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Abstract
Sign language understanding remains a signifi-
cant challenge, particularly for low-resource
sign languages with limited annotated data.
Motivated by the success of large-scale pre-
training in deep learning, we propose Multi-
Stream Masked Autoencoder (MS-MAE) —
a simple yet effective framework for learning
sign language representations from skeleton-
based video data. We pretrained a model with
MS-MAE on the YouTube-ASL dataset, and
then adapted it to multiple downstream tasks
across different sign languages. Experimental
results show that MS-MAE achieves compet-
itive or superior performance on a range of
isolated sign language recognition benchmarks
and gloss-free sign language translation tasks
across several sign languages. These findings
highlight the potential of leveraging large-scale,
high-resource sign language data to boost per-
formance in low-resource sign language scenar-
ios. Additionally, visualization of the model’s
attention maps reveals its ability to cluster ad-
jacent pose sequences within a sentence, some
of which align with individual signs, offering
insights into the mechanisms underlying suc-
cessful transfer learning.

1 Introduction

Sign languages (SLs), which rely on hand move-
ments, facial expressions, and body gestures to
convey meaning, serve as a primary mean of com-
munication within deaf communities. However,
a significant communication gap persists between
deaf and hearing populations. In response, research
on sign language understanding, including Sign
Language Recognition (SLR) (Li et al., 2020; De-
sai et al., 2023; Kapitanov et al., 2023) and Sign
Language Translation (SLT) (Camgöz et al., 2018;
Zhou et al., 2021a; Duarte et al., 2021), has gar-
nered increasing attention, especially in the era of
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deep learning. Despite these advances, the devel-
opment of sign language understanding systems is
still hindered by the scarcity of large-scale, publicly
available SL datasets.

To overcome this challenge, recent efforts have
turned to the vast amount of sign language video
content available online, particularly on YouTube.
For instance, YouTube-ASL (YT-ASL) (Uthus
et al., 2023) consists of 984 hours of annotated
American Sign Language (ASL) videos. Mean-
while, YouTube-SL-25 (Tanzer and Zhang, 2024)
expands the scope, collecting 3,207-hour videos
spanning 25 different sign languages. These
datasets have significantly accelerated progress in
sign language understanding by enabling large-
scale supervised pretraining strategies. The result-
ing pretrained models have proven effective in en-
hancing downstream tasks such as SLR and SLT.

Despite the significant contributions of YouTube-
SL-25 toward the goal of "no language left behind"
in sign language research, annotated resources for
sign languages remain limited compared to those
available for spoken language machine translation.
Expanding annotated sign language datasets con-
tinues to be a major challenge. A more scalable
way is to leverage unannotated data, as argued by
(Rust et al., 2024). However, many sign languages
still lack sufficient video resources for pretraining.
This raises an important research question: Can
knowledge learned from videos of known sign lan-
guages be transferred to unseen, low-resource sign
languages? Addressing this question is crucial for
making progress in adapting models to underrepre-
sented sign languages. This study explores whether
large-scale sign language video datasets from high-
resource languages can be leveraged for effective
representation learning and video encoder pretrain-
ing, with the goal of enhancing performance on
downstream tasks in unseen sign languages.

Specifically, we introduce Multi-Stream Masked
AutoEncoder (MS-MAE) designed to learn a strong
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sign language video encoder for sign language
videos. MS-MAE begins by extracting three dis-
tinct pose streams, including body, left hand, and
right hand, and encoding each as a separate token
sequence. These sequences are then concatenated
into a single unified stream and passed through a
transformer (Vaswani et al., 2017) encoder. During
self-supervised pretraining, MS-MAE randomly
masks a subset of tokens in each stream and tasks
the model with reconstructing the masked portions.
In our experiments, we first pretrain the video en-
coder only with videos from the YT-ASL dataset,
and then test on two downstream tasks, including
Isolated SLR (ISLR) on ASL, Japanese Sign Lan-
guage (JSL) and Russian Sign Language (RSL),
and gloss-free SLT on ASL, Chinese Sign Lan-
guage (CSL) and German Sign Language (DGS).

Our contributions are as follows: (1) We pro-
pose a simple yet effective and efficient pretraining
framework, MS-MAE. (2) Through experiments,
we demonstrate that fine-tuning our model pre-
trained exclusively on ASL videos achieves com-
petitive performance compared to SOTA methods
across multiple sign languages. (3) We visualize
the attention maps of the pretrained model and
observe that the model implicitly clusters neighbor-
ing frames, with some clusters corresponding to
individual signs or motion units, in "unseen" sign
languages. This provides valuable insights into
what the model learns that can facilitate transfer
learning.

2 Related Work

2.1 Transfer Learning of Supervised
Pretraining

Data scarcity is a primary challenge in sign lan-
guage processing, making transfer learning essen-
tial for enhancing both SLR and SLT performance.
Several previous works employ either 2D Convo-
lutional Neural Networks (CNNs) (Camgöz et al.,
2020) pretrained on image classification tasks or
3D CNNs (Sarhan and Frintrop, 2020; Chen et al.,
2022a) pretrained on action recognition tasks, such
as S3D (Xie et al., 2018) and I3D (Carreira and
Zisserman, 2017), as backbone feature extractors.
While these approaches have demonstrated effec-
tiveness, their performance is constrained by a do-
main shift between action recognition and sign lan-
guage understanding. This gap arises from differ-
ences in task granularity, with sign language un-
derstanding requiring finer temporal and spatial un-

derstanding, thereby limiting further performance
gains.

