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Abstract

The web-scale of pretraining data has created
an important evaluation challenge: to disen-
tangle linguistic competence on cases well-
represented in pretraining data from general-
ization to out-of-domain language, specifically
the dynamic, real-world instances less common
in pretraining data. To this end, we construct
a diagnostic evaluation to systematically as-
sess natural language understanding in LLMs
by leveraging Construction Grammar (CxG).
CxG provides a psycholinguistically grounded
framework for testing generalization, as it ex-
plicitly links syntactic forms to abstract, non-
lexical meanings. Our novel inference evalu-
ation dataset consists of English phrasal con-
structions, for which speakers are known to be
able to abstract over commonplace instantia-
tions in order to understand and produce cre-
ative instantiations. Our evaluation dataset uses
CxG to evaluate two central questions: first,
if models can ‘understand’ the semantics of
sentences for instances that are likely to ap-
pear in pretraining data less often, but are in-
tuitive and easy for people to understand. Sec-
ond, if LLMs can deploy the appropriate con-
structional semantics given constructions that
are syntactically identical but with divergent
meanings. Our results demonstrate that state-
of-the-art models, including GPT-01, exhibit a
performance drop of over 40% on our second
task, revealing a failure to generalize over syn-
tactically identical forms to arrive at distinct
constructional meanings in the way humans do.
We make our novel dataset and associated ex-
perimental data, including prompts and model
responses, publicly available.!

1 Introduction

Understanding the extent to which Large Language
Models (LLMs) generalize from relatively frequent
phenomena well-represented in pretraining data to

“Equal Contribution
"https://github.com/melissatorgbi/beyond-memorization

Constructional Construction
Model . e Lo e
Semantics Distinction
GPT-40 0.88 0.58
GPT-ol 0.90 0.46
Llama370B 074 052
Human 0.90 0.83

Table 1: We demonstrate a drop in performance, even
in the latest models, as we move from evaluating func-
tional understanding of constructional semantics to un-
derstanding syntactically identical but semantically dis-
tinct constructions. We report accuracy on NLI tasks
leveraging distinct constructional premises.

creative, novel usages of language has important
implications for LLM development. Identifying the
precise nature and limits of LLM generalization can
inform decisions about architectures and training
regimes (Li et al., 2023; Zhang et al., 2023). This
becomes especially relevant as models move to-
ward ‘reasoning’-based systems and the inevitable
widespread deployment of Al agents (DeepSeek-
Al et al., 2025). Identifying failure patterns will
enable targeted improvements at different stages
of development. However, testing LLMs’ ability
to generalize is particularly challenging because
they are trained on vast web-scale data (Lu et al.,
2024). Even if pretraining datasets were fully ac-
cessible, ensuring that a test example is truly inde-
pendent would remain nontrivial, as a model may
not have encountered that instance but could have
been exposed to related cases that provide indirect
information (Tayyar Madabushi et al., 2025).
Therefore, this work introduces a novel evalu-
ation dataset grounded in the theory of Construc-
tion Grammar (CxG) (Goldberg, 1995; Croft, 2001)
(see Appendix A for an overview of CxG). Specif-
ically, we focus on phrasal constructions (Cxns)
because of the body of psycholinguistic research
demonstrating that speakers are able to abstract
over syntactic slots of these Cxns in order to inter-

1184

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 1184-1201
December 20-24, 2025 ©2025 Association for Computational Linguistics


https://github.com/melissatorgbi/beyond-memorization

Exp. 1 Dataset: CxNLI

CxNLI Premise I brushed my hair smooth.

Entrenched Variant I made my hair smooth (by brushing).

Cxn Form NP1 V NP2 ADJ

Cxn Meaning NP1’s action of V causes NP2 to become ADJ
CxNLI Hypothesis My brushing caused my hair to be smooth.
CxNLI Relation Entailment

Exp. 2 Dataset: CxNLI-Distinction

A famous emperor buried scholars alive.

NA: no entrenched variants for Exp2 Cxns
NP1 V NP2 ADJ

NP2 is ADJ during NP1’s action of V
Burying the scholars caused them to be alive.
Contradiction

Table 2: Example items illustrating experiments. Exp. 1 uses Natural Language Inference (NLI) to test abstraction
of the semantics of frequent, entrenched Cxns (usually realized with the verb of the Entrenched Variant) when
realized as a creative, infrequent instantiation (CxNLI Premise). Exp. 2 uses NLI to test if models can distinguish
and apply the appropriate, distinct semantic interpretation of Cxns that are syntactically identical to the entrenched
Cxns of Exp. 1 (with grammatical phrase types of Noun Phrase (NP), Verb (V), a second NP, and an Adjective

(ADJ)).

pret and produce creative and novel Cxn instanti-
ations (Johnson and Goldberg, 2013; Tomasello,
2003). Speakers recognize the syntactic structures
of a familiar Cxn in order to interpret the meaning,
despite the fact that the speaker may have never en-
countered that set of lexical items within the Cxn.
The Exp. 1 column of Table 2 provides an example
premise where our human annotations show that
people can easily recognize the (RESULTATIVE)
constructional semantics despite the fact that the
verb (“brush”) is relatively atypical in this Cxn,
which is realized with a relatively limited set of
verbs (frequently “make”). Additionally, speak-
ers can balance knowledge of lexical semantics
against the constructional semantics in order to dis-
tinguish Cxns that are syntactically identical but
have different meanings. The Exp. 2 column of
Table 2 provides an example premise involving a
(DEPICTIVE) Cxn that is syntactically identical to
the RESULTATIVE, but has a divergent meaning, as
evidenced by the fact that a templatically similar
hypothesis holds the opposite relation.

In addition to providing experimentally validated
explanations of human language acquisition and
use, CxG is uniquely suited to evaluating whether
LLMs primarily derive meaning from the compo-
sition of lexical meanings (as would be the view
of Generative Grammar (Chomsky, 2014a)), or if
the recognition of particular syntactic structures
can cue constructional meaning (this would be ev-
idenced by strong performance on Exp. 1), or fi-
nally, if LLMs can balance both lexical meaning
and constructional meaning together to recognize
constructional meaning while distinguishing be-
tween syntactically identical constructions based
on lexical semantics (this would be evidenced by
strong performance on Exp. 2).

We evaluate whether or not models can gen-
eralize knowledge of highly frequent Cxns of

English to creative instantiations of those Cxns
with lexical items unlikely to have been encoun-
tered within that structure in pretraining data
(Exp. 1), and we evaluate model ability to recog-
nize when the lexical items are so distinct that
this cues a different Cxn with a different mean-
ing (Exp. 2).

To investigate LLM generalization, we conduct
two experiments (described in §3) leveraging the
Natural Language Inference (NLI) task. We show
a summary of results in Table 1: all models lag be-
hind human performance in multiple experimental
settings. Exp. 1 (§4) shows us that some aspects of
constructional semantics are ascribed adequately
for success on an NLI task; however, Exp. 2 (§5)
shows that even state-of-the-art reasoning models
like GPT-40 and GPT-01 show a significant perfor-
mance drop when the models are asked to ascribe
distinct constructional semantics to syntactically
identical Cxns. In combination, our results and
error analysis (§6) highlight key differences be-
tween human and model linguistic capabilities (§7
and §8). This study differs from previous research
in significant ways highlighted by the following
contributions:

1. We create a manually-validated, diagnostic
evaluation dataset of 534 NLI triples testing
if LLMs ascribe the appropriate semantics to
phrasal Cxns.

