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Abstract

Audio Large Language Models (AudioLLMs)
have achieved strong results in semantic tasks
like speech recognition and translation, but re-
main limited in modeling paralinguistic cues
such as emotion. Existing approaches often
treat emotion understanding as a classifica-
tion problem, offering little insight into the
underlying rationale behind predictions. In this
work, we explore emotion reasoning, a strat-
egy that leverages the generative capabilities of
AudioLLMs to enhance emotion recognition
by producing semantically aligned, evidence-
grounded explanations. To support this in
multitask AudioLLMs, we introduce a unified
framework combining reasoning-augmented
data supervision, dual-encoder architecture,
and task-alternating training. This approach
enables AudioLLMs to effectively learn differ-
ent tasks while incorporating emotional reason-
ing. Experiments on IEMOCAP and MELD
show that our approach not only improves emo-
tion prediction accuracy but also enhances the
coherence and evidential grounding of the gen-
erated responses. Experiments on two out-of-
domain datasets demonstrate the generalization
capabilities of the resulting model.

1 Introduction

Recent advancements in Audio Large Language
Models (AudioLLMs) (MERaLiON Team, 2024;
Tang et al., 2024; Chu et al., 2023; Hu et al., 2023;
Das et al., 2024; D’efossez et al., 2024) have driven
significant progress in spoken language understand-
ing, particularly for tasks focused on semantic con-
tent such as automatic speech recognition (ASR),
speech translation (ST), and spoken question an-
swering (SQA). These models typically rely on
large-scale audio-text alignment to align spoken in-
puts with textual outputs (Ji et al., 2024; Held et al.,
2024). However, current AudioLLLMs are limited
in modeling paralinguistic information, such as
emotion, which is crucial for applications requiring

emotionally aware or empathetic machine behavior
(Wang et al., 2024a; Sakshi et al., 2025; Ao et al.,
2024).

Traditional emotion recognition approaches in
speech primarily focus on categorical classification
(e.g., predicting whether a speaker is angry or sad)
(Ma et al., 2024; Fu et al., 2025; Zhao et al., 2025).
While effective for high-level emotion detection,
such methods offer little interpretability or reason-
ing about why an emotion is being expressed.

In this work, we leverage the generative capabil-
ities of AudioLLMSs to incorporate reasoning (Ma
et al., 2025; Xie et al., 2025) as a means to improve
emotion recognition. Rather than treating emotion
understanding as a purely discriminative task, we
guide models to generate grounded, semantically
aligned explanations that reflect both what is said
(semantic content) and how it is said (paralinguistic
cues). We categorize emotion recognition outputs
into three types in Figure 1: (1) Label Only: direct
classification (e.g. “The speaker is feeling angry”),
with no explanation or grounding; (2) Interpretive
Reasoning: explanation via paraphrased intent or
inferred state (e.g. expressing frustration due to
repeated failure); (3) Evidence-Grounded Rea-
soning: the most desirable form, which combines
emotion labels with quoted utterances (e.g. “I'm
not starting over again”) and interprets them to
justify the emotional state.

To this end, we propose a new multitask Au-
dioLLM framework with multi-faceted strategies
across data, architecture, and training. To guide
the model’s generative capabilities, we construct
reasoning-augmented supervision signals from
transcript-aligned data, allowing the model to learn
to produce emotion explanations grounded in both
linguistic and paralinguistic evidence. Our model
architecture employs a dual-encoder design that
disentangles semantic and emotional representa-
tions. We also propose a task-alternating training
strategy that separately optimizes the semantic and
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[Audio]

I'm not starting over again.
No. I have done this five times. |
am not starting over again.

[Text instruction]

What emotions do you detect in
the speaker's voice?

Evidence-Grounded Reasoning

The speaker is clearly angry. Their statement, "I'm not
starting over again" coupled with the phrase "No. | have
done this five times" suggests a strong sense of frustration
and resentment.

Interpretive Reasoning

The speaker is expressing anger and unwillingness to

repeat a task they've already done multiple times. They

N

N
=

AudiolLLM

A

are adamant about not starting over again.

The speaker is feeling angry.

Figure 1: Overview: Our proposed method leverages the generative capabilities of AudioLLM to go beyond
classification, producing emotion labels alongside grounded, transcript-informed explanations that reflect the

semantic and paralinguistic content of the input speech.

emotion encoders on their respective objectives,
aiming to balance performance across tasks. Our
framework is evaluated on benchmark datasets for
emotion and sentiment recognition, namely IEMO-
CAP (Busso et al., 2008) and MELD (Poria et al.,
2019), as well as ASR and SQA tasks. In summary,
our main contributions are:

* We propose a reasoning-augmented approach
for speech emotion recognition, enabling Au-
dioLLMs to generate semantically aligned,
evidence-grounded explanations that enhance
both interpretability and prediction accuracy.

* We introduce a unified framework with multi-
faceted strategies in data construction (rea-
soning target creation), architecture (dual-
encoder design), and training (task-alternating
training) for multitask AudioLLMs.

* We conduct comprehensive experiments,
showing that our approach effectively bal-
ances different task performances, improves
emotion predictions with minimal effects on
other tasks, and enables the coherence and
grounding of generated emotion reasoning.

2 Related Works

2.1 AudioLLMs

Multimodal large language models (LLMs), includ-
ing AudioLLMs (MERaLiON Team, 2024; Tang
et al., 2024; Chu et al., 2023; Deshmukh et al.,
2023; Hu et al., 2023; Das et al., 2024), commonly
adopt a modular architecture comprising three core
components: (1) a modality-specific encoder that
extracts features from non-textual inputs, (2) a pro-
jection or adapter module that maps these features
into a representation space compatible with the
LLM’s tokenizer, and (3) a pretrained LLM that

generates free-form text responses based on the
projected modality tokens and natural language
prompts. For instance, Qwen-Audio (Chu et al.,
2023) connects a Whisper-large-v2 (Radford et al.,
2023) speech encoder to the Qwen-7B (Bai et al.,
2023) language model. To capture richer audio
representations, several models employ dual en-
coders that separately model semantic and acoustic
information. SALMONN (Tang et al., 2024) inte-
grates Whisper-large-v2 and BEATs (Chen et al.,
2023) with Vicuna-13B (Chiang et al., 2023), while
WavLLM (Hu et al., 2023) utilizes Whisper-large-
v2 and WavLM-base (Chen et al., 2022), interfaced
with LLaMA-2-chat-7B (Touvron et al., 2023).