Another line of research involves in-domain
transfer, or cross-lingual transfer learning, where
models trained on high-resource sign languages are
finetuned to adapt to low-resource sign languages,
yielding significant performance improvements, in-
cluding (Bird et al., 2020; Holmes et al., 2023).
However, annotated sign language data are difficult
to obtain and hard to scale up, highlighting the need
for approaches that can leverage unannotated data.

2.2 Self-supervised Learning in Sign
Language Understanding

Self-supervised learning, which leverages large-
scale unlabeled data, has achieved remarkable suc-
cess in various fields. In the domain of sign lan-
guage, several works have adopted masked predic-
tion strategies, such as BEST (Zhao et al., 2023)
and SHuBERT (Gueuwou et al., 2024). Others fol-
low a masked reconstruction paradigm. Among
these, SignBERT (Zhou et al., 2021b) and Sign-
BERT+ (Hu et al., 2023) employ BERT (Devlin
et al., 2019)-like encoder-only architectures. Mean-
while, approaches like MASA (Zhao et al., 2024),
SSVP-SLT (Rust et al., 2024), and SignRep (Wong
et al., 2025) adopt MAE (He et al., 2022)-like
asymmetric encoder-decoder architectures. Specifi-
cally, MASA performs masked reconstruction on
skeleton-based input. SSVP-SLT targets RGB in-
put, which is computationally intensive and de-
mands substantial resources—its longest pretrain-
ing run reportedly takes two weeks on 64 A100
GPUs. To address these challenges, the recent work
SignRep introduces an approach that takes RGB in-
puts but reconstructs pose sequences. This design
significantly reduces computational costs during
pretraining and removes the need for skeleton esti-
mation tools at inference time.

However, RGB videos remain computationally
intensive to process, especially in the context of
sign language, which is inherently information-
dense. Additionally, transformer-based architec-
tures further amplify this challenge. As a result,
finetuning the entire model for some downstream
tasks, particularly in SLT, becomes impractical,
limiting potential performance gains. Moreover,
RGB-based MAEs typically tokenize videos into
fixed-size patches. This patch-based tokenization
can fragment critical visual cues across multiple
tokens, potentially leading to low-efficiency learn-
ing.
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In contrast, our pretraining framework operates
on skeletal data in order to focus on the interac-
tion among visual cues for efficient representation
learning.

3 Method: Multi-Stream Masked
AutoEncoder

An overview of MS-MAE is illustrated in Fig-
ure 1. The framework is an extension of Skele-
tonMAE (Wu et al., 2023) and MASA (Zhao et al.,
2024). In this method, we begin by extracting
skeleton sequences from sign language videos and
dividing them into separate streams correspond-
ing to the left hand, right hand, and upper body.
Each stream is then encoded into a sequence of
tokens. Our framework adopts an MAE-like asym-
metric encoder-decoder architecture for pretrain-
ing. Specifically, we randomly drop several time
steps within each stream, and the unmasked tokens
are fed into a transformer encoder. The encoder
outputs are then padded with learnable mask to-
kens and passed to the decoder. The pretraining
objective is to reconstruct the original skeleton se-
quences. MASA extends SkeletonMAE to sign lan-
guage by enriching each frame with hand informa-
tion and projecting it into a token. Unlike MASA,
we directly model interactions among all visual
cues using a self-attention mechanism. This design
supports a more flexible masking strategy and en-
ables learning of finer-grained dependencies across
cues at different timesteps, close to the strategy
used in SignBERT (Zhou et al., 2021b). Further-
more, we employ cube embeddings to group neigh-
boring frames, thereby reducing redundancy to in-
crease learning efficiency from longer sequences.

3.1 Multi-Stream Transformer

Our encoder architecture consists of an embed-
ding layer followed by a standard transformer en-
coder. We utilize MediaPipe Holistic (Lugaresi
et al., 2019) to extract skeletal data from sign lan-
guage videos. Each pose sequence consists of three
distinct streams—left hand, right hand, and upper
body—denoted as P = {(PLH

t , PRH
t , PB

t )}nt=1,
where n is the total number of frames and each
P p
t ∈ R|Kp|×D contains the D-dimensional key-

points of part p ∈ {LH,RH,B}. In this work, we
only use x- and y-coordinates of the keypoints, so
D = 2. The term |Kp| is the number of keypoints
for each body part.

We flatten and project each stream frame-wise:

xB
k = LinearB(flatten(PB

t ))

xLH
k = LinearH(flatten(PLH

t ))

xRH
k = LinearH(flatten(PRH

t ))

, (1)

where t = 1, · · · , n.
Inspired by video transformers (Arnab et al.,

2021; Tong et al., 2022) that leverage cubelet
embeddings to encode spatio-temporal cubes,
which can reduce computational cost through mit-
igating the redundancy of neighboring frames,
we adopt the same strategy to reduce sequence
length. Specifically, we use 1D convolutions with
kernel size = stride = S to encode streams sepa-
rately to ensure non-overlapping encoding:

x̂B = Conv1DB(x
B) ∈ R(n/S)×C

x̂LH = Conv1DH(x
LH) ∈ R(n/S)×C

x̂RH = Conv1DH(x
RH) ∈ R(n/S)×C

(2)

. Each stream is added to the same positional en-
coding, denoted as PE, so that the part token at
the same time step can be correctly identified, and
concatenated along the time channel into a single
sequence as inputs to the transformer:

Embp = x̂p + PE[: n/S] ∈ R(n/S)×C

Emb = [EmbB;EmbLH;EmbRH] ∈ R(3n/S)×C

(3)
, and feed Emb into a standard transformer encoder
Z = Transformer(Emb).