2. Rather than focusing on the metalinguistic
task of identifying Cxns, as most prior works
have done, we use the well-established NLI
task to evaluate LLM ‘understanding’ of the
underlying meaning communicated by a Cxn.

3. We test on a variety of common English
phrasal Cxns instantiated by relatively unex-
pected words, thereby testing the ability of
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models to perform understanding tasks with-
out the aid of memorization and pattern match-
ing from large pretraining datasets.

4. We test some of the largest models currently
available, including GPT-01 and Llama 3 70B.

2 Related Work

The evaluation of LLMs with datasets that consider
pretraining data has largely focused on identifying
and mitigating test set data leaks (Balloccu et al.,
2024; Sainz et al., 2023a). Examples of this in-
clude work by Golchin and Surdeanu (2024) and
Sainz et al. (2023b) who identify data contamina-
tion using prompting. Furthermore, considerable
effort has been directed toward designing datasets
that minimize such leakage (Zhou et al., 2025).
While this is an important concern, preventing di-
rect data leakage does not eliminate the possibility
that models can infer answers using related infor-
mation from pretraining data (Tayyar Madabushi
et al., 2025). Another relevant line of research in-
volves counterfactual reasoning, where standard
rules of the world are slightly altered. By design,
counterfactuals provide an effective way to test
LLMs in scenarios where pretraining data offers
little advantage, and it has been shown that the
performance of LLMs does in fact drop in these
cases (Wu et al., 2024; Lewis and Mitchell, 2024).
Starting with CxGBert (Tayyar Madabushi et al.,
2020), there has been substantial past work on
probing language models’ understanding of Cxns.
These works have typically focused on either a
single Cxn or a handful of Cxns, like AANN (Ma-
howald, 2023; Chronis et al., 2023; Misra and
Mahowald, 2024), COMPARATIVE-CORRELATIVE
(Weissweiler et al., 2022), LET-ALONE (Scivetti
et al., 2025), NPN (Scivetti and Schneider, 2025)
and more schematic phrasal Cxns (Li et al., 2022;
Veenboer and Bloem, 2023). Tseng et al. (2022)
focus on Cxns in Taiwanese Mandarin, a notable
exception to the works above which focus on En-
glish (see also Weissweiler et al. 2024; Bunzeck
et al. 2025). Zhou et al. (2024) introduce NLI as
a proxy task for understanding Cxns, though their
results are limited to the CAUSAL-EXCESS and
related Cxns. We expand on the use of NLI to
a broad set of new Cxns, and create NLI exam-
ples which utilize both entrenched (Exp. 1) and
syntactically-identical (Exp. 2) Cxns.
Additionally, recent studies show that small LMs
(e.g., BabyLMs, Warstadt et al. 2023) can learn the

forms of rare constructions (Misra and Mahowald,
2024; Rozner et al., 2025b; see Rozner et al.
(2025a) for strong formal results using RoBERTa
(Liu et al., 2019)). In contrast, we focus on gener-
alization of constructional understanding, which
has been shown to be difficult even for LLMs in
few-shot settings (Bonial and Tayyar Madabushi,
2024b; Zhou et al., 2024; see Mackintosh et al.
2025 regarding impact of fine-tuning). To our
knowledge, no prior work has explored the
use of cognitive linguistic principles to gener-
ate human-generalizable datasets for assessing
the generalization capabilities of LLMs.

3 Experimental Design

We conduct experiments exploring two questions:
Research Question (RQ) 1: To what extent can
models generalize constructional semantics to
relatively infrequent instantiations of common
Cxns? Exp. 1 uses NLI to evaluate understanding
of constructional semantics in cases where high-
frequency constructional templates are instantiated
by words not commonly found within that Cxn. We
select 8 Cxns that are roughly balanced across two
types: argument structure Cxns with no fixed words
but clear syntactic slots (e.g., CAUSED-MOTION
in Table 3) and phrasal Cxns with two or more
fixed words that clearly identify the Cxn (e.g., LET-
ALONE in Table 3). To evaluate if the appropri-
ate constructional semantics are associated with
these Cxns, we create a novel NLI dataset, where
premises are derived from corpus instances of Cxns
and an understanding of constructional semantics
is required to determine entailment.

RQ 2: To what extent can models distinguish
the semantics of Cxns that are syntactically iden-
tical, but have different meanings? Exp. 2 uses
NLI to evaluate abstraction of distinct construc-
tional semantics given identical syntactic phrasings.
We select five Cxns that are syntactically identical
to the five argument structure Cxns of Exp. 1. We
create a second set of NLI instances again using
corpus instances of the five semantically distinct,
but syntactically identical Cxns.

Parallel to psycholinguistic research on analog-
ical extension of Cxns (Bybee, 2010), we hypoth-
esize that the frequency and entrenchment of the
Cxn contribute to model ability to understand the
constructional semantics. There is abundant corpus
linguistic data from both web and even child lan-
guage indicating that the 5 argument structure Cxns
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tested in Exp. 1, CAUSATIVE-WITH, CAUSED-
MOTION, CONATIVE, INTRANSITIVE MOTION,
RESULTATIVE, are some of the earliest acquired
and most frequently used Cxns in the English lan-
guage (Hoffmann, 2022; Tomasello, 2003; Gries
and Stefanowitsch, 2004). Although we lack CxG-
annotated resources and access to pretraining data
to calculate the precise frequencies of the Cxns
tested in Exp. 2 (see Table 5), we can safely as-
sume that these Cxns are less frequent in the lan-
guage.? Most importantly, while the Cxns of Exp.
1 are generally instantiated by a more limited set of
verbs, the Cxns of Exp. 2, such as the DEPICTIVE
and LOCATIVE, can co-occur felicitously with any
verb. As a result, there is no single, entrenched
variant of the Cxns in Exp. 2 (Gries and Stefanow-
itsch, 2004). Thus, the Cxns of Exp. 1 have higher
type frequency (the frequency of, for example, the
RESULTATIVE overall) and have at least one en-
trenched variant with high token frequency (the fre-
quency of the RESULTATIVE with “make”). Higher
entrenchment of one variant means that there is a
strong lexico-syntactic signature associated with a
specific meaning of a Cxn. Lower entrenchment
indicates that there is more variation in the lexico-
syntactic features and more variation in how identi-
cal lexico-syntactic features are associated with sev-
eral meanings. Thus, greater entrenchment may
provide critical priors for the model to general-
ize constructional semantics to novel instantia-
tions, whereas these priors may not be available
for the Exp. 2 Cxns, which lack any entrenched,
high token-frequency exemplar.