Distillation approaches use LLMs to generate
responses from speech transcriptions or metadata,
such as gender and emotion, to train AudioLLMs.
Kang et al. (2024) uses an LLLM to generate re-
sponses to expressive speech prompts, Wang et al.
(2024b) generate emotion-aware text continuations,
and Lu et al. (2024a,b) generate detailed captions
that reflect writing styles and tones.

Recent works explore enabling AudioLLMs to
reason. Audio-CoT (Ma et al., 2025) evaluates
training-free chain-of-thought prompting, which
requires AudioLLMs capable of general instruction
following. Audio-Reasoner (Xie et al., 2025) trains
with a structured reasoning framework consisting
of planning, captioning, reasoning and summariz-
ing steps. (Li et al., 2025a) argues that the complex
reasoning process in Audio-Reasoner may not be
necessary, and the best practice remains an open
research question.

2.2 Emotion recognition in AudioLLMs

Recent research in emotion recognition within Au-
dioLLMs has explored a variety of strategies to
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[Transcript]

Listen mom, just, sit down. | want

to talk to you. <speech_start>

[Transcript]
The speaker is feeling frustrated. <speech_end>
Given the paralinguistic

info: [Emotion Info]

[Prompt - Elaborate]

Following the paralinguistic info

given, describe the emotion, and —»
elaborate in natural language.

[Prompt]

P t-S i
[Promp ummarize] Speech-Conditioned

Summarize the speech and Prompting Format

emotion in natural language.

(=)~

[Text response to Prompt - Elaborate]

The speaker's tone likely conveys frustration
and a need for immediate attention. "Listen
mom": This phrase, while seemingly simple,
carries a demanding tone.

[Text response to Prompt - Summarize]

The speaker is frustrated and wants their
mother to sit down so they can talk.

Figure 2: Emotion reason extraction: We input the transcript, emotion label, and reasoning prompt into a speech-
conditioned prompting template to elicit grounded and semantically aligned emotion explanations from the LLM.
The Summarize prompt encourages interpretive reasoning based on the implied context, while the Elaborate prompt
encourages evidence-grounded reasoning based on explicit cues from the transcript. For more coarse-grained
sentiment reason extraction, replace the word "emotion" with "sentiment (positive, negative, neutral)" in the

reasoning prompt.

enhance affective understanding from speech (Bel-
lver et al., 2024). These approaches leverage con-
versational context, paralinguistic cues, and ASR-
generated transcripts to improve recognition ac-
curacy. For instance, Sun et al. (2024) employs
ASR and LLMs in a cascaded pipeline to tran-
scribe and analyze emotional content, though such
pipelines are susceptible to error propagation. SE-
Cap (Xu et al., 2024) adopts contrastive and mu-
tual information learning to disentangle seman-
tic and emotional representations in speech. Fu
et al. (2025) model speaker traits by prompting
LLMs to infer emotional states based on listener
responses. C2SER (Zhao et al., 2025) combines
Whisper and Emotion2Vec encoders with Chain-of-
Thought prompting to inject contextual reasoning
into emotion classification. SpeechCueLLM (Wu
et al., 2024) introduces descriptive cues, such as
volume, pitch and speaking rate, into prompts to
enrich LLM inputs with prosodic information. (Li
et al., 2024) improves emotion recognition on ASR
transcripts by revising transcription errors.

In contrast to prior works, which focus primar-
ily on improving emotion classification accuracy
through architectural or input-level enhancements,
our approach shifts the paradigm toward emotion
reasoning. Rather than outputting a single emo-
tion label, we leverage the generative capabilities
of AudioLLMs to produce semantically coherent,
evidence-grounded explanations.

2.3 Traditional and Deep Learning
Approaches to Emotion Recognition

Research on speech emotion recognition are
grounded in the analysis of acoustic—prosodic

cues such as pitch, energy, and spectral dynam-
ics as indicators of affective state (Scherer, 2003;
Ververidis and Kotropoulos, 2006). The field es-
tablished standardized low-level descriptors with
the Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) to promote reproducibility and inter-
pretability in affective computing (Eyben et al.,
2015). With the advent of deep learning, convolu-
tional and recurrent architectures supplanted tra-
ditional classifiers, learning hierarchical temporal
and spectral representations directly from audio
(Trigeorgis et al., 2016; Neumann and Vu, 2017;
Zhang et al., 2018). Transformer-based and self-
supervised speech models have since advanced
the state of the art (Pepino et al., 2021; Wagner
et al., 2023; Mai et al., 2024). Despite substantial
progress, the community continues to emphasize
the tension between the growing predictive power
of emerging AudioLLMs and the ongoing need to
understand how acoustic features and learned rep-
resentations encode affective information, a chal-
lenge that also motivates our work.

3 Proposed Method

We propose a dual-encoder multitask AudioLLM
framework that jointly models speech content and
emotional reasoning. Our architecture integrates a
general-purpose speech encoder and a specialized
emotion-centric encoder, which are then connected
to a large language model (LLM). To facilitate rich
supervision, we introduce reasoning-augmented
training targets derived from speech transcripts
and emotion labels. Additionally, we adopt a task-
alternating training strategy to ensure modular spe-
cialization and effective fusion of complementary
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Figure 3: Dual-encoder feature fusion and task-alternating training: We combine features from a general-purpose
speech encoder and an emotion-centric encoder. Each encoder and its adapter are trained by alternating between
speech-centric and emotion-centric tasks, enabling effective multitask learning with disentagled representations.

features.

3.1 Emotion reason extraction

We introduce reasoning-augmented training tar-
gets that pair discrete emotion labels with natural
language explanations. These explanations are de-
rived through a prompting-based generation pro-
cedure, shown in Figure 2. Specifically, we con-
struct a speech-conditioned prompting format that
inputs the transcript, its associated emotion label,
and a reasoning prompt into an LLM. We employ
two distinct prompting strategies: the Summarize
prompt encourages interpretive reasoning based
on the broader implied context, while the Elabo-
rate prompt guides the LLM to produce evidence-
grounded justifications based on explicit cues from
the transcript. The resulting explanations serve as
supervision signals that teach the AudioLLM to
associate emotional categories with meaningful lin-
guistic and contextual cues, such that the resulting
AudioLLM attains more interpretable and context-
sensitive emotion understanding.

Using the generated targets, we construct
question-answering training data by sampling ques-
tions from a curated pool designed to probe emo-
tional understanding. These questions focus on
the speaker’s affective state and examples include:
"How would you interpret the speaker’s emotional
state from their speech?", "What emotions do you
think the speaker is expressing?", and "How would
you describe the tone of the speaker’s voice?"
We apply a similar approach when querying for
coarser-grained sentiment, using broader questions
that elicit the speaker’s overall positive, negative,
or neutral disposition.