By keeping streams separate up through the
patch embedding, self-attention can explicitly
model both intra-stream dynamics (e.g. left-hand
over time) and cross-stream dependencies (e.g.
right-hand vs. body), and during pretraining, we
may apply masking to individual streams rather
than entire frames for more granular learning.

3.2 Pretrain

In the pretraining stage, we employ an asymmet-
ric encoder–decoder MAE architecture tailored
to our multi-stream setting. Let P = {P p

t |p ∈
{B,LH,RH}, t = 1, ..., n} denote the set of in-
put pose sequences. We apply a PatchEmbed(·)
function to each stream, producing cubelet tokens,
which are augmented with positional encodings
Embp ∈ R(n/S)×C . A random fraction r of tokens
in each stream is masked; we denote the sets of
visible and masked indices as Vp and Mp, respec-
tively.
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Figure 1: An overview of MS-MAE. Sign language videos are first converted into skeletal data using MediaPipe
Holistic, and separated into left-hand, body, and right-hand streams. Each stream is divided into a sequence of
spatiotemporal cubes. During pretraining, a portion of the tokens is masked, while the unmasked tokens are flattened
and passed through an encoder to produce latent representations. These encoder outputs are concatenated with
learnable mask tokens and fed into a decoder, which is trained to reconstruct the original input sequences.

1. Encoding: All unmasked token embeddings
{Embpi : i ∈ Vp, p ∈ {B,LH,RH}} are
passed through a transformer encoder to yield
contextual representations ZV ∈ R

∑
p |Vp|×C .

2. Decoding: For each masked index, we
prepend a learnable mask token, concatenate
the resulting embeddings with ZV to form
Z ∈ Rn×C , and pass Z through a lightweight
decoder. The decoder reconstructs outputs t̂pi
for all i ∈ Mp.

3. Reconstruction target & loss: For
each masked token index k, the tar-
get is the original sequence of key-
points within the corresponding cubelet
tpk =

[
P p
kS , P p

kS+1, . . . , P
p
kS+S−1

]
∈

RS×(D |Kp|).

We minimize the mean squared error L =
1∑

p |Mp|
∑

p

∑
k∈Mp

∥∥∥t̂pk − flatten(tpk)
∥∥∥
2
.

This architecture encourages the encoder to learn
the dependencies among different visual cues at dif-
ferent time steps. When computing the loss, we
ignore any missing keypoints in tpk due to Medi-
aPipe failures, to avoid the model being misled by
noisy and absent detections.

4 Experiment

4.1 Pretraining
We pretrain our model using the YT-ASL dataset,
which contains ASL videos collected from
YouTube. Subtitle information is not utilized, and

sentence boundary information is assumed to be
unavailable. We randomly sample 300 frames from
a sequence of 600 consecutive frames (sampled at
a rate of 2 frames per unit) during each pretrain-
ing step. We explore two masking strategies: full
masking and random masking. In full masking,
the same time steps are masked across all input
streams, denoted as SameMask. In contrast, ran-
dom masking applies different masked time steps
to each stream while maintaining an equal num-
ber of masked tokens across streams, denoted as
DiffMask.

Hyperparameters: The encoder follows a
Transformer architecture with L = 8, H = 8,
and a hidden dimension of 512. The decoder uses a
smaller Transformer encoder with L = 4, H = 8,
and a hidden dimension of 512. The stride for
cubelet embedding is set to 4 (equivalent to 0.167
s at 24 fps and 0.133 s at 30 fps). We employ the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a maximum learning rate of 8 × 10−4 and
betas (0.9, 0.95). A learning rate scheduler with
warmup and cosine decay is used, with 2K warmup
steps. The maximum number of optimization steps
is set to 120K. We mask 50% of tokens for each
stream in our experiments. Our pretraining takes
approximately 14 hours with 8 H100 GPUs.

4.2 Isolated Sign Language Recognition

Dataset: We evaluate effectiveness through ISLR,
a classification task that predicts a single gloss
from a video clip. Our experiment includes four
ISLR datasets: WLASL (Li et al., 2020), ASL Cit-
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Table 1: ISLR results across four benchmarks. * denotes the ST-GCN implementation reproduced from previous
work. ST-GCN++ is an enhancement of ST-GCN, proposed by (Duan et al., 2022), to provide a stronger baseline.
MR denotes Masking Ratio. Our method outperforms previous pose-based self-supervised learning approaches.