4 Experiment 1: NLI for Constructional
Semantics

4.1 Dataset

In Exp. 1, we leverage the CoGS corpus (Bonial
and Tayyar Madabushi, 2024b), which is a collec-
tion of about 500 corpus instances, roughly bal-
anced across 10 different Cxns. CoGs consists of
carefully curated Cxns chosen for their broad cov-
erage of the basic phrasal Cxns of English (Hoft-
mann, 2022). The Cxn types collectively represent
a significant portion of English usage and provide
an effective basis for evaluating LLMs on high-
frequency Cxns (such as the CAUSED-MOTION),

2We do not argue that the type frequencies of all Exp. 2
Cxns are low (e.g., INTRANSITIVE has high type frequency),
rather that the specific sub-Cxns of Exp. 2 (e.g., INTRAN-
SITIVE+"at"-LOCATIVE) are lower than type frequencies of
argument structure Cxns of Exp. 1.

Cxn Name Example

Causative- Freshly ground coffee beans

With filled the room with a seductive,
earthy aroma.

Caused- But we also exported nickel to

Motion the United States.

Comparative- | The more I studied, the less 1

Correlative understood.

Conative Jake sipped at the jug and
didn’t answer.

Intransitive Armed troops marched to the

Motion substations and turned the
power back on.

Let-Alone None of these arguments is no-
tably strong, let alone conclu-
sive.

Resultative He hammered the metal flat.

Way-Manner | A middle-aged man eased his
way into the room.

Table 3: 8 Cxns tested in Exp. 1, alongside examples.

where instantiated with creative words.

Broadly, CoGS consists of Cxns of two types:
argument structure Cxns, which involve no fixed
word forms but have been shown to be the most
common Cxns of English as well as other lan-
guages (Goldberg, 1995); and phrasal Cxns with
multiple fixed words. The latter Cxns are more eas-
ily recognizable to LLMs given fixed words cueing
that Cxn (Bonial and Tayyar Madabushi, 2024a).
We construct our datasets with 8 of the 10 Cxns in
CoGS, shown in Table 3.

Overall, our process for creating the construc-
tional NLI dataset can be summarized as:

1. Extract corpus Cxn examples from CoGS.

2. Create general templates for NLI hypotheses
for each Cxn type.

3. Generate hypotheses for each example Cxn
given the corresponding templates.

4. Manually validate the resulting dataset.

We explain this process through the following ex-
ample, beginning with the premise: “He hammered
the metal flat.” This is a RESULTATIVE Cxn, which
has the meaning of an action causing a change in
state. In this case, the action verb hammered leads
to the metal to have a resulting state of flar. Regard-
ing the syntactic form of a phrasal Cxn, we can use
a constructional template to define the syntactic
nature of the slots that are filled by a given Cxn. A
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general template for the RESULTATIVE is shown
in Example (1), and its application to the above
sentence in Example (2).

(1) [SBJ; [V2 OBJ3 ADJy Jvels

2) [He| [hammered, the metals flaty Jvpls

Given constructional examples like those in Ex-
ample (2), our goal is to produce NLI tuples that
consistently target the Cxn’s meaning. We do this
by manipulating the slots in the Cxn templatically
to produce hypotheses with consistent relations to
the premise. For instance, consider the hypothesis
“The hammering did not cause the metal to become
flat.” This is clearly a contradiction to the above
premise and is directly in conflict with the mean-
ing of the Cxn. We can produce this hypothesis,
and similar contradicted hypotheses, by following
the template in Example (3), instantiated with our
current example in Example (4).

3) [THE [V],-ING DID NOT CAUSE [OBJ]3 TO
BECOME [ADJ]4].

4) [THE [hammer]>-ING DID NOT CAUSE [the
metal]; TO BECOME [flat]4].

Thus, for each Cxn, we create a template to gener-
ate NLI hypotheses that target constructional mean-
ing. 3 See Appendix D for the NLI templates for
each Cxn (Table 8), along with examples (Table 9).

Manual Verification We manually validate ev-
ery test instance of our dataset with double or triple
annotation and measure human agreement (rang-
ing from 78-90%) to ensure the robustness of our
claim that people are able interpret the specific Cxn
instances that we present to the LLMs. Once the
dataset was created, a second and sometimes third
author annotated the relations, and hypotheses were
amended until achieving an Inter-Annotator Agree-
ment (IAA) of 90%. Thus, if we take the original
author’s assigned relation to be the gold standard,
then native speaker accuracy on the NLI task is
90%. The final Exp. 1 “CxNLI” dataset totals 435
triples. Descriptive statistics for this dataset along
with all other datasets can be found in Appendix B
(Table 7).

3To ensure that the templates did not bias the models in
some way towards the appropriate NLI relation, we produced
free-form NLI triples for the same premises in a separate
research effort; we found that model performance improves
on the freeform hypotheses over our templated hypotheses
(Bonial et al., 2025). This indicates that the templates do not
seem to cue the model to the correct relation.

4.2 Formalism and Task Design

We define a Cxn, C, to be a pairing of a construc-
tional schema (form), 7¢, and a semantic inter-
pretation (meaning), M (C). For example, for the
RESULTATIVE Cxn has the schema (7¢) NP V NP
ADJ and Meaning (M (C')) ‘The action of the Verb
causes the Object to enter the state described by
the Adjective.’

Our method of evaluating models’ ability to
‘understand’ this Cxn begins with a premise sen-
tence, p, that is an instance of a given Cxn C
(p € C). We then generate a hypothesis, h,
by applying a pre-defined hypothesis template,
Hc,r. This template is a function that takes the
premise p as input, extracts its relevant compo-
nents, and generates a new sentence h. The tem-
plate is designed to probe the Cxn’s core meaning,
M(C), in a way that produces a predictable NLI
label, L € {Entailment, Contradiction}. There-
fore, the hypothesis is generated as: h = Hc,1,(p).
For example, to generate a contradiction (L =
Contradiction) for a RESULTATIVE premise:

* Premise (p): “He hammered the metal flat.”

* Hypothesis (h): h =
HRESULTATIVE,Contradiction (p) = “The ham-
mering did not cause the metal to become
flat.”

* Resulting Tuple: (p, h, Contradiction).

The goal of this experiment is to assess if models
can correctly classify these NLI tuples. High accu-
racy on this task indicates that a model has learned
the fundamental association between a syntactic
schema 7¢ and its meaning M (C'), even when in-
stantiated with creative or atypical words.

4.3 Empirical Evaluation and Analysis

We test three OpenAl models on our construc-
tional NLI dataset: GPT-40-2024-05-13 and GPT-
3.5-turbo-0125, as well as ol-preview-2024-09-
12.* We also test two Llama models: Llama-3-8B-
instruct and Llama-3-70B-instruct. These models
were chosen for their large sizes, which make them
illustrative examples of the capabilities of state-of-
the-art LLMs in general. We test 3 main scenarios:
zero-shot, in-context learning with examples ran-
domly selected from Stanford NLI (SNLI, Bowman
et al. 2015), and in-context learning with Construc-

*https://platform.openai.com/docs/models

1188


https://platform.openai.com/docs/models

Setting IC Accuracy
Data GPT Llama 3
35 40 ol* 8B 70B
0-shot None 0.6 0.88 0.90 0.59 0.74
1-shot CxNLI 0.69 09 - 0.65 0.84
3-shot CxNLI 0.79 0.96 0.90 0.73 0.91
I-shot SNLI 0.58 0.86 - 0.59 0.75
3-shot SNLI 0.59 0.86 0.89 0.58 0.74

Table 4: Results for Exp. 1 - Evaluation on our CxNLI
dataset. “IC Data" refers to the type of data used as
in-context examples.*GPT-o1 is only tested in zero-shot
and three-shot settings on a subset of the overall data
due to API costs.

tional NLI (CxNLI, our dataset).> A summary of
our results for Exp. 1 are reported in Table 4.