3.2 Dual-encoder feature fusion

The multitask AudioLL.M framework we utilize
consists of: (1) a dual-encoder architecture com-
prising a general-purpose speech encoder Egpeech
and an emotion-centric encoder Femotion, €ach de-
signed to capture distinct aspects of the audio in-
put; (2) a pair of lightweight adapter modules that
project the encoder outputs into a shared latent
space; and (3) a pretrained LLM that consumes
the fused representation to generate free-form text
outputs. The emotion-centric encoder serves to
enhance emotion understanding and reasoning ca-
pabilities by introducing inductive biases specific
to affective cues. An overview of the dual-encoder
framework is shown in Figure 3.

We denote the dataset as (A, 7,)), where A
is the set of input audio signals, T is the set of
corresponding text instructions, and ) is the set of
output text responses. Given an audio input a; € A
for the ¢-th training sample, we extract two types
of audio embeddings: the speech encoder produces
z?pmh = Egpecch(a;), and the emotion-centric en-
coder produces zfmmio“ = Femotion(a;). We investi-
gated different choices of emotion-centric encoder
as described in Section 4 and fixed Whisper (Rad-
ford et al., 2023), a widely used model for auto-
matic speech recognition (ASR), as the speech en-
coder throughout our experiments. The utterances
are zero-padded to 30 seconds, and the encoder
embeddings have sequence length 1500. These
encoder embeddings are passed through adapter
modules to be reshaped and projected into a shared
latent space. The speech encoder embeddings
are transformed to have a sequence length of 100,
while the emotion encoder embeddings are trans-
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formed to have a shorter sequence length of 10,
emphasizing condensed emotion-specific represen-
tations as a complementary signal with minimal
redundancy. We follow MERaLiON-AudioLLM
(MERaLiON Team, 2024) in our implementation
of the adapter modules: we concatenate the en-
coder embeddings across multiple time steps to
reduce the sequence length, then pass the them
through a multilayer perceptron (MLP) with two
hidden layers and SiLLU activation. The resulting
audio token sequences are obtained as tokenf}z’_e“h
and token‘;TOtiO“. We concatenate these audio token
sequences across the sequence dimension:

token,, = tokenP**" &, tokeng™1".

Separately, we tokenize the text instruction ¢; €
T as token;, = tokenizer(¢;). The audio and text
tokens are then concatenated across the sequence
dimension:

token; = token,, @, tokeny,.

Finally, the concatenated tokens are fed into the
LLM to generate the target response:

7; = LLM(token;).

3.3 Task-alternating training

To ensure that each encoder specializes in its re-
spective task, we employ a task-alternating train-
ing strategy, as illustrated in Figure 3. Specifi-
cally, the speech encoder and its adapter are trained
on speech-centric tasks (e.g., spoken question an-
swering, automatic speech recognition), while the
emotion-centric encoder and its adapter are trained
on emotion-centric tasks (e.g., emotion recogni-
tion with explanation generation). In each train-
ing round, only the encoder corresponding to the
current task, its associated adapter, and the LLM
LoRA parameters are updated, while the other en-
coder and adapter remain frozen. This alternating
scheme enables disentangled yet complementary
learning of speech and emotion representations.
In the final epoch, we update all adapters and the
LLM LoRA parameters across all tasks to enhance
multimodal alignment.

4 Experiment Setup

4.1 Model implementation

We use Gemma-2-9B-IT (Gemma Team et al.,
2024) as the LLM for emotion reason extrac-
tion and in the AudioLLM framework. For each

encoder, we utilize the encoder module from
Whisper-Large-v3 (Radford et al., 2023), which
is a popular choice in existing AudioLLMs (Tang
et al., 2024; Chu et al., 2023; Hu et al., 2023; MER-
alLiON Team, 2024). For the emotion-centric en-
coder, we also experiment with other options such
as smaller-sized versions of Whisper, HuBERT
(Hsu et al., 2021) and Emotion2Vec (Ma et al.,
2024). For each adapter, we use a light-weight mul-
tilayer perceptron (MLP) with two hidden layers
and SiLU activation function as in MERaLiON-
AudioLLM (MERaLiON Team, 2024). We con-
duct multitask training with batch size 48 for 5
epochs on 8 H100 GPUs, using an AdamW opti-
mizer with 51 = 0.9 and 82 = 0.999 and a learn-
ing rate of 5x 10~°. The prompt template for LLM
input takes the form:

“<audio_start> {audio tokens} <au-
dio_end> {text instruction prompt}”

4.2 Datasets

We conduct training and evaluation on two widely
used benchmarks for emotion recognition (ER) and
sentiment recognition (SR): IEMOCAP (Busso
et al., 2008) and MELD (Poria et al., 2019). The
IEMOCAP dataset comprises dyadic conversations
between professional actors, where individual ut-
terances are annotated with one of ten categorical
emotion labels, namely anger, happiness, neutral,
sadness, disgust, fear, surprise, frustration, excited
and others. MELD is a multimodal dataset de-
rived from the TV show Friends, containing audio,
video, and text for multi-party conversations. In
MELD-ER, each utterance is labeled with one of
seven emotion classes, namely neutral, joy, disgust,
sadness, surprise, anger and fear. We also include
MELD-SR for sentiment recognition, where each
utterance is labeled as positive, negative, or neutral,
to evaluate the model’s ability to capture overall
sentiment polarity in spoken contexts.

For semantic tasks, we utilize the Spoken Ques-
tion Answering (SQA) tasks in MNSC (Wang et al.,
2025a), a corpus centered on Singlish, a Creole
language rooted in English. We select MNSC be-
cause the pre-trained encoders and LLM are un-
likely to have been exposed to its linguistic patterns
during training, reducing the risk of performance
bias from prior exposure. For further analysis in
Section 6, we experiment with additional SQA
tasks, such as Spoken-SQuAD (Lee et al., 2018)
and SLUE-P2-SQAS5 (Shon et al., 2023), and au-
tomatic speech recognition (ASR) tasks such as
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MNSC ASR (Wang et al., 2025a) and LibriSpeech
(Panayotov et al., 2015).

Further data details and statistics are provided
in the Appendix A.1.