Method WLASL ASL Citizen Slovo JSL Corpus
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ST-GCN∗ (Yan et al., 2018) 34.40 66.57 63.10 86.09 - - - -
ST-GCN++ (Duan et al., 2022) 41.70 74.36 70.67 90.72 64.94 87.71 46.17 70.87
SignBERT (Zhou et al., 2021b) 47.46 83.32 - - - - - -

MASA (Zhao et al., 2024) 49.06 82.90 - - - - - -

Ours (DiffMask, MR=0.5) 56.95 90.72 75.72 93.31 74.98 94.29 52.40 74.64
Ours (SameMask, MR=0.5) 52.05 87.21 71.87 91.23 72.24 94.14 51.26 72.43

izen (Desai et al., 2023), Slovo (Kapitanov et al.,
2023), and the JSL Corpus (Bono et al., 2014).
WLASL, a widely used and challenging ISLR
dataset for ASL, serves as the in-domain bench-
mark. ASL Citizen provides an additional large-
scale ASL dataset for evaluation. To assess cross-
lingual generalization, we include Slovo and the
JSL Corpus, which represent RSL and JSL, respec-
tively. Since the JSL Corpus is not originally de-
signed for ISLR, we extract word-level annotations
and exclude non-lexicalized signs, such as classi-
fier constructions, non-manual markers, and mis-
labeled instances that do not correspond to valid
lexical signs.

Finetuning: During finetuning, we prepend a
learnable [CLS] token to the input pose sequences.
The video features are obtained from the contex-
tual embedding of the [CLS] token. We attach a
classifier head to the contextual embedding of the
[CLS] token and optimize it using cross-entropy
loss.

Comparison: We compare our method with ST-
GCN (Yan et al., 2018). We reproduce the result
via the implementation from ST-GCN++ (Duan
et al., 2022), which is an enhancement of ST-GCN,
to provide stronger baseline results. We report
top-k recall, where a prediction is considered cor-
rect if the target label appears among the top-k
results. We evaluate performance with k = 1, 5.
For WLASL, ASL Citizen and JSL Corpus, we
choose the checkpoint with the best validation per-
formance to evaluate on the test sets. For Slovo,
which has no test set, we report the performance of
the checkpoint with the best top-5 validation recall
on the validation set.

4.2.1 Experiment Result
The experimental results are summarized in Table 1.
Our model, pretrained on the large-scale YT-ASL
dataset, consistently outperforms the pose-based

ST-GCN baseline across all four benchmarks. No-
tably, on WLASL, our approach surpasses other
masked reconstruction methods, including Sign-
BERT and MASA. We attribute these improve-
ments to two primary factors. First, pretraining on
YT-ASL allows us to leverage a significantly larger
and more diverse collection of sign language videos
than those available in the public ISLR datasets
used by SignBERT and MASA. Second, the sepa-
ration of each modality stream enables more flex-
ible and effective masking strategies. As shown
in Table 1, the DiffMask outperforms SameMask,
suggesting that applying different temporal masks
to each stream during pretraining contributes to a
more robust sign language video encoder.

Effect of Masking Ratio: The correlation be-
tween the performance and the masking ratio is
shown in Figure 2. We can observe that the trends
are similar across all datasets. The masking ratio
of 0.5 yields the best overall performance, while
ratios of 0.3 or 0.7 achieve the second-best results,
depending on the dataset. An extremely high ratio,
0.9, leads to performance degradation.

4.2.2 Frozen Video Encoder
To further evaluate the pretrained encoder, we
conducted experiments by freezing the pretrained
video encoder. Specifically, we freeze the pre-
trained model, apply average pooling to its contex-
tual embeddings, and project the resulting features
using a simple trainable linear layer. We utilized
the checkpoint with a masking ratio of 0.5 for this
experiment. Table 2 summarizes the results.

On the WLASL dataset, our learned represen-
tations outperform the baseline model. However,
on other datasets, the performance declines. In
SLOVO, the performance is slightly below the base-
line, while in the ASL Citizen and JSL Corpus
datasets, there is a drop of 10 points or more com-
pared to the baseline in top-1 recall. These findings
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Figure 2: The correlations between top-5 recall and the
masking ratio are similar across all ISLR datasets. The
best performance is achieved by the masking ratio of
50%. The second best masking ratio is 30% or 70%,
depending on the dataset.

indicate that the learned video encoder is effective
without further finetuning.

The masked reconstruction paradigm enables the
model to effectively encode and differentiate vari-
ous motion and pose units by contextual learning.
This capability likely contributes to the improved
ISLR performance across different sign languages,
despite the model being trained exclusively on ASL
videos.

Table 2: Result of freezing the pretrained model with
a masking ratio of 50%. The results show that the pre-
trained model is effective even without further finetun-
ing, although in most cases, the performance lags behind
the baseline model.

Dataset Split Method Rec@1 Rec@5

WLASL test ST-GCN++ 41.70 74.36
Probe 42.88 74.77

ASL Citizen test ST-GCN++ 70.67 90.72
Probe 54.54 79.45

SLOVO valid ST-GCN++ 64.94 87.71
Probe 60.12 85.61

JSL Corpus test ST-GCN++ 46.17 70.87
Probe 37.68 62.19

4.3 Sign Language Translation

We evaluate our approach on three SLT bench-
marks: Phoenix14T (P14T) (Camgöz et al., 2018),
CSL-Daily (Zhou et al., 2021a), and How2Sign
(H2S) (Duarte et al., 2021), representing DGS,
CSL and ASL, respectively. In our experiment,
we don’t use gloss information. Because facial
information is important in SLT, we incorporate

the facial stream in both pretraining and finetu-
ing steps. We integrate our pretrained sign lan-
guage video encoder with the mBART translation
model (Liu et al., 2020)1. We fully finetune our pre-
trained model and mBART encoder while adapting
the mBART decoder using Low-Rank Adaptation
(LoRA) (Hu et al., 2022) to avoid overfitting. Dur-
ing training, 20% of video frames are randomly
deleted or copied as temporal augmentation. Gra-
dient clipping is employed to stabilize the training.
Details of the hyperparameter setup can be found
in Appendix C.