Overall, we see that performance is high even in
the zero-shot setting for GPT-40 and GPT-o01. We
also observe that GPT-40 and Llama 3 70B con-
sistently perform better than their smaller model
counterparts GPT-3.5 and Llama 3 8B. Adding ex-
amples of Cxns for in-context learning boosts per-
formance, while additional SNLI examples do not
boost performance. This is especially true for GPT-
3.5 and Llama 3 8B, which benefit substantially
more from in-context learning from CxNLI. This
reliance on in-context learning indicates that our
datasets test a different axis of semantic knowledge
than more general datasets like SNLI.

5 Experiment 2: NLI for Distinguishing
Syntactically-Identical Cxns

5.1 Dataset

In Exp. 1, we show that the models perform im-
pressively on an NLI task that specifically targets
constructional semantics. The Cxns tested are com-
mon to the English language, and the templates we
generate target aspects of meaning that are highly
salient for the Cxn. In Exp. 2, we test whether mod-
els can generalize the appropriate constructional
semantics for syntactically identical phrasal Cxns
that should be ascribed distinct semantics. This
enables us to determine if models have a robust ca-
pability to attribute and understand constructional
semantics, or if this capability might be limited to
the more entrenched phrasal Cxns of the language
that were tested in Exp. 1.

>We experiment with a variety of prompt formats and
report results for the best performing prompts; details can
be found in Appendix E. We also perform Chain-of-Thought
(CoT) experiments (Wei et al., 2022) in each of these scenarios;
it does not lead to performance gains: see Appendix F.

Thus, for the 5 argument structure Cxns of our
8 Cxns, we add test instances which share a sur-
face syntax with our Cxns, but convey a different
meaning.® Table 5 provides examples of the origi-
nal Cxns used in Exp. 1 and parallel, syntactically
identical Cxns tested in Exp. 2. Consider the fol-
lowing:

®)) He hammered the metal flat. (resultative)

(6) I bought the apples fresh. (depictive)

In the above two examples, the syntactic forms are
identical: both have a subject pronoun, a verb, an
object noun phrase followed by an adjective. How-
ever, the two Cxns convey different meanings: In
Example (5) the adjective is the result of the action
of the verb, whereas in Example (6), the adjective
is the state of the noun during the action of the
verb, but it is not the resulting state of the action.
This difference in meaning is associated with two
different Cxns, specifically the RESULTATIVE and
the DEPICTIVE. We can tease apart this difference
in meaning by leveraging our template-based hy-
potheses from our CxNLI dataset in 4. Consider
the following templatic hypotheses:

(7) [THE [hammer];-ING CAUSED [the metal]s
TO BECOME [flat]4]. (entailment)

(8) [MY [buying],-ING CAUSED [the apples];
TO BECOME |fresh]4]. (contradiction)

As we can see in Examples (7) and (8), templati-
cally generating hypotheses for these two examples
leads to different relations to the premises. The
Cxns we use for this dataset are INTRANSITIVE
+ PPar, INTRANSITIVE + PPro, DITRANSITIVE
with NP, PP complements, TRANSITIVE + PPy,
and the DEPICTIVE.’

Manual Verification After the final version of
this dataset was created, a second author evaluated
the dataset, achieving an IAA of 83% with the
original judgments. The final Exp. 2 “CxNLI-
Distinction” dataset totals 99 NLI triples.

5.2 Formalism and Task Design

Let C be the target Cxn (e.g., RESULTATIVE) and
('’ be the syntactically identical distractor Cxn
(e.g., DEPICTIVE). The Cxns are selected such that
the entrenchment of the distractor is lower than

®We test 5 of 8 Cxns from Exp. 1 because 3 Cxns lack
syntactically identical counterparts with distinct meanings.

"More examples of each of these Cxns along with NLI
tuples are shown in Appendix D, Table 10.
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Exp. 1 Exp. 2

Cxn Argument Structure Cxn Syntactically-Identical New Cxn Cxn

Resultative I brushed my hair smooth. A famous emperor buried scholars alive. Depictive

Conative Marco grabbed at the ladder railing. Other units exploded at this complex. Intransitive+"at"
Caused-motion We exported nickel to the United States I introduced her to my boss. DitransitiveV+NP+PP

The 23 scrambled to the rear of the sub.
Samsung flooded the market with advertising.

Intransitive-motion
Causative-with

Intransitive+"to"
Transitive+"with"

They’re listening to the same podcast.
I use a mouse with my left hand.

Table 5: Example CxNLI premises from Exp. 1 and 2, illustrating syntactically identical, semantically distinct Cxns.

that of the target: Entr(C’) < Entr(C) While
both Cxns are realized via the same constructional
schema, meaning their syntactic templates (e.g.,
NP V NP ADJ) are identical (T¢ = Tev = T),
their underlying semantic interpretations are dis-
tinct, M (C) # M(C").

Our evaluation focuses on premises that are in-
stances of the distractor Cxn C”. As an illustration,
consider one such premise, p':

Schema: T = NP V NP ADJ
Example: p’ € C' = “A famous em-
peror buried China’s scholars alive...”

The core of the experiment is to generate two dif-
ferent hypotheses for this single premise, each
designed to probe for the meaning of either the
(correct) distractor (M (C")) or (incorrect) target
Cxn (M (C)).
1. An NLI tuple probing the correct
(DEPICTIVE) meaning:

*hy = HC’,Entailment(p,) = “China’s
scholars were fully alive before being
buried."

e This  creates the
(p', h1, Entailment).

NLI  tuple:

2. An NLI tuple probing the incorrect
(RESULTATIVE) meaning:

* hy = HC,Contradiction(p/) = “Burying
caused the scholars to become alive.”

e This creates the NLI
(p, ha, Contradiction).

tuple:

Crucially, this experimental design assesses if mod-
els can avoid over-generalizing the meaning of the
more entrenched target Cxn, M (C), to a less en-
trenched distractor Cxn, C’, that shares the same
syntactic schema (7¢» = 7T¢) but has a distinct
semantic interpretation (M (C") # M(C)). By
measuring overall accuracy, we test a model’s abil-
ity to reject the semantics of the highly entrenched
Cxn (M (C)) when presented with a premise from
the less entrenched distractor, while simultaneously

accepting the correct meaning (M (C”)). We use
performance on the more straightforward instances
in Exp. 1 as a baseline; therefore, a significant drop
in accuracy on this second task indicates a failure
to distinguish Cxns based on their subtle semantic
cues, highlighting a key difference from human
generalization.

5.3 Empirical Evaluation and Analysis

We utilize this new Exp. 2 dataset as an evaluation
dataset to test if LLMs can perform NLI success-
fully on the new phrasal Cxn examples, where per-
formance requires distinguishing the unique seman-
tics of the syntactically identical Cxn. As we can
see in Table 6, performance is significantly lower
than our results from Exp. 1 in almost every prompt
setting and across all models. The difference in per-
formance is stark. While these examples are also
slightly more difficult for humans, the ceiling of
human performance (IAA 83%) is well above cur-
rent LLM performance, even for GPT-40, GPT-o1
and Llama 3 70B. Again we see a large difference
between the GPT-40 and the smaller models, and
also see that GPT-01 performs worse than GPT-4o.