4.3 Evaluation

We perform model evaluations on datasets in Sec-
tion 4.2 using AudioBench (Wang et al., 2024a)
and follow its train-test splits to prevent data con-
tamination. ASR tasks are evaluated with word
error rate (WER), and remaining ER, SR and SQA
tasks are evaluated using LLM-as-a-Judge frame-
work. Model outputs are assessed by Llama-3-70B-
Instruct (AI@Meta, 2024) based on given scoring
rubrics, and the scores are then normalized to 0-
100 scale where higher scores reflect better perfor-
mance.

For emotion and sentiment recognition, we fol-
lowed the style of questions employed in the Au-
diobench evaluation. The questions are phrased
to directly elicit the model’s identification or inter-
pretation of emotions expressed in speech. Rep-
resentative examples include: “What emotions do
you detect in the speaker’s voice?”, “How would
you interpret the speaker’s emotional state from
their speech?”, and “Based on the speaker’s speech
patterns, what do you think they are feeling?” We
grade each emotion prediction on a binary scale,
where a score of 1 indicates semantic alignment
with the ground-truth label. Since AudioL.LMs
generate open-ended responses, traditional metrics
such as exact match may be insufficient. The LLM-
as-a-Judge approach allows us to assess the factual
correctness and relevance of model outputs in a
more flexible manner. We analyze the evaluation
approach in Section 7.

We extend the LL.M-as-a-Judge framework to
evaluate the model’s evidence-grounded emotion
reasoning quality. We extract direct quotes made
in the model predictions and assess them using
two key metrics: Groundedness Score and Rel-
evance Score. Groundedness assesses how well
the model’s extracted quotes align with the ground
truth transcript, that is, whether they are directly
quoted, faithfully paraphrased, or hallucinated.
Relevance measures how effectively the extracted
quotes support the annotated emotion label. For
each prediction, we provide the Llama-3-70B-
Instruct model judge with the ground-truth emotion
label, speech transcript and extracted quotes, and
instruct it to assign a score from 0O to 2 for each
criterion based on a given structured scoring rubric.

Training Targets IEMOCAP MELD-ER MELD-SR Avg

Label Only (Original) 18.6 479 48.1 38.2
Interpretive Reasoning 60.8 52.6 60.1 57.8
Evidence-Grounded Reasoning 58.6 54.1 61.6 58.1

Table 1: Emotion and sentiment recognition perfor-
mance of AudioLLM (with Whisper-Large-v3 encoder)
trained on different supervision targets. Training with
reasoning-augmented targets yields substantial perfor-
mance improvements.

t t

Semantic Features Emotion Features

t t
Speech Emotion-Centric
Encoder Encoder

i f

T
alj Audio

Figure 4: Strategies for feature fusion: We explore (a)
fusion along the feature dimension, where features from
both encoders are concatenated channel-wise, and (b)
fusion along the sequence dimension, where features
are concatenated token-wise across time steps.

This evaluation captures both factual alignment
and emotional interpretability of the model’s out-
put. The evaluation prompt used is provided in the
Appendix A.4.

5 Results

5.1 Effectiveness of reasoning-augmented
training targets

We evaluate the impact of different supervision
targets on emotion and sentiment recognition per-
formance using a baseline AudioLLM equipped
with a single Whisper-Large-v3 encoder. From
results in Table 1, we observe that models trained
with reasoning-augmented targets comprising both
emotion labels and natural language explanations
consistently outperform those trained with label-
only supervision, with almost 20% improvement
on average. This indicates that the inclusion of
semantically rich and explanatory targets not only
enhances interpretability but also leads to substan-
tial gains in recognition capabilities, highlighting
the effectiveness of grounding predictions in con-
textual reasoning. We provide examples of the
different model predictions in Appendix A.3.
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Concat Dim  Training ER/SR SQA
IEMOCAP MELD- MELD- Avg Part 3 Part 4 Part 5 Part 6 Avg Overall

ER SR Avg

None Joint 43.1 51.9 61.9 523 49.4 48.4 57.6 62.4 54.5 535
S Joint ¢ 404 515 626 515 412 506 586 638 551 535

Feature Alt 1 epoch 53.7 54.6 62.0 56.8 49.2 50.0 56.4 63.0 54.7 55.6

Alt 4 epochs 48.5 52.8 61.4 54.2 42.4 40.4 57.0 62.4 50.6 52.1
S Joint 441 488 581 503 328 308 402 476 379 432

Sequence Alt 1 epoch 56.6 52.4 60.7 56.6 48.0 50.6 59.2 63.4 55.3 55.8

Alt 4 epochs 55.1 52.0 61.5 56.2 52.4 49.4 57.6 64.4 56.0 56.1

Table 2: Performance comparison of different methods for dual-encoder feature fusion and multitask training.
Concat Dim "None" indicates the single-encoder baseline. "Joint" indicates that all tasks are trained together on
all sets of encoder + adapter for 5 epochs. "Alt x epoch(s)" refers to alternating training of speech-centric and
emotion-centric tasks on their respective encoder + adapter every x epoch(s), up to 4 epochs of data, then training

all tasks on all adapters at the final epoch.

Training PL Encoder ER/SR SQA
IEMOCAP MELD- MELD- Avg Part 3 Part 4 Part 5 Part 6 Avg Overall
ER SR Avg
Whisper-Large (637M) 56.6 52.4 60.7 56.6 48.0 50.6 59.2 63.4 55.3 55.8
Whisper-Small (88M) 56.8 52.5 60.6 56.6 50.8 50.4 58.6 61.4 55.3 55.9
Alt 1 Whisper-Tiny (8M) 46.2 49.3 53.1 49.5 25.8 23.8 27.0 32.0 27.2 36.7
epoch HuBERT-XL (962M) 51.3 46.1 51.9 49.8 26.8 23.6 27.0 28.6 26.5 36.5
Emotion2Vec+ Large (164M) 57.1 50.0 56.6 54.6 28.2 224 28.2 323 27.8 39.3
Emotion2Vec+ base (93M) 63.5 459 55.0 54.8 24.6 24.2 29.4 29.6 27.0 38.9
T Whisper-Large (637M) 551 520 6L5 562 524 494 576 ¢ 644 560 561
Whisper-Small (88M) 55.3 52.6 61.6 56.5 48.6 49.2 61.4 61.8 55.3 55.8
Alt4 Whisper-Tiny (8M) 50.3 52.7 59.7 54.2 47.8 47.0 58.0 62.2 53.8 54.0
epochs  HuBERT-XL (962M) 44.0 49.3 59.0 50.8 49.6 47.8 59.0 62.2 54.7 53.0
Emotion2Vec+ Large (164M) 63.8 53.0 61.1 59.3 49.2 51.2 59.0 62.8 55.6 57.2
Emotion2Vec+ base (93M) 56.3 52.0 60.4 56.2 46.2 45.8 54.4 61.0 51.9 53.7

Table 3: Performance comparison of different choices of emotion-centric encoder in the dual-encoder architecture.
"Alt x epoch(s)" refers to alternating training of speech-centric and emotion-centric tasks on their respective
encoder + adapter every x epoch(s), up to 4 epochs of data, then training all tasks on all adapters at the final epoch.