We report BLEU scores (Papineni et al., 2002)
and ROUGE (Lin, 2004) metrics to evaluate trans-
lation quality. Specifically, we compute BLEU-1
and BLEU-4 using SacreBLEU (Post, 2018)2, and
report the ROUGE-L F1 score3.

We compare our model against recent gloss-
free approaches. For the P14T and CSL-Daily
datasets, we evaluate performance relative to
Sign2GPT (Wong et al., 2024), VAP (Jiao et al.,
2024), C2RL (Chen et al., 2024), and Sign-
LLMs (Gong et al., 2024), which are language-
supervised pretraining methods. For the How2Sign
dataset, we compare our results with SSVP-
SLT (Rust et al., 2024), an MAE-based method
on RGB modality, and T5 models pretrained on
YT-ASL with subtitle supervision (Uthus et al.,
2023).

We explore two input strategies: (1) Flat con-
catenation: Tokens from all three input streams are
concatenated into a single sequence and passed to
mBART. (2) Per-time-step averaging: At each time
step, embeddings from the three streams are aver-
aged to produce a single fused embedding per time
step. The resulting sequence is input to mBART.

4.3.1 Experimental Results
Results for P14T and CSL-Daily are shown in Ta-
ble 3, and results for How2Sign are shown in Ta-
ble 5. On CSL-Daily, our method outperforms all
other methods under the setup of per-time-step av-
eraging. On How2Sign, it matches the performance
of SSVP-SLT without vision-language alignment,
while being more lightweight and computationally
efficient, with only 14 hours for training and skele-
tal data as the input. Compared to T5 with super-

1https://huggingface.co/facebook/mbart-large-50-many-
to-many-mmt

2For Chinese, we use the ’zh’ tokenizer; for English and
German, we use the ’13a’ tokenizer

3We adopted the ROUGE implementation from the official
codebase of TwoStreamSLT (Chen et al., 2022b)
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Table 3: Experimental results on P14T and CSL-Daily. Following the observation in (Jiao et al., 2024), the mBART
tokenizer exhibits an inconsistent punctuation bug, particularly affecting evaluations in Chinese due to the use of
full-width punctuation marks. To ensure a fair comparison, we report the results after correcting the bug, with the
uncorrected results shown in parentheses.

P14T CSL-Daily

Method Modality B1 B4 R B1 B4 R

Sign2GPT (Wong et al., 2024) RGB 45.43 19.42 45.23 34.80 12.96 41.12
Sign2GPT(Pseudo-Gloss Pretraining) (Wong et al., 2024) RGB 49.54 22.52 48.90 41.75 15.40 42.36
VAP (Jiao et al., 2024) Skeleton 53.07 26.16 51.28 52.98(49.99) 23.65(20.85) 51.09(48.56)
SignLLMs (Gong et al., 2024) RGB 45.21 23.40 44.49 39.55 15.75 39.91
C2RL (Chen et al., 2024) RGB 52.81 26.75 50.96 49.32 21.61 48.21

Ours (Flat Concatenation) Skeleton 46.94 22.71 44.95 53.22(50.14) 22.73(20.05) 50.14(47.51)
Ours (Per-time-step averaging) Skeleton 47.29 22.71 44.86 54.30(51.30) 24.09(21.25) 52.03(49.66)

vised pretraining on YT-ASL, our model achieves
comparable performance without relying on the
subtitle data.

While the performance on P14T is weaker, we at-
tribute this to the dataset’s low video resolution and
motion blur, which leads to inaccurate keypoint es-
timation. The pose quality gap between finetuning
and pretraining stages may hurt the performance.
This highlights a key limitation of skeleton-based
pretraining: its reliance on high-quality pose data.
The skeleton quality between pretraining and fine-
tuning should be aligned.

While our encoder does not surpass all prior
methods, it demonstrates the effectiveness of our
method. It shows that the video encoder pretrained
on only ASL videos can be generalized to other
SLs. The flat concatenation of stream features
shows similar performance to per-time-step averag-
ing. Our following experiments will use per-time-
step averaging as the default setup, because of its
lower computational cost.

4.4 Analysis

4.4.1 Facial Information
Facial information plays a critical role in sign
language understanding (Mukushev et al., 2020;
Chaudhary et al., 2024). Facial expressions often
serve grammatical purposes, while mouthing can
help disambiguate signs that share similar manual
gestures. However, it remains unknown whether
facial information in ASL can also benefit under-
standing in other sign languages.

To investigate the impact of facial information,
we experiment with different configurations for
incorporating facial keypoints during pretraining
and finetuning. The results are presented in Ta-
ble 4. We find that removing facial information
leads to a drop of around 1 to 2 points on BLEU-
4 across all SLs. Adding the facial stream only

during finetuning, without pretraining on it, brings
little improvement. Although the difference is not
significant, these results indicate that incorporating
facial information during pretraining can enhance
performance.

Table 4: Results of varying stream setups during the
pretraining and finetuning stages, denoted as PT and
FT in the header. B, H, and F represent body, hands,
and face, respectively. The best performance for each
dataset is highlighted in bold.

