-mini  0.664 0.615 0.733 +0.069
JEMHop GPT-4.1-nano 0.617 0.576 0.723 +0.106
(JP) Llama-4-Mav. 0.640 0.524 0.679 +0.039
Phi-4 0.613 0.535 0.622 +0.008
Wiki GPT-4.1 0.553 0.508 0.691 +0.138
(EN) GPT-4.1-mini 0.588 0.478 0.645 +0.058
Llama-4-Mav. 0.538 0.592 0.683 +0.144

Table 10: Spurious correctness detection (ROC-AUC)
using verbalized confidence (Verb. 1S) at all granular-
ities. Evidence-level consistently outperforms answer-
and chain-level across all seven combinations, confirm-
ing that the benefit of fine-grained confidence is robust
across confidence extraction methods.

AROC ECE-t
Dataset Model (E-A) (Label prob.)
JEMHop GPT-4.1-mini  +0.150 0.139
(JP) GPT-4.1-nano  +0.156 0.128
2Wiki GPT-4.1 +0.261 0.122
(EN) GPT-4.1-mini ~ +0.198 0.158
Table 11: Model size comparison within GPT-4.1

family. A ROC (E-A): Evidence-Answer improve-
ment. Similar gains across sizes suggest methodolog-
ical rather than capacity-driven improvements.

Answer Confidence Evidence Confidence

Method ECE-tl/ BS-tl AUCT | ECE-t] BS-t] AUCT
Joint

(Verb. 1S 0.113 0.180  0.848 0.101 0.199  0.731
Sequential

(Verb. 28 0.119 0.184  0.766 0.130 0.204  0.692
Independent  0.263 0230  0.722 0.246 0.266  0.672

Table 13: Performance comparison of generation strate-
gies. Joint generation consistently outperforms sepa-
rated approaches, with the degradation being most se-
vere when confidence is generated in an independent
message.

lute numbers differ from those reported in the main
text.

D Analysis and Application

D.1 Spurious Correctness Detection
Performance

Fig. 5 provides a detailed visualization of spurious
correctness detection performance, showing both
ROC and PR curves for the best-performing con-
figuration (Phi-4 with Label prob.). The substan-
tial gap between evidence confidence (orange) and
answer confidence (blue) demonstrates that fine-
grained confidence at the evidence level provides
significantly better discrimination for identifying
cases where correct answers are supported by in-
correct reasoning.

ROC for False-Positive Detection Precision-Recall for False-Positive Filtering

7 p_answer (AUC=0.65) p_an
0od & p_evidence (AUC=0.84) pev

oo 02 o6 os 1o 0o 02 06 o8 To

04 04
False Posiive Rate. Recall(False-Positive Detection)

Figure 5: ROC and PR curves for spurious correct-
ness detection using Phi-4/Label prob. Evidence
confidence (orange) achieves ROC-AUC 0.84 and PR-
AUC 0.82, significantly outperforming answer confi-
dence (blue) with ROC-AUC 0.65 and PR-AUC 0.63.

D.2 Detailed Error Analysis Tables

The following tables provide detailed breakdowns
of the error patterns observed in our analysis of
confidence misalignment cases.

D.3 Practical Deployment Considerations

Based on our empirical findings across multiple
models and two languages, we offer the follow-
ing observations that may inform deployment. Re-
sults and ranges below refer to our JEMHopQA
and 2WikiMultiHopQA settings unless noted.
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Error Type GPT-4.1-mini  Llama-4 Phi-4  Total (%)
?f%n;éﬁ%rm 16 14 14 44.(49%)
Er;trig/ation 8 14 11 34 (38%)
Contamination” 4 2 4 9(10%)
I\)fzfj:l];ias 1 0 1 2 (2%)
IGn:;f:lC;?; 1 0 0 1 (1%)

Table 14: Distribution of error types in high-confidence
incorrect evidence (n=90, 30 samples per model). All
cases exhibited maximum confidence (c, = 1.0).

Pattern GPT-4.1-mini  Llama-4 Phi-4 Total (%)

Competing Plausible

Alternatives 9 6 9 24 (27%)

1s/lornp'lex Relation 5 0 6 20 2%
apping

Numerical

Values 11 4 4 19(21%)

Surface Form

Variations 2 4 4 10 (11%)

Rare/Long-tail

Entities 0 2 7 9(10%)

Multi-valued

Relations 3 5 0 8 (9%)

Table 15: Distribution of patterns in low-confidence
correct evidence (n=90, 30 samples per model).

Method selection: Label prob. showed com-
paratively strong calibration (ECE 0.096-0.190)
across all tested architectures. While it requires
multiple samples (n=10 in our runs), the calibra-
tion gains can justify the added latency where con-
fidence reliability is critical.

Granularity choice: Evidence-level confi-
dence yielded higher spurious correctness detec-
tion in our experiments (ROC-AUC 0.69-0.84)
than answer- or chain-level alternatives. For de-
ployment, we recommend tuning decision thresh-
olds on a held-out dev set from the target domain.

Error monitoring: We observed that about
49% of high-confidence errors in our sample in-
volved numerical or temporal fields. Prioritizing
verification on these field types may improve over-
all reliability.

Calibration maintenance: Monitor ECE (or a
related calibration metric) on production data over
time; distribution shifts may necessitate periodic
temperature recalibration.

While these observations are derived from multi-
hop QA, we expect the general idea of fine-
grained confidence to potentially extend to other
reasoning-heavy tasks where intermediate steps
can be decomposed into verifiable units. Practi-
tioners should validate these patterns in their spe-

cific application contexts.
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