5.2 Effectiveness of dual-encoder feature
fusion and training

Besides IEMOCAP and MELD, we train and eval-
uate on MNSC SQA Part 3-6 to assess the effects
of our proposed method on non-emotion-centric
tasks. Table 2 presents a systematic comparison of
key design choices, including model architecture,
feature fusion strategies, and task-alternating train-
ing. We use Whisper-Large-v3 for both encoders
in the dual-encoder architectures. We observe that

1. Dual-encoder architectures can outperform
single-encoder baselines, suggesting that in-
corporating complementary representations
enhances overall performance;

2. Concatenation along the sequence dimension
yields slightly better results than concatena-
tion along the feature dimension, likely due
to better preservation of temporal structure.
In the latter, both speech and emotion em-
beddings are reshaped to length 100, concate-
nated along the feature dimension, and then
passed through a single adapter module. The
two types of concatenation are illustrated in

Figure 4;

3. Task-alternating training leads to improved
performance, particularly for emotion and
sentiment recognition, compared to joint mul-
titask training.

In Table 3, we further compare multitask perfor-
mance across different choices of emotion-centric
encoders. We adopt a dual-encoder architecture
with features concatenated along the sequence di-
mension, and apply task-alternating training. Our
observations include:

1. Each round of task-specific training must
be sufficiently long to ensure model conver-
gence;

2. Encoder selection has a notable impact on per-
formance. Specifically, Emotion2Vec+ Large,
which is pre-trained for emotion recognition,
provides more relevant features for emotion-
centric tasks, leading to improved emotion-
centric and overall performance.

We set up training such that the proposed dual-
encoder AudioLLM and the vanilla single-encoder
AudioLLM are both trained on the amount of data
i.e. 5 epochs on the training dataset. The addi-
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Scores IEMOCAP MELD-ER MELD-SR Avg

Quotation 73.8 49.2 49.6 57.5
Groundedness 90.6 79.2 78.5 82.8
Relevance 71.9 60.0 64.1 65.3

Table 4: Evaluation of evidence-grounded reasoning.
Quotation Score measures the percentage of predictions
containing at least one extractable quote. Groundedness
and Relevance scores (0-100 scale) assess alignment
with the transcript and support for the ground-truth
emotion label, respectively.

tional encoder constitutes only a relatively small
portion of the overall architecture. For instance,
the encoder module of Whisper-large has 637M
parameters, the additional encoder module of Emo-
tion2Vec+ Large has 164M parameters, and the
Gemma-2-9B-IT LLM has 9.24B parameters. In
practice, the single-encoder AudioLLM achieves
a throughput of approximately 1.35 samples/s on
a single NVIDIA H100 GPU, whereas the dual-
encoder variant runs at approximately 1.26 sam-
ples/s.

5.3 Quality of emotion reasoning responses

Table 4 presents the evaluation of evidence-
grounded reasoning in the responses generated by
our AudioLLM. Across all evaluated datasets, over
49% of the model’s responses explicitly include
direct quotes from the speech content, serving as
supporting evidence for reasoning or interpretation.
The model achieves high groundedness scores, av-
eraging 82.8%, indicating that most quotes are
faithful to the original speech transcript. Relevance
scores average 65.3%, suggesting that the majority
of quotes meaningfully support the ground-truth
emotion label, though there remains room for im-
provement, particularly on the MELD dataset.

5.4 Comparison with other models

We compare the emotion and sentiment recog-
nition performance with end-to-end AudioLLMs
evaluated in AudioBench: WavLLM (Hu et al.,
2023), Qwen2-Audio-7B-Instruct (Chu et al.,
2024), Phi-4-Multimodal-Instruct (Abouelenin
et al., 2025), MERaLiON-AudioLLM (MER-
aLLiON Team, 2024), Qwen-Audio-Chat (Chu et al.,
2023), SALMONN (Tang et al., 2024), R1-AQA
(Li et al., 2025b) and Audio-Reasoner (Xie et al.,
2025). R1-AQA is trained with reinforcement
learning for improved thinking capabilities, and
Audio-Reasoner is trained for planning and reason-
ing. We also compare with cascaded models that
process speech in sequential stages by converting

Model IEMOCAP MELD-ER MELD-SR Avg
Audio-Reasoner 51.0 55.9 54.5 53.8
WavLLM 59.8 41.6 51.1 50.8
Qwen2-Audio 54.0 41.6 53.9 49.8
Cascade: Whisper+SEA-LION 443 474 56.6 494
RI1-AQA 57.2 42.8 40.7 46.9
Phi-4-Multimodal 41.0 435 51.6 45.4
MERaLiON 48.5 36.4 46.2 437
Cascade: Whisper+Llama3 46.7 36.8 45.6 43.0
Qwen-Audio 29.4 50.7 449 41.7
SALMONN 23.8 30.5 41.8 32.0
‘AudioLLM-Reasoning € 638 530 611 593

Table 5: Emotion and sentiment recognition perfor-
mance of end-to-end AudioLLMs and cascaded models.

Model M3ED CPQA-ER Avg
Audio-Reasoner 45.2 48.5 46.9
Emotion2Vec+ Large  47.9 379 429
RI-AQA 38.4 43.1 40.8

AudioLLM-Reasoning  48.6 49.0 48.8

Table 6: Emotion recognition performance on out-of-
domain datasets.

audio to text using an automatic speech recognition
module before feeding the transcript into a large
language model: Whisper-Large-v2 with SEA-
LIONv3 (Ng et al., 2025), and Whisper-Large-
v3 with Llama-3-8B-Instruct (Al@Meta, 2024).
From Table 5, our proposed AudioLLM-Reasoning
achieves the best performance for IEMOCAP,
MELD-SR and overall.