Dataset PT FT B1 B4 R

P14T
B,H B,H 45.76 21.58 43.45
B,H B,H,F 44.92 21.28 42.86
B,H,F B,H,F 47.29 22.71 44.86

CSL-Daily
B,H B,H 53.14 22.83 50.56
B,H B,H,F 52.75 22.46 50.00
B,H,F B,H,F 54.30 24.09 52.03

H2S
B,H B,H 33.66 11.14 28.70
B,H B,H,F 38.47 11.94 26.78
B,H,F B,H,F 39.71 12.64 27.85

4.4.2 Attention Map Visualization
We have demonstrated that pretraining on large-
scale ASL video datasets benefits sign language
processing tasks across different sign languages.
In this section, we conduct a preliminary analysis
to better understand the effectiveness of this trans-
fer learning. While performance gains on ISLR
tasks suggest improved motion discrimination af-
ter pretraining, they do not fully account for the
model’s enhanced ability to process longer, multi-
sign sentences lacking clear boundaries. To explore
this further, we examine the attention patterns of
our pretrained model on CSL sentence examples,
aiming to uncover how pose tokens interact.

Specifically, we extract intra-stream attention
weights from the final layer’s self-attention matri-
ces, average them across all heads and streams, and
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Table 5: Experiment results on How2Sign. VLA denotes Vision-Language Alignment pretraining. SSL denotes
Self-Supervised Learning.

Method Modality VLA SSL Translation Data B1 B4 R

T5 (Uthus et al., 2023) Skeleton H2S 14.96 1.22 -
VAP (Jiao et al., 2024) Skeleton ✓ H2S 39.22 12.87 27.77
C2RL (Chen et al., 2024) RGB ✓ H2S 29.07 9.37 27.02
T5 (Uthus et al., 2023) Skeleton YT-ASL→ H2S 37.82 12.39 -
SSVP-SLT (Rust et al., 2024) RGB YT-ASL H2S 38.1 11.7 33.8
SSVP-SLT (Rust et al., 2024) RGB ✓ YT-ASL + H2S YT-ASL + H2S 43.2 15.5 38.4
SHuBERT (Gueuwou et al., 2024) RGB + Skeleton YT-ASL YT-ASL→ H2S - 16.2 -

Ours (Flat Concatenation) Skeleton YT-ASL H2S 34.79 11.97 29.89
Ours (Per-time-step averaging) Skeleton YT-ASL H2S 39.71 12.64 27.85

then symmetrize the result by adding its transpose.
An example of the resulting symmetric attention
map is shown in Figure 3a. We observe that several
prominent blocks appear along the diagonal, indi-
cating that the model groups temporally adjacent
frames into clusters while also exhibiting bound-
aries between them. Further experimental details
and examples are provided in Appendix F.

When we segment video clips based on clusters
identified from the attention weights, we find that
many resulting segments roughly align with indi-
vidual signs, as illustrated in Figure 3b. This obser-
vation suggests that the pretrained model implic-
itly attempts to segment sign language sentences,
which is important for SLT.

Such behavior indicates that the model may be
learning structural patterns within signs or transi-
tional patterns between consecutive signs. In gen-
eral, sign languages share common motion charac-
teristics, such as indexical signs or other lexicalized
forms discussed in (Wei and Chen, 2023), which
may facilitate such clustering. Despite variations
across different sign languages, many signs exhibit
similar movement features that can serve as cross-
linguistic cues. Another possible explanation is
that the model leverages implicit knowledge of sign
boundaries acquired from ASL pretraining data, po-
tentially influenced by prosodic features (Fenlon
et al., 2007), enabling it to detect natural break
points within signing sequences.

We also observe that segmentation is not al-
ways precise. For instance, signs composed of two
subactions are sometimes split into separate seg-
ments, and boundaries can become unclear when
the signer moves quickly and naturally. Despite
these limitations, the findings provide valuable in-
sights into the model’s learned knowledge and high-
light the potential of using attention weights from
pretrained models for sign segmentation or sign

spotting, which have limited resources yet impor-
tant task in applications.

0 10 20 30 40 50
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(a) Symmetric attention matrix obtained by summing the
original attention weights and their transpose. Red rectan-
gles denote the clusters identified in the attention map.

Segment 0: frames 0 20 Gloss:  (First)

Segment 1: frames 20 36 Gloss:  (Take)

Segment 2: frames 92 120 Gloss:  (Put)

(b) Video clip segmented based on the clusters found in
attention weight.

Figure 3: An example from the CSL-Daily validation
set illustrating successful segmentation based on the
attention weights of our pretrained model.

5 Conclusion

In this paper, we explored leveraging ASL videos
to improve performance in other sign languages.
We introduced MS-MAE, a simple yet effective
pretraining framework that concatenates multiple
skeleton streams along the temporal dimension.
Experimental results demonstrate that pretraining
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solely on ASL videos significantly boosts perfor-
mance in both ISLR and SLT tasks across different
sign languages. In ISLR, our approach outperforms
other methods trained only on the target data. For
SLT, it achieves performance comparable to state-
of-the-art gloss-free, RGB-based methods after full
finetuning, validating the effectiveness of our strat-
egy. Furthermore, attention visualization reveals
that the pretrained model naturally groups neigh-
boring frames into clusters, some of which align
with specific signs, in cross-lingual sentences. This
finding provides qualitative evidence that the MAE
may learn structural patterns involved in the for-
mation of individual signs or transition patterns be-
tween consecutive signs from ASL videos, thereby
facilitating sentence understanding in other SLs. A
more comprehensive quantitative analysis beyond
the case study will be left for future work.