We take these results as evidence that the ability
of models to abstract over the same syntactic slots
and assign the appropriate semantics is limited to
the more entrenched Cxns of English, of which our
original Exp. 1 dataset consisted. By shifting to
phrasal Cxns that are syntactically identical but po-
tentially less entrenched, we are essentially testing
whether or not models can abstract over less data
to arrive at a less statistically likely semantic inter-
pretation. This also highlights that the abstraction
process in people clearly goes beyond the syntac-
tic character of the slots alone—people are able
to balance their knowledge of lexical semantics
with their knowledge of constructional semantics
to arrive at the most pragmatically likely interpre-
tation. People’s lexical awareness is also imbued
with physical world knowledge; thus, people are
abstracting over a distinct set of information than
what LLMs have access to.
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Setting IC Accuracy
Data GPT Llama 3
35 40 ol* 8B 70B
0-shot None 0.26 0.58 0.46 0.38 0.52
1-shot CxNLI 0.26 0.53 - 0.29 0.60
3-shot CxNLI 0.31 0.57 045 0.35 0.50
I-shot SNLI 0.3 0.55 - 0.37 0.54
3-shot SNLI 0.28 0.53 0.46 0.39 0.57

Table 6: Results for Exp. 2, testing on CxNLI-
Distinction. "IC Data" refers to the type of data used in
the in-context examples. *GPT-o1 is only tested in zero-
shot and three-shot settings due to limited resources.

5.4 Statistical Analysis

We tested whether performance on CxNLI-
Distinction (Exp. 2) is worse than on CxNLI (Exp.
1) for humans and for each model. Specifically,
we conducted a Bayesian A/B test to quantify the
evidence for a performance drop on the more chal-
lenging CxNLI-Distinction (Exp. 2) dataset. This
analysis was performed separately for human par-
ticipants and three different models: LLaMA, GPT-
40, and GPT-01. We assigned a strong prior belief
of 99% that performance on the CxNLI-Distinction
dataset would be equal to the CxNLI (Exp. 1)
dataset and a 1% probability of lower performance.

Despite encoding strong priors favoring equal
performance, our data consistently point to a
performance drop. The analysis, based on 10,000
posterior samples, gives a Bayes Factor (BF) for
each group. Using the standard interpretation
where a Bayes Factor over 10 constitutes strong
evidence, we find that for humans, the data are 4.3
times more likely under the hypothesis that perfor-
mance is worse (BF = 4.31). Given that a BF of
10 constitutes strong evidence, this is only weak
evidence that the performance is worse. In contrast,
for LLLaMA the evidence is very strong, with the
data being over 2,600 times more likely under this
hypothesis (BF¢ = 2,684). Furthermore, for GPT-
40 and ol the evidence is extreme with the BFs
being 3.6 x 10% and 8.2 x 10! respectively.

Thus, the evidence overwhelmingly supports the
hypothesis that the CxNLI-Distinction (Exp. 2) set
is significantly more difficult for LLMs than for
humans. Additionally, this demonstrates that our
CxNLI-Distinction dataset size is large enough to
conclude that performance is decisively worse on
this dataset, which requires distinguishing between
syntactically identical constructions.

6 Error Analysis

In Exp 1, we describe our CxNLI experiments,
which find that GPT-40, GPT-01 and Llama 3 70B
are extremely proficient at CxNLI while GPT-3.5
and Llama 3 8B lag behind substantially. In Exp 2,
we show that all our tested models do not perform
well when tested on our CxNLI-Distinction dataset
with five additional, syntactically identical Cxns.
For example, though GPT-40’s performance on the
CxNLI RESULTATIVE is near perfect, it struggles
to demonstrate understanding of the syntactically
identical DEPICTIVE:

) Premise: I bought the apples fresh.
Hypothesis: The apples were completely
fresh before I bought them.

Correct Response: Entailment
Model Response: Contradiction

Here, we investigate if some Cxns are harder for
LLMs than others. Among Cxns from Exp. 1, LET-
ALONE and COMPARATIVE-CORRELATIVE are the
weakest Cxns for GPT-4o, though it is strong across
the board with a minimum accuracy of 88%. GPT-
3.5 is much more variable by Cxn, with a maximum
accuracy of 92% for the CONATIVE and a minimum
of 67% for LET-ALONE. We show an example of
GPT-40 misunderstanding the scale of LET-ALONE
in Example (10).

(10) Premise: Beecher’s reputation as a
preacher, let alone as a Man of God, was
not universally accepted.

Hypothesis: Beecher’s reputation as a
Man of God was easier to accept than his
reputation as a preacher.

Correct Response: Contradiction
Model Response: Entailment

In Figure 1 we report the accuracy by Cxn in our
Exp. 1 NLI and Exp. 2 NLI datasets.® We see
performance is lower for all Cxns we test in Exp.
2. This provides evidence supporting our hypothe-
sis, outlined in §3, that the entrenchment of a Cxn
contributes to model ability to understand the con-
structional semantics.

8 Accuracies are from the highest performing prompt. We
only visualize GPT-40 for visual clarity, though trends are
similar across models.
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Figure 1: Constructional NLI Accuracy broken down by
Cxn (for best prompts). Accuracy drops substantially
for the Cxns in Exp. 2 relative to those in Exp. 1.

7 Discussion

Our results show a clear discrepancy in the abil-
ity of LLMs to process constructional meaning.
While models demonstrated a surprisingly high ca-
pacity to interpret familiar constructions even with
novel lexical fillers (Exp. 1), their performance
dropped significantly when required to distinguish
between syntactically identical constructions that
carry different meanings (Exp. 2). This discrep-
ancy highlights a failure in how models generalize
from frequent patterns to more nuanced, creative
uses of language and has significant implications
to the development and use of LLMs

Data, Bias, and the Limits of Scale Our Exp.
2 findings challenge the prevailing “more data is
better” paradigm (Kaplan et al., 2020). The mod-
els’ bias towards the most frequent constructional
meaning suggests that simply scaling web-text data
may reinforce these errors. This implies a need
for new data strategies, such as up-sampling rare-
but-important structures or using targeted (Ye et al.,
2025), adversarial fine-tuning (Dong et al., 2021)
to correct the biases of the base model.

The Need for Diagnostic Evaluation The sig-
nificant difference in performance between our
two experiments shows how broad-coverage bench-
marks can overestimate a model’s true linguistic
competence. Our work demonstrates the impor-
tance of contrastive, diagnostic benchmarks to test
specific, theoretically-grounded phenomena.

A Failure of Causal Reasoning and Its Safety
Implications The model’s inability to distinguish
a DEPICTIVE from a RESULTATIVE construction
is a failure to reason about causality. This is not
a niche linguistic error; it has direct implications
for Al safety as misunderstanding the difference

between a co-occurring state and a caused outcome
could lead to catastrophic errors.