5.5 Generalization to out-of-domain datasets

We evaluate the generalizability of the proposed
model on two out-of-domain emotion recogni-
tion datasets not seen at training: M3ED (Zhao
et al., 2022) and CPQA (Wang et al., 2025b).
M3ED contains utterances from Mandarin Chi-
nese TV series. CPQA is a contexual paralinguis-
tic question-answering dataset constructed using
speech data collected from top Singapore YouTube
channels; we use only the emotion recognition
set for our evaluation. Both datasets are anno-
tated for seven emotion classes, namely neutral,
happy, disgust, sad, surprise, anger and fear. We
compare our model with emotion classifier Emo-
tion2Vec+ Large, R1-AQA which is trained with
reinforcement learning for improved thinking ca-
pabilities, and Audio-Reasoner which is trained
for planning and reasoning. From Table 6, our
proposed AudioLL.M-Reasoning achieves the best
performance on both M3ED and CPQA-ER. Addi-
tional class-wise comparisons with Emotion2Vec+
Large are in Appendix A.2.
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Model ER/SR (1) SQA (1) ASR (])
Base AudioLLM 44.1 56.0 19.5
+ Emotion Supervision 56.4 54.1 19.6

(a) Base AudioLLM trained on MNSC SQA Part 3-6 and
MNSC ASR Part 3-6.

Model ER/SR (1) SQA (1) ASR(])
Base AudioLLM 35.6 80.3 3.8
+ Emotion Supervision 58.0 79.0 3.6

(b) Base AudioLLM trained on Spoken-SQuAD and SLUE
for SQA, and LibriSpeech Clean and Other splits for ASR.

Table 7: Effect of adding emotion supervision on a
trained base AudioLLM. Adding emotion supervision
improves emotion understanding with slight compro-
mise on the performance of other tasks

6 Further Analysis

We further investigate whether emotion under-
standing capabilities can be introduced into a
model that was not originally trained for these
tasks. Starting from a base AudioLLM without any
emotion-specific supervision, we explore adding
an emotion-centric encoder to the architecture. We
train the emotion-centric encoder Emotion2Vec+
Large, adapter and LLM LoRA on emotion-centric
tasks, then finetune the adapters and LLM LoRA
on all tasks.

Table 7 presents the effect of incorporating emo-
tion supervision into a base AudioLLM trained on
different upstream tasks. Across both training con-
figurations, we observe substantial gains in emo-
tion and sentiment recognition, with improvements
of +12.3 and +22.4 points, respectively. This en-
hancement in emotional understanding comes with
a slight degradation in the model’s performance
on the original tasks. For instance, SQA perfor-
mance remains comparable, and ASR performance
is largely preserved or slightly improved. These
results highlight that emotional capabilities can
be effectively injected into a multimodal model
without sacrificing its existing competencies.

7 Assessment of LLLM-as-a-Judge metric

We adopt the LLM-as-a-Judge metric for evalua-
tion as the AudioLL.Ms can generate open-ended
and expressive outputs. Traditional metrics rely-
ing on exact string matching are insufficient in this
context. We identify three main cases where tradi-
tional metrics can fail to capture the true quality of
model responses: 1. the model uses semantically
equivalent but lexically different expressions to de-

scribe emotions; 2. the model output includes mul-
tiple plausible or related emotional states; and 3.
the predicted labels fall into semantically overlap-
ping categories (e.g., excited vs. happy, or anger
vs. frustration). Outside of these special cases,
the LLM-as-a-Judge metric effectively reduces to
an accuracy-like measure, where the model’s pre-
diction is compared against a reference by string
matching.

Out of the 858 test samples in [IEMOCAP, 27.6%
of the AudioLLM-Reasoning emotion predictions
fall into the special cases. Out of the 2610 test
samples in MELD-ER, 6% of the AudioLLM-
Reasoning emotion predictions fall into the special
cases. To better understand the characteristics of
the LLM-as-a-Judge metric, we randomly selected
50 special-case samples each from the IEMOCAP
and MELD-ER datasets to be assessed by 4 human
evaluators. The evaluators are provided with the
audio clips, references and model’s answers, and
are instructed to rate the model’s answers based
on their alignment with the audio clips and refer-
ences. For both [IEMOCAP and MELD-ER, only
2% of the selected samples are scored as correct by
the LLM judge but scored as wrong by the human
evaluators. In contrast, 16% of the IEMOCAP se-
lected samples and 30% of the MELD-ER selected
samples are scored as wrong by the LLM judge but
scored as correct by the human evaluators, suggest-
ing that the LLM judge tends to be more conserva-
tive or strict in its assessments compared to human
evaluators.

8 Conclusion

In this work, we propose a unified framework
that brings emotion reasoning into multitask Au-
dioLLMs, combining dual encoders, reasoning-
augmented supervision, and task-alternating train-
ing. Our method improves emotion and senti-
ment recognition and enables the generation of
evidence-grounded explanations, as demonstrated
on IEMOCAP and MELD benchmark datasts. This
work highlights the potential of generative Au-
dioLLMs for more interpretable and emotionally
aware speech understanding.

9 Limitations

While our framework significantly improves both
emotion recognition and explanation capabilities
in AudioLLMs, several limitations remain. The
current benchmarks for emotional reasoning are
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limited in diversity and scale, highlighting the need
for more comprehensive evaluation datasets that
capture a wider range of emotional expressions
and contextual richness. The explanation genera-
tion quality can vary across emotions and speaker
styles, especially for subtle or ambiguous affective
states. Moreover, the quality of extracted emotion
reasoning is dependent on the capabilities of the
teacher LLM, which may introduce biases or inac-
curacies in supervision. Using weaker or stronger
teacher models is expected to affect the quality
of the extracted reasoning targets. In this work,
however, we set both the teacher LLM and the stu-
dent LLM initialized within the AudioLLM frame-
work to be Gemma-2-9B-IT. This design choice
was made to avoid introducing additional biases
from an external teacher and to ensure that our
evaluation isolates the contribution of reasoning
supervision itself.