Limitations

In our proposed pretraining framework, separat-
ing visual cues results in significantly longer input
sequences, which increases the complexity of the
transformer due to the quadratic nature of the self-
attention mechanism. Although we have not yet
conducted specific experiments to validate this, we
hypothesize that without sufficient data, training
such a framework effectively would be difficult.
Besides, as mentioned in Section 4, the pose qual-
ity gap between pretraining and finetuning may
lead to performance degradation, which is the in-
herent issue of skeleton-based methods. One future
direction is to improve the robustness to noisy key-
points. Additionally, although skeletal modalities
can substantially reduce computational demands
during both pretraining and finetuning, they require
extra preprocessing time to extract pose data.

Regarding our experiments, we acknowledge
that the evaluation did not encompass a sufficiently
diverse range of sign language categories, primar-
ily due to the limited availability of datasets and
computational resources. As a result, we were
unable to thoroughly investigate the factors that
contribute to improved cross-lingual transferability,
and thus could not provide concrete guidelines for
future work. Additionally, existing benchmarks
are built under varying conditions, making it dif-
ficult to isolate the specific factors that influence
model performance. For example, we did not con-
trol for confounding variables such as video qual-
ity, dataset scale, and dataset difficulty, which may

have limited the strength and generalizability of our
conclusions. In our future work, we will conduct
more comprehensive experiments on other datasets.
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A Keypoints

In our experiments, we use MediaPipe Holistic
with the complexity of 2 for pose estimation and
extract the following keypoints:

1. Hands: All 21 keypoints of each hand (in-
dices 0–20).

2. Body: Upper-body keypoints with indices
{11, 12, 13, 14, 15, 16}.

3. Face: Includes keypoints from the contour,
mouth, nose, and eyes:

Contour 234, 93, 132, 58, 172, 136,
150, 149, 176, 148, 152, 377, 400,
378, 379, 365, 397, 288, 361, 323
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Figure 4: Face keypoints used in our experiments

Mouth 0, 267, 269, 270, 409, 291,
375, 321, 405, 314, 17, 84, 181,
91, 146, 61, 185, 40, 39, 37,
13, 312, 311, 310, 415, 308, 324,
318, 402, 317, 14, 87, 178, 88,
95, 78, 191, 80, 81, 82

Nose 98, 97, 2, 326, 327, 1, 4, 5,
195, 197

Eyes 46, 53, 52, 65, 55, 285, 295,
282, 283, 276, 33, 246, 161, 160,
159, 158, 157, 173, 133, 155, 154,
153, 145, 144, 163, 7, 362, 398,
384, 385, 386, 387, 388, 466, 263,
249, 390, 373, 374, 380, 381, 382

An example showing face keypoints is shown in
Figure 4.

B Dataset Statistics

The statistical information of the ISLR datasets
used in our experiments is shown in Table 6, includ-
ing WLASL, ASL Citizen, Slovo and JSL Corpus.
The statistical information of the SLT datasets is
shown in Table 7.

Table 6: Statistics of the used ISLR datasets.

Dataset WLASL ASL Citizen Slovo JSL Corpus

Gloss 2,000 2,731 1,001 696
Train 14,289 40,154 15,300 32,282
Valid 3,916 10,304 5,100 4,306
Test 2,878 32,941 4,676
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Table 7: Statistics of the SLT datasets used in our ex-
periments. For the H2S dataset, we use the manually
re-aligned version provided on their homepage and ex-
clude a very small subset of samples due to invalid time
ranges.

Dataset P14T CSL-Daily H2S

# Train 7,096 18,401 31,086
# Valid 519 1,077 1,738
# Test 642 1,176 2,349

Table 8: Learning rates and gradient clipping norms for
each dataset and encoder status.

P14T & CSL-Daily H2S
Video Encoder Status Frozen Unfrozen Frozen Unfrozen

Learning Rate 3× 10−4 1× 10−4 3× 10−4 5× 10−5

Gradient Clipping 1.0 0.1 1.0

C Hyperparameter Setup for
Downstream Task

ISLR We set the batch size to 128 and sample 32
frames per video as input. We use AdamW op-
timizer with a weight decay of 10−3. A cosine
learning rate scheduler is used with a 10-epoch lin-
ear warm-up and a peak learning rate of 5× 10−5.
Training is conducted for 100 epochs. During train-
ing, we apply temporal augmentation by randomly
sampling frames from each video. We also aug-
ment the pose data by randomly rotating, shearing,
and scaling, as suggested by SignCLIP (Jiang et al.,
2024), on all datasets except JSL Corpus.

SLT We use LoRA with hyperparameters α =
32 and r = 32. The training objective is cross-
entropy loss. We employ the AdamW optimizer
with a weight decay of 10−3, and apply a cosine
learning rate schedule with a 10-epoch warmup.
We train for up to 100 epochs with a batch size of
32, applying gradient clipping to stabilize optimiza-
tion.

D Computational Resource Usage

We conducted pretraining on 8 nodes, each
equipped with an NVIDIA GH200 Grace Hopper
Superchip, for approximately 14 hours. To ensure
convergence, we used a total of 120,000 training
steps. Our in-house experiments show that the
checkpoint at 60% of training steps achieved per-
formance close to the final checkpoint.