Architectural Limitations and Future Direc-
tions The systematic nature of this error across
models suggests the issue may be rooted in the
architecture of these models. Therefore, the path
forward may benefit from the use of novel and
hybrid architectures, such as the incorporation of
constructional resources or the addition of long
term memory (Wang et al., 2023).

8 Conclusions and Future Work

We have shown where even the latest models do not
demonstrate a functional understanding of Cxns:
although models can generalize the semantics of
entrenched Cxns to creative instantiations, the same
models cannot robustly distinguish between syn-
tactically identical Cxns with distinct semantic in-
terpretations. While GPT-40, GPT-01 and Llama 3
70B do perform quite impressively on our original
constructional NLI task, they fail at the NLI sce-
nario requiring constructional distinction, which
requires generalization of the appropriate construc-
tional semantics to syntactically-identical Cxns.
Also, we see that GPT-40 substantially outperforms
GPT-3.5 in all settings, and in-context learning is
especially crucial for GPT-3.5. Overall, these ex-
periments show that the constructional awareness
of GPT-40, GPT-01 and Llama 3 70B are far more
robust than that of GPT-3.5 and Llama 3 8B, but
their ability to generalize constructional meaning
to both novel instantiations and distinct Cxns still
lags substantially behind that of humans.

Thus, our targeted series of experiments demon-
strate that LLMs do process constructional seman-
tics up to a point, yet our datasets and experiments
reveal the breaking point of understanding—where
speakers are able to recognize the appropriate con-
structional semantics despite both novel instanti-
ations and despite the fact that there are multiple,
syntactically identical Cxns that could be candi-
dates for interpreting the phrase at hand. Overall,
we find that CxG serves as a valuable theoretical
lens for probing the functional language under-
standing of LLMs with a methodology that tests for
linguistic generalization beyond memorization and
dependency on pretraining priors and comparing
this with human linguistic knowledge. Greater con-
tributions to resources such as corpora of Cxns will
facilitate empirical data on which constructional
understanding can be evaluated with more detail.
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Limitations

This work is limited in that we only evaluate our
methods on English. More work is needed on the
targeted evaluation of LLM performance using Cxn
information in non-English settings. Our tasks are
only one possible method for investigating LLM
understanding of Cxns. Expanding research to in-
clude complementary methodologies will be neces-
sary to build a complete picture of LLM knowledge
in relation to CxG. This work can also be extended
beyond the 8 Cxns that we use to generate our
dataset, although these were selected for the exten-
sive coverage of the English language. Also, while
we consciously choose to create a smaller, more
carefully curated dataset that also allows for careful
expert manual evaluation, there is scope to increase
the size of our dataset, which we leave to future
work.

Ethics

LLMs are extremely expensive to train and run.
The compute costs associated with LLMs have
a nontrivial environmental impact which should
not be ignored. Furthermore, due to their large-
scale training data, they can reflect and propagate
harmful social biases in their responses if they are
not properly aligned and moderated. Furthermore,
there is risk of LLMs having a negative societal im-
pact if their widespread deployment is done without
proper consideration for the lives of people. While
there are risks in the use and proliferation of LLMs
in general, we do not believe this work incurs any
specific additional risks. Despite the overall risks
and dangers, we believe this research is worthwhile
in order to better understand the language systems
of LLMs and compare and contrast LLM language
understanding with that of humans. We honor the
code of ethics.
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A Construction Grammars

CxG has particular explanatory power with respect
to phrasal Cxns, such as the RESULTATIVE Cxn:
“The jackhammer pounded us deaf.” Generative
linguistic theories (e.g., Chomsky (2014b)) would
generally analyze a transitive sentence with one ver-
bal head (“pounded”) that licenses the arguments
of the sentence. “Pounded” generally licenses an
agent subject (here, “jackhammer”) and potentially
a patient direct object. Generative approaches ar-
gue that this information about the verb is memo-
rized and stored in the lexicon, while combinatory
rules of how to put lexical items together are stored
in a separate syntax module of language process-
ing. However, unless a special grammatical rule
or sense of the verb is postulated, there is nothing
to explain why “us” is not the thing pounded here,
or what licenses the adjective “deaf.”” Nonetheless,
native speakers have no problem recognizing the
special formal and semantic properties of this Cxn,
namely that it entails a pounding event that causes
a change in state of “us” resulting in the state of
“deaf.”’

In contrast to Generative linguistic theories (e.g.,
Chomsky (2014b)), CxG posits that speakers ac-
quire and store Cxns, which notably account for
not only the semantic properties of the unit but
also the formal syntactic properties. Cxns at all
levels of language are learned through language
usage; thus, in lieu of grammatical rules account-
ing for the grammaticality of a particular structure,
frequency plays an important role in what ‘sounds
right’ or is grammatical to a speaker. In the CxG ac-
count, speakers acquire single-word Cxns that they
are frequently exposed to (e.g., “milk’), but then
generalize from that to recognize how an acquired
holophrastic Cxn falls into slots of larger, more
complex Cxns (e.g., “want milk,” “baby want milk,”
“want up,” “I want to go”). In this process of gener-
alization, speakers build up a taxonomically orga-

nized set of the related Cxns of their language, or a
constructicon. Speakers use domain-general cog-
nitive processes to incrementally generalize over
such frequent Cxns to novel usages, arriving at the
ability to interpret even rare and previously unseen
instances of a Cxn.

B Scientific Artifacts and Descriptive
Statistics for All Datasets

We use the following scientific artifacts: COCA
(Davies, 2010), EnCOW (Schéfer and Bildhauer,
2012; Schifer, 2015), the CoGS dataset (Bonial
and Tayyar Madabushi, 2024b), and the OpenAl
API, in addition to our created datasets. The COCA
corpus contains 8 genres: Academic, Blog, Fiction,
Magazine, News, Spoken, TV, and Web. It is in-
tended to capture American English, though there
is no guarantee that it does not also include some
other varieties. Demographic information about
the creators of the texts in the corpus is not al-
ways available given its scale. EnCOW is a large
scale corpus of English text from the web. As such,
the demographic information that it captures is not
completely clear. All datasets besides COCA and
EnCOW are open-source under a Creative Com-
mons license. The institutions of the authors have
valid licenses for COCA and EnCOW, permitting
their use in academic settings. We use the arti-
facts as intended. Overall, we construct and exper-
iment on 2 datasets: CxNLI (Exp. 1) and CxNLI-
Distinction (Exp. 2). The sizes and IAA agreement
for the final datasets is reported in Table 7. All of
our datasets are exclusively in English.

Dataset N Tokens IAA
CxNLI (Exp. 1) 435 15,144  90%
CxNLI-Distinction (Exp. 2) 99 3,202 83%

Table 7: Descriptive statistics for each dataset. N is the
number of unique examples.

B.1 CxNLI (Exp. 1) Data Sources

The templatic dataset is constructed with real-
world corpus data of Cxns, primarily coming from
the CoGS dataset (Bonial and Tayyar Madabushi,
2024b), with supplementary data coming from Cor-
pus of Contemporary American English (COCA,
Davies 2010), and the English Corpus from the
Web, or EnCOW (Schifer and Bildhauer, 2012;
Schifer, 2015). Within this dataset, each premise
includes one of 8 total Cxns: the COMPARATIVE-
CORRELATIVE Cxn, the LET-ALONE Cxn, the
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WAY-MANNER Cxn, the CAUSATIVE-WITH Cxn,
the CONATIVE Cxn, the RESULTATIVE Cxn, the
CAUSED-MOTION Cxn, and the INTRANSITIVE-
MOTION Cxn. We include a roughly balanced
sample of each Cxn, with all premises taken from
corpus data. These Cxns cover a wide range of
schematicity meaning that they have different lev-
els of lexicalization/abstractness.