10 Ethics Statement

All datasets used in our study, including IEMO-
CAP and MELD, are publicly available and widely
used in the research community. However, we em-
phasize that caution is necessary when deploying
emotion-aware Al systems in real-world or sen-
sitive contexts, as misinterpretation of emotional
cues may lead to unintended consequences. En-
suring transparency, user consent, and appropriate
safeguards is critical when applying these technolo-
gies beyond academic settings.
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A Experiment Details

A.1 Datasets

We conduct training and evaluation on two widely
used benchmarks for emotion recognition (ER) and
sentiment recognition (SR): IEMOCAP (Busso
et al., 2008) and MELD (Poria et al., 2019).
IEMOCAP is made available under a custom non-
commercial research license, and MELD is dis-
tributed under the GNU General Public License
v3.0 (GPL-3.0). Since IEMOCAP lacks a prede-
fined train-test split, we adopt the 90-10 split de-
fined in AudioBench (Wang et al., 2024a), with
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9035 training samples (anger: 1140, disgust: 2, ex-
cited: 1816, fear: 98, frustration: 2608, happiness:
588, neutral: 1539, other: 23, sad: 1120, surprise:
101) and 1004 test samples (anger: 129, disgust: 0,
excited: 160, fear: 9, frustration: 309, happiness:
68, neutral: 187, other: 3, sad: 130, surprise: 9).
MELD has 9988 training samples (anger: 1109,
disgust: 271, fear: 268, joy: 1743, neutral: 4709,
sad: 683, surprise: 1205) and 2610 test samples
(anger: 345, disgust: 68, fear: 50, joy: 402, neutral:
1256, sadness: 208, surprise: 281).

For semantic tasks, we utilize the Multitask
National Speech Corpus (MNSC) (Wang et al.,
2025a), specifically SQA Part 3-6 and ASR Part 3-
6, released under the Singapore Open Data License.
We also use Spoken-SQuAD (Lee et al., 2018) re-
leased under CC-BY-SA-4.0 License, SLUE-P2-
SQAS5 (Shon et al., 2023) which is a collection
of datasets released under CC-BY-SA-4.0 License
and Apache License 2.0, and LibriSpeech (Panay-
otov et al., 2015) released under CC-BY-4.0 Li-
cense.

All experiments in this work respect the respec-
tive licenses and usage terms of the datasets.

A.2 Comparison with Emotion2Vec+

We compare the performance of AudioLLM with
emotion classifier Emotion2Vec+ Large. For the in-
domain dataset MELD-ER in Table 8, AudioLLM
trained with reasoning-augmented targets achieves
the highest weighted average score (53.0%), out-
performing both the label-only variant (47.1%) and
Emotion2Vec+ Large (44.7%). As the AudioLLMs
are trained on a limited set of emotion datasets (i.e.
IEMOCAP and MELD), they tend to fit to the train-
ing label distribution. In contrast, Emotion2Vec+
Large is trained on five emotion datasets.

The performance on the out-of-domain dataset
CPQA-ER in Table 9 is affected less by the training
label distribution. AudioLLM-Reasoning outper-
forms Emotion2Vec+ Large classifier on 6 out of
7 classes, and significantly outperforms the clas-
sifer on both the unweighted average score (45.3%
vs. 36.0%) and the weighted average score (49.7%
vs. 38.3%). Moreover, the discriminative classifier
cannot readily extend beyond its label space. In
Table 9, 11 samples involving states such as frus-
tration, embarrassment, and mixture of emotions
are excluded. The vanilla AudioLLM trained with
label-only targets lacks generalization capabilities
and has severely degraded performances.

Class Num Emotion2Vec+ AudioLLM - AudioLLM -
Samples Large Label Only  Reasoning
Neutral 1256 54.2 64.7 83.8
Joy 402 54.5 41.5 36.3
Disgust 68 0.0 8.8 13.2
Sadness 208 32.2 23.1 159
Surprise 281 38.8 28.8 26.0
Anger 345 26.1 32.2 31.3
Fear 50 2.0 6.0 8.0
Unwt Avg 2610 29.7 29.3 29.2
Wt Avg 2610 44.7 47.1 53.0

Table 8: In-domain comparison: Class-wise emotion
recognition performance comparison of Emotion2Vec+
Large classifier vs. AudioLLM (with Emotion2Vec+
Large emotion-centric encoder) trained on Label Only
or Reasoning targets on MELD-ER. The unweighted
average (Unwt Avg) treats all classes equally regardless
of sample size, while the weighted average (Wt Avg)
reflects the sample distribution by weighting each class
accordingly.

Class Num Emotion2Vec+ AudioLLM - AudioLLM -
Samples Large Label Only  Reasoning
Neutral 102 12.7 13.7 324
Joy 91 714 38.5 74.7
Disgust 30 13.3 10.0 20.0
Sadness 57 59.6 22.8 40.4
Surprise 54 31.5 1.9 333
Anger 83 43.4 28.9 78.3
Fear 50 20.0 4.0 38.0
Unwt Avg 467 36.0 17.1 453
Wt Avg 467 38.3 19.7 49.7

Table 9: Out-of-domain comparison: Class-wise emo-
tion recognition performance comparison of Emo-
tion2Vec+ Large classifier vs. AudioLLM (with Emo-
tion2Vec+ Large emotion-centric encoder) trained on
Label Only or Reasoning targets on CPQA-ER. 11 sam-
ples with ground-truth labels outside of the label space
of Emotion2Vec+ Large classifier have been excluded.

A.3 AudioLLM responses

We conduct a qualitative analysis of model pre-
dictions across different reasoning formats on the
IEMOCAP, MELD-ER and MELD-SR datasets.
Each example includes the transcript, ground-truth
label, and model-generated outputs under three su-
pervision types: label-only, interpretive reasoning,
and evidence-grounded reasoning. As shown in
Table 10, 11 and 12, label-only responses often fail
to capture the correct emotional nuance, defaulting
to neutral predictions even when the emotion is
apparent. In contrast, interpretive and evidence-
grounded reasoning better align with the ground
truth, offering richer justifications and improved
emotion recognition. Notably, evidence-grounded
reasoning demonstrates superior clarity by explic-
itly linking speech content and affective cues to the
predicted emotion.
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Example 1
Transcript:
Ground Truth Emotion Label: Neutral

Label Only: The speaker’s speech reflects a neutral state

Interpretive Reasoning: The speaker is asking if someone was an actor too, implying a shared experience or connection.
They seem neutral in their tone, neither excited nor disappointed.

Evidence-Grounded Reasoning: The speaker’s tone is neutral, suggesting they are neither expressing strong positive nor

negative emotions. They are simply seeking clarification or information. The phrase "Is he an actor too?" implies a previous
context where someone was identified as an actor. The speaker is now inquiring if another person also shares this profession.

Example 2
Transcript:
Ground Truth Emotion Label: Excited

Label Only: The speaker’s speech suggesting a neutral state.

Interpretive Reasoning: The speaker is laughing and reminiscing about someone’s face, implying a positive and humorous
memory. They express excitement and amusement.

Evidence-Grounded Reasoning: The speaker is clearly excited and perhaps a little bit nostalgic. Here’s why:

: This phrase suggests a strong memory, likely positive given the excited tone. Laughter: Laughter often
accompanies happy memories and a sense of lightheartedness. The speaker is reminiscing about someone and a specific
moment, and the excitement suggests that the memory is a pleasant one.