E Frozen Video Encoder in SLT

In this section, we present experimental results ex-
amining the effect of freezing the video encoder

during fine-tuning, in order to more comprehen-
sively demonstrate the strengths of our pretrained
model. We evaluate two pretrained variants with
a masking ratio of 0.5—one incorporating facial
information and one without. The hyperparameter
configuration closely follows that described in Ap-
pendix C, with the exception of learning rates and
gradient clipping settings. Because optimal per-
formance varies depending on whether the video
encoder is frozen, we perform a grid search over
learning rates and report the best-performing con-
figuration based on validation set performance. The
setup is shown in Table 8. For simplicity, we fix
the gradient clipping norm to 1.0 across all exper-
iments. The result is shown in Table 9. Without
further finetuning, the video encoder has a fairly
good ability, with around 2 points lower.

Table 9: Results of varying stream setups during the
pretraining and finetuning stages, denoted as PT and
FT in the header. B, H, and F represent body, hands,
and face, respectively. The best performance for each
dataset is highlighted in bold.

Dataset PT FT Frozen B1 B4 R

P14T

B,H B,H 45.76 21.58 43.45
B,H B,H ✓ 42.37 19.25 40.47
B,H,F B,H,F 47.29 22.71 44.86
B,H,F B,H,F ✓ 44.25 20.89 42.52

CSL-Daily

B,H B,H 53.14 22.83 50.56
B,H B,H ✓ 49.48 20.50 47.57
B,H,F B,H,F 54.30 24.09 52.03
B,H,F B,H,F ✓ 53.22 22.73 50.14

H2S

B,H B,H 33.66 11.14 28.70
B,H B,H ✓ 33.48 9.46 25.75
B,H,F B,H,F 39.71 12.64 27.85
B,H,F B,H,F ✓ 33.51 9.95 26.92

F Attention Visualization

In this session, we provide more visualization ex-
amples of attention weights in our pretrained mod-
els. Given a pose sequence, we feed it into the
pretrained model and extract the attention weight
from the last layer Ai ∈ R3n×3n, where i < h is
the index of head, h is the number of heads, n is the
length of the sequence, and 3 denotes the number
of streams. We obtain the average attention weight
across heads Aavg = 1/h

∑h
i Ai. We denote the

indices for body, left hand, and right hand as Ib, Ilh,
and Irh. The intra-stream attention weights are ob-
tained by selecting the corresponding submatrices
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Figure 5: The same attention matrix with Figure 3a,
drawed with manual segmentation. The resulting video
segmentation is visualized in Figure 7.

from Aavg:

AB = Aavg[Ib, Ib], (4)

ALH = Aavg[Ilh, Ilh], (5)

ARH = Aavg[Irh, Irh]. (6)

We obtained the average attention across all
streams as Â = 1

3(A
B + ALH + ARH). Finally,

the symmetric attention, Âsym, is obtained by aver-
aging Â with its transpose:

Âsym =
1

2
(Â+ ÂT ).

Segmentation is performed based on the sym-
metric attention. We manually choose reasonable
segments from the attention weight. In our pre-
trained model, each token represents four frames;
thus, the frame index is computed by multiplying
the token index by four. Attention matrix of CSL
are shown in Figure 6a and 5. Corresponding
segmented videos are shown in Figure 6b and 7.

G Use of AI Assistance

In this research, we primarily used GitHub Copi-
lot for coding and debugging, and ChatGPT for
refining the writing of this paper.

1215



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(a) Âsym for the example.

Segment 0: frames 0 20

Segment 1: frames 20 40

Segment 2: frames 40 60

Segment 3: frames 60 88

(b) Segmentation result based on attention weight of video sample with gloss Ta(He) JinTian(Today) NianLing(Age) 4.

Figure 6: A sample from CSL-Daily demonstrating good alignment between attention-based segmentation and
ground-truth gloss sequence.
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Segment 0: frames 0 20 Gloss:  (First)

Segment 1: frames 20 36 Gloss:  (Take)

Segment 2: frames 40 64 Gloss:  (Tea-leaves)

Segment 3: frames 60 84 Gloss: First Three:  (Tea-leaves) Last Two:  (Drink)

Segment 4: frames 88 100 Gloss:  (Put)

Segment 5: frames 96 120 Gloss:  (Put)

Segment 6: frames 164 180 Gloss:  (Fridge)

Segment 7: frames 184 196 Gloss:  (Watermelon)

Segment 8: frames 200 216 Gloss:  (Take)

Figure 7: The same sample from CSL-Daily with Figure 3b. The GT gloss sequence is Xian(first) Ba(pick up/take)
Chaye(tea-leaves) He(drink) Fang(put) Huan(return) BingXiang(fridge) XiGua(watermelon) Na(take). Sign ’Chaye
Tea-leaves’ is segmented into two parts based on the attention matrix, possibly because it is a repetitive motion.
Fang(put) is also segmented, due to a long holding motion at the end.
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(a) Âsym. We manually choose reason-
able boundaries.

Segment 0: frames 0 8

Segment 1: frames 8 16

Segment 2: frames 20 24

Segment 3: frames 28 40

Segment 4: frames 44 60

(b) The sample with gloss sequence of DANN(THEN) STARK(STRONG) SCHNEE(SNOW) SCHNEIEN(SNOWING) KOM-
MEN(COME). The segments align fairly well with the gloss sequence.

Figure 8: A sample of P14T.
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