C Annotator Information

All datasets are annotated by co-authors of this pa-
per. 2 annotators identify as men, 4 annotators iden-
tify as women. Of our annotators, 3 have a graduate
degree in linguistics while 3 do not. At least one
linguistic expert and one non-expert annotate each
dataset. Because the source of our datasets is web
corpora, there is some risk of offensive or hateful
content. During annotation, annotators were asked
to remove any hateful or offensive content as well
as personal identifying information. The annota-
tion task was given to annotators in a spreadsheet.
The instructions provided are detailed in Appendix
H.

D Example NLI Tuples

Our templates for generating hypotheses across
Cxn types is shown in Table 8. In Table 9, we
show examples of our constructional NLI datasets
from Exp. 1. We show examples of the distinction-
requiring NLI examples from Exp. 2, alongside
examples of our new constructions for Exp. 2, in
Table 10.

E Prompt Variation Experiments

For each experiment, we choose one setting to ob-
serve the impact of prompt variations on perfor-
mance.’ These prompt variations were explored in
two sequential stages; changing the content of the
prompt and changing the phrasing of the prompt.
Changing the content of the prompt involved giv-
ing more details about the task, giving fewer details
about the task and experimenting with the specific
instructions. After selecting the best-performing
prompt content, the prompt was rephrased using an
LLM and variations of the prompt with new word-
ing were used to check the robustness of the model
output by observing how small variations in the
prompts affect performance. We report an example
of each of our prompts for variations in content in

For NLI we choose the 3-shot CxNLI setting.

Table 11. Results for our prompt variation experi-
ments are shared in Tables 12 and 13.

F Chain-of-Thought Results for all
Experiments

We replicate each of our main experiments with
the addition of Chain-of-Thought (CoT) to observe
changes in performance and inspect any errors in
the model’s reasoning steps. For CoT thought
prompting we do not provide examples of reason-
ing in the prompt, instead we simply ask the model
to explain "step by step”. The results for each ex-
periment have been shared in tables 14 and 15.

G Model Parameters and
Hyperparameters

We use the default hyperparameters for all mod-
els including GPT-40 (unreported parameter size),
GPT-3.5 (175B parameters), GPT-o1 (unreported
parameter size), LLaMA 3 8B (8B parameters),
LLaMA 3 70B (70B parameters) though to ensure
maximal reproducibility of our work, we set the
temperature of model responses to O apart from
GPT-01 which only acceptd a temperature of 1. Our
GPT experiments were done through the OpenAl
API. The total cost of our experiments was approx-
imately $250 USD. Our LLaMA experiments were
run through the replicate API and the experiments
cost approximately $25 USD.

H Constructional Natural Language
Inference Annotation Guidelines

Here we provide the exact instructions given to
people to annotate the NLI datasets.

We have developed a dataset of sentences featur-
ing different linguistic “constructions”—pairings
of form and meaning. The constructions exempli-
fied in this dataset range from purely substantive
(the words filling the constructional slots are fixed),
such as the Much-less construction, e.g., “He won’t
eat shrimp, much less squid;” to purely schematic
(the words filling the constructional slots can vary,
but fulfill some general semantic and syntactic re-
quirements), such as the Caused-Motion construc-
tion, e.g., “She blinked the snow off her eyelashes.”
It’s okay if you aren’t familiar with this terminol-
ogy or the idea of these constructions!

Task Overview

Your job is to read the sentences from this dataset,
which are presented as the Premise in a set of
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Cxn Name Cxn Template

NLI Hypothesis Template

Causative-With [SBI; [V, OBJ3 with-PPy4 lvpls

SBJ; did not cause OBJ3 to contain OBIJ-of-
PP,

Caused-Motion [SBJ] [V2 OBJ3 Pp4 ]Vp]5

OBIJ; did not change locations.

Comparative- [[they [Comparative  Phrase], REST- | The amount [Comparative Phrase], is posi-
Correlative CLAUSE3]c; [[thes [Comparative Phrase]s | tively/negatively correlated with the amount
REST-CLAUSEg]|c2 17 [Comparative Phrase]s
Conative [SBJ; [V; at-PP3 Jypla OBIJ-of-PP3 was not the target of the V,-ing

motion.

Intransitive-Motion [SBJ] [V2 PP3 ]Vp]4

SBJ; V; in a static location.

Let-Alone XP; CONJy.3 XPy5 If XPy then not XPy. s
Resultative [SBJ; [V, OBJ3 APy Jvpls The V,-ing did not cause OBJ3 to become AP4.
Way-Manner [SBJ; [V2 [PRONs-1] ways losis PPelvely | SBJj traveled PPg without V,-ing.

Table 8: Example templates for Cxns and templatic constructional NLI hypotheses. All examples provided here
have the contradiction relation. In these templates OBJ stands for a bare object, and OBL stands for an oblique,
which is a prepositional phrase that introduces a recipient, goal, or result of the verb. AP, PP, and VP stand for
adjective phrase, prepositional phrase, and verb phrase respectively.

triples for the Natural Language Inference (NLI)
task. Also known as Recognizing Textual Entail-
ment (RTE), NLI is the task of determining the in-
ference relation between two (short, ordered) texts:
entailment, contradiction, or neutral (MacCartney
and Manning, 2008).

* Premise: A man inspects the uniform of a
figure in some East Asian country.

* Hypothesis: The man is sleeping.

Then, you will fill in the Relation between the
Premise and the Hypothesis, which indicates the
kind of entailment between the two sentences. We
are using numerical coding, listed below and in
your annotation spreadsheet:

0 — entailment — The hypothesis must be true
given the premise.

1 — neutral — The hypothesis may or may not be
true given the premise.

2 — contradiction — The hypothesis must not be
true given the premise.

So for the example above, the correct answer
would be:

2 — contradiction — If the man is inspect-
ing a uniform, then it must not be true
that the man is sleeping.

The two sentences describe the same scenario.
Entities mentioned in both premise and hypothesis

refer to the same thing; e.g., “the man” refers to the
same individual. The hypothesis does not describe
a different time.

If you encounter unfamiliar words, you may con-
sult a dictionary. However, it is not expected or
encouraged that you would have to “do research”
into a topic in order to determine a relation between
a premise and hypothesis. Instead, you should rely
on common sense and your understanding of the
words.

You will be completing these annotations in
a spreadsheet like what is shown below, where
there is a relation space available below a given
premise/hypothesis pair. In the cell to the right of
“relation”, you will provide the appropriate relation
number. This space should include nothing except
for the numbers O, 1, or 2.

If you would like to note instances that are prob-
lematic, please add a Notes column to the right of
Annotation Target and make your note as relevant
to the right of the premise, hypothesis or relation.

There is also a space in column L where you
can note the start and end times of each annotation
session, or “sitting.” Please kindly track about how
many judgments you are able to do in each sitting,
so we can get a sense of how long the annotation
task takes.