Example 3

Transcript:

Ground Truth Emotion Label: Frustration

| Label Only: The speaker’s speech suggesting a neutral state. |
Interpretive Reasoning: The speaker is frustrated and wants the listener to tell them something.

Evidence-Grounded Reasoning: The speaker is frustrated. They are likely feeling impatient, annoyed, or even angry
because they feel like something is not being done or explained properly. The phrase suggests a sense
of urgency and a demand for information.

Table 10: IEMOCAP: Qualitative comparison of emotion predictions. The first three samples in the evaluation
dataset are presented. Each example includes the transcript, ground-truth emotion label, and model predictions with
their inferred emotions. Emotion labels are in blue, and quotes from the speech content are in . Interpretive
and evidence-grounded reasoning better align with the ground truth, offering richer justifications and improved
emotion recognition.

A.4 Evaluation of emotion reasoning quality

We follow AudioBench’s LLM-as-a-Judge frame-
work to evaluate the model’s evidence-grounded
emotion reasoning quality. We extract direct quotes
made in the model predictions and assess them
using two key metrics: Groundedness Score and
Relevance Score. For each prediction, we provide
the Llama-3-70B-Instruct model judge with the
ground-truth emotion label, speech transcript and
extracted quotes, and instruct it to assign a score
from O to 2 for each criterion based on a given
structured scoring rubric. The scores are then nor-
malized to 0-100 scale. The evaluation prompt
used is shown in Figure 5.
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Evaluation Prompt Template

[Ground Truth Emotion]
{reference}

[Ground Truth Transcript]
{transcript}

[Extracted Quotes from Model Prediction]
{extracted_quotes}

[Evaluation Task]
Evaluate the extracted quotes using the following three criteria.

**Groundedness Scorexx

Assess whether the extracted quotes are grounded in the ground truth transcript.

Scoring Guide:

Score(0: The quotes do not appear in the ground truth transcript and are not
semantically aligned (i.e., hallucinated or generic).

Scorel: The quotes partially match the ground truth transcript. There may be
loose paraphrasing or selective grounding.

Score2: The quotes are clearly derived from the ground truth transcript, through
direct quotes or faithful paraphrases.

**Relevance Scorexx*

Assess whether the extracted quotes support the ground truth emotion label.

Scoring Guide:

Score(0: The quotes are irrelevant or inconsistent with the ground truth emotion.
They may even suggest a different emotion.

Scorel: The quotes are loosely related to the ground truth emotion but lack
clarity, specificity, or completeness.

Score2: The quotes clearly and directly support the ground truth emotion.

Respond with the following structured format:

Ground Truth Emotion: (string)

Ground Truth Transcript: (string)

Extracted Quotations from Model Prediction: (list of strings)
Groundedness Score: (int)

Relevance Score: (int)

Explanation: (string - justify the assigned scores)

Figure 5: Evaluation prompt used for assessing groundedness and relevance of extracted emotional evidence.
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Example 1

Transcript:

Ground Truth Emotion Label: Neutral
| Label 6;11}7 : The gp;aie;’ semotion seems neutral. ]

Interpretive Reasoning: The speaker is denying being in something, and they sound neutral about it.

Evidence-Grounded Reasoning: The speaker’s tone is neutral, indicating they are not experiencing any strong emotions.
They are simply stating a fact without any particular emphasis or feeling behind their words.

Example 2
Transcript:
Ground Truth Emotion Label: Anger

Label Only: The speaker’s emotion seems neutral.

Interpretive Reasoning: The speaker is expressing anger and frustration towards someone they perceive as a
likely someone who is unreliable or lets them down.

Evidence-Grounded Reasoning: The speaker’s tone is neutral, but the statement itself carries a strong implication. While
the speaker doesn’t express anger or disgust directly, the phrase suggests a negative judgment about the
person being referred to. It implies that this person is unreliable, perhaps someone who makes promises they don’t keep or
fails to deliver on expectations.

Example 3

Transcript:

Ground Truth Emotion Label: Joy

| Label E)I;l;: The ;p;aie;’ s sgegcﬂ reflects neutral. ]
Interpretive Reasoning: The speaker said The emotion conveyed is neutral.

Evidence-Grounded Reasoning: The speaker’s tone is neutral, indicating they are not experiencing any strong positive or
negative emotions. They are likely calm, composed, and objective in their state of mind.

Table 11: MELD-ER: Qualitative comparison of emotion predictions. The first three samples in the evaluation
dataset are presented. Each example includes the transcript, ground-truth emotion label, and model predictions with
their inferred emotions. Emotion labels are in blue, and quotes from the speech content are in . Interpretive
and evidence-grounded reasoning provide richer interpretation of speaker emotion by additionally making use of
the speech content.

1147



Example 1
Transcript:
Ground Truth Emotion Label: Neutral

Label Only: The speaker’s sentiment is neutral.

Interpretive Reasoning: The speaker is stating that they are not in a particular location or situation. They express this in a
neutral tone, indicating no strong feelings about the matter.

Evidence-Grounded Reasoning: The speaker’s tone is neutral, indicating they are not expressing strong positive or negative
emotions. They are simply stating a fact without any noticeable inflection or emphasis.

Example 2
Transcript:
Ground Truth Emotion Label: Negative

Label Only: The speaker’s sentiment is neutral, based on their speech.

Interpretive Reasoning: The speaker is expressing a negative sentiment towards someone they perceive as a

which likely implies a negative trait or action.

Evidence-Grounded Reasoning: The sentiment is negative. The speaker’s tone suggests disapproval or disgust towards the
person being referred to as a The word itself often carries a negative connotation, implying someone
who is unreliable, messy, or in some way undesirable.

Example 3
Transcript:
Ground Truth Emotion Label: Positive
| Label Only: The speaker’s sentiment is neutral, based on their speech. |
Interpretive Reasoning: The speaker said The sentiment is neutral.

Evidence-Grounded Reasoning: The sentiment is positive. The speaker’s enthusiastic conveys a strong sense of
agreement, excitement, or approval.

Table 12: MELD-SR: Qualitative comparison of sentiment predictions. The first three samples in the evaluation
dataset are presented. Each example includes the transcript, ground-truth sentiment label, and model predictions
with their inferred sentiments. Sentiment labels are in blue, and quotes from the speech content are in
Interpretive and evidence-grounded reasoning better align with the ground truth, offering richer justifications and
improved sentiment recognition.

1148