There are about 100 distinct NLI judgments
or triples per annotation spreadsheet. Once
you have completed all the relation annotations,
please save and send the spreadsheet back to me:
Claire.n.bonial.civ@army.mil.

Get your inference hat on. Happy annotating!
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Cxn Name CxNLI (Exp. 1)

Causative-With Premise Freshly ground coffee beans filled the room with a seductive, earthy aroma.
Hypothesis The room did not contain a seductive, earthy aroma.
Relation Contradiction
Caused-Motion Premise I threw the stone across the river.
Hypothesis | I caused the stone to move across the river by throwing it.
Relation Entailment
Comparative- Premise The more they work, the more I will pay them.
Correlative
Hypothesis Increasing the amount they work will increase the amount I pay them.
Relation Entailment
Conative Premise 1 sipped at the Heineken.
Hypothesis The Heineken was not the target of my sipping.
Relation Contradiction
Intransitive- Premise I ran around the track.
Motion
Hypothesis | I ran, staying in one place.
Relation Contradiction
Let-Alone Premise It’s unsurprising that such an attitude failed to produce competent screenwriters,
let alone exciting ones.
Hypothesis | An attitude that produces exciting screenwriters can also produce competent ones.
Relation Entailment
Resultative Premise The jackhammer pounded us deaf.
Hypothesis We were completely deaf before the jackhammer pounded.
Relation Contradiction
Way-Manner Premise I yawned my way back to the Narrow Neck.
Hypothesis | I traveled back to Narrow Neck without yawning.
Relation Contradiction

Table 9: Examples of templatically generated hypotheses for and resulting NLI tuples for Exp. 1 CxNLI.

CxN Name Example NLI Triple

Premise I watch the women, their legs crossed at the ankles, try to look as if they don’t sweat at all.
Intransitive+At Hypothesis  Their legs made a crossing motion towards their ankles.

Relation Contradiction

Hypothesis He hit the lamp with his head.
Transitive+with Premise He caused the lamp to contain his head.

Relation Contradiction

Hypothesis He spoke to the workers on the street corner.
Intransitive+To Premise He changed locations by speaking.

Relation Contradiction

Hypothesis I introduced her to my boss.
Ditransitive+NP,PP | Premise She remained in the same place.

Relation Neutral

Hypothesis A famous emperor buried China’s scholars alive with their books.
Depictive Premise Burying caused the scholars to become alive.

Relation Contradiction

Table 10: Example Exp. 2 NLI triples corresponding to each of the 5 constructions evaluated in the Exp. 2 Cxn NLI
dataset. 5 of the 8 Exp. 1 Cxns are included in this dataset; limited to those Exp. 1 constructions with syntactically
identical counterpart Cxns that have different meanings.
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Prompt Type

Prompt

Variation 1

You are the world’s best annotator. Your task is to read sentences from a dataset, presented as the Premise
in a set of triples for the Natural Language Inference (NLI) task. Also known as Recognizing Textual
Entailment (RTE), NLI involves determining the inference relation between two short, ordered texts:
entailment, contradiction, or neutral. Next, you will identify the Relation between the Premise and the
Hypothesis, which indicates the type of entailment between the two sentences. We use numerical coding,
also listed in your annotation spreadsheet as a reminder:

0 — entailment — The hypothesis must be true given the premise

1 — neutral — The hypothesis may or may not be true given the premise

2 — contradiction — The hypothesis must not be true given the premise

Output a single numerical value between 0, 1, or 2, corresponding to the associated relation. Output a
single number only and nothing else.

Variation 2

You are the world’s best annotator. You are tasked with annotating a triple for Natural Language Inference.
You must determine the inference relation between the Premise and the Hypothesis by selecting one of
three numerical codes that reflect the relationship:

0 — Entailment: The Hypothesis is definitely true given the Premise.

1 — Neutral: The Hypothesis may or may not be true given the Premise.

2 — Contradiction: The Hypothesis cannot be true given the Premise.

Output a single numerical value between 0 and 2 inclusive, corresponding to the associated relation.

Variation 3

You are the best at understanding language inference based on Cxn grammar. You are tasked with
annotating a triple for Natural Language Inference. You must determine the inference relation between
the premise and the hypothesis by selecting one of three numerical codes that reflect the relationship:

0 — entailment — The hypothesis must be true given the premise

1 — neutral — The hypothesis may or may not be true given the premise

2 — contradiction — The hypothesis must not be true given the premise

Output a single numerical value between 0, 1, or 2, corresponding to the associated relation. Output a
single number only and nothing else.

Variation 4

You are the world’s best annotator. Your task is to read sentences from a dataset, provided as the Premise
in a set of triples for the Natural Language Inference (NLI) task. Also called Recognizing Textual
Entailment (RTE), NLI requires determining the inference relation between two short, ordered texts:
entailment, contradiction, or neutral. Your next step is to identify the Relation between the Premise
and the Hypothesis, specifying the type of entailment between the two sentences. We use the following
numerical coding:

0 — entailment — The hypothesis must be true given the premise

1 — neutral — The hypothesis may or may not be true given the premise

2 — contradiction — The hypothesis must not be true given the premise

Output a single numerical value between 0 and 2 inclusive, corresponding to the associated relation.

Table 11: Prompt variations for Exp. 1 - CxNLI and Exp. 2 - CxNLI-Distinction
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Prompt Type Accuracy
GPT-3.5 GPT-4o

Variation 1 0.74 0.95
Variation 2 0.79 0.92
Variation 3 0.76 0.94
Variation 4 0.74 0.93

" Best Variation Rephrase 1~ 0.79 095
Best Variation Rephrase 2 0.67 0.95

Best Variation Rephrase 3 0.69 0.96

Table 12: Prompt Variation Results for Exp. 1 - CxNLI
in the three-shot setting.

Prompt Type Accuracy
GPT-3.5 GPT-4o
Variation 1 0.24 0.53
Variation 2 0.28 0.46
Variation 3 0.31 0.57
Variation 4 0.26 0.54
Best Variation Rephrase 1 0.31 0.57
Best Variation Rephrase 2 0.26 0.55
Best Variation Rephrase 3 0.23 0.54

Table 13: Prompt Variation Results for Exp. 2 CxNLI-
Distinction in the three-shot setting.

Setting IC Accuracy
Data
GPT-3.5 GPT-4o

Zero-shot  None 0.60 0.89
One-shot CxNLI  0.66 0.89
Three-shot CxNLI 0.71 0.92
One-shot SNLI 0.63 0.89
Three-shot SNLI 0.66 091

Table 14: Results for Exp. 1 - Cxn NLI with Chain-of-
Thought, "IC Data" refers to the type of data used as
in-context examples.

Setting IC Data Accuracy
GPT-3.5 GPT-4o
Zero-shot None 0.29 0.43
One-shot  CxNLI 0.29 0.43
Three-shot  CxNLI 0.35 0.46
One-shot SNLI 0.28 0.43
Three-shot SNLI 0.31 0.45

Table 15: Results for Exp. 2 with the CxNLI-Distinction
data as the test and Chain-of-Thought, "IC Data" refers
to the type of data used as in-context examples.
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