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Abstract

Although behavioral studies have documented
numerical reasoning errors in large language
models (LLMs), the underlying representa-
tional mechanisms remain unclear. We hypoth-
esize that numerical attributes occupy shared
latent subspaces and investigate two questions:
(1) How do LLMs internally integrate multi-
ple numerical attributes of a single entity? (2)
How does irrelevant numerical context perturb
these representations and their downstream out-
puts? To address these questions, we combine
linear probing with partial correlation analy-
sis and prompt-based vulnerability tests across
models of varying sizes. Our results show
that LLMs encode real-world numerical cor-
relations but tend to systematically amplify
them. Moreover, irrelevant context induces
consistent shifts in magnitude representations,
with downstream effects that vary by model
size. These findings reveal a vulnerability in
LLM decision-making and lay the groundwork
for fairer, representation-aware control under
multi-attribute entanglement.

1 Introduction

Despite substantial advancements in large language
models (LLMs), their capacity to process numeri-
cal information remains fragile. Empirical research
has documented fundamental misordering, such as
the incorrect assertion that “9.11” is greater than
“9.9” (Xie, 2024), and degraded performance on
arithmetic word problems when extraneous num-
bers are present (Shi et al., 2023). Such errors
not only undermine reliability in routine arith-
metic (Gambardella et al., 2024) but also pose risks
in high-stakes domains like financial question an-
swering (Srivastava et al., 2024) and clinical deci-
sion support (Hager et al., 2024). These behaviors
have been cataloged, yet the internal mechanisms
causing numerical errors remain largely unclear.

*Equal Contribution

Mechanistic interpretability methods, principally
probing (Belinkov, 2022), are employed to eluci-
date the encoding of concepts within LLMs’ hidden
states (Bereska and Gavves, 2024). Previous work
shows that LLMs encode numerical attributes, such
as geographical coordinates or temporal data, in
linear and monotonic internal subspaces (Gurnee
and Tegmark, 2024). In particular, Partial Least
Squares (PLS; Wold et al., 2001) identifies inter-
nal subspaces most correlated with the numerical
labels, and the found space is demonstrated to be
used for numerical reasoning of comparisons (El-
Shangiti et al., 2025). The discovered subspaces are
also guaranteed to be causally meaningful as the in-
tervention can modulate the inference of LLMs (Li
et al., 2023; Zou et al., 2025).

However, Heinzerling and Inui (2024) reported
that intervention in the specific numerical attribute
spaces causes side effects on other attributes, indi-
cating that numerical concepts are entangled in the
hidden states. Given that LLMs exhibit shared rep-
resentations—clustering semantically similar con-
cept vectors (Zhao et al., 2025) and aligning across
languages and modalities (Wu et al., 2025)—we
hypothesize that multiple numerical attributes like-
wise occupy overlapping internal subspaces in
terms of the magnitude.

Such shared subspaces imply two key forms of
confounding that undermine both interpretability
and downstream reliability. First, probing a target
attribute (e.g., geographical entity’s population)
risks misattributing correlated numerical informa-
tion from related attributes (e.g., area). Second,
realistic prompts often embed multiple numeri-
cal values, including irrelevant distractors, which
may perturb internal representations and degrade
performance. A comprehensive analysis of these
cases is therefore essential: it will clarify how
inter-attribute entanglement arises within LLMs
and inform the design of probing methods and mit-
igation strategies that account for multi-attribute
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Property1 : Population
What is the population of San Diego?
Property2 : Area
What is the area of San Diego? 

Probing Attribute 1

Attribute 2

Latent Space

RQ1 (Section 3): How do LLMs internally integrate 
multiple numerical attributes of a single entity?

RQ2 (Section 4): How does the presence of irrelevant 
numerical values in prompts influence internal numerical 
representations and consequent model outputs?

. . . 
The population of Napa is 76915.
. . . 
What is the area of San Diego? 

Attribute 1 
w/  prompt

1. Multiple Attributes 2. Irrelevant Prompt

What is the area San Diego ?

・ ・ ・

964.5

Figure 1: Overview of our approach to analyzing internal representations in LLMs by addressing two research
questions (RQs): RQ1 examines how LLMs represent entities with multiple correlated numerical properties (e.g.,
San Diego’s population and area). RQ2 investigates how irrelevant numerical details in prompts influence these
internal representations.

interactions. Given these considerations and the
challenges posed by multi-attribute prompts, we
formulate the following research questions (RQs),
illustrated in Figure 1:

RQ1 How do LLMs internally integrate multiple
numerical attributes of a single entity?
RQ2 How does the presence of irrelevant numeri-
cal values in prompts influence internal numerical
representations and consequent model outputs?

Using extended correlation analyses tailored to
the RQs, we quantified the inter-attribute general-
ization of the PLS probing and obtained the fol-
lowing key insights.For RQ1, the internal represen-
tation associated with a given numerical attribute
often generalizes to predict magnitudes of other
related attributes. In some cases, the internal cor-
relations exceed those empirically observed in the
data. We also observe asymmetric interference
patterns, wherein certain dominant attributes ex-
ert disproportionate influence over others. These
results imply that numerical attributes that are pop-
ular within the same entity are stored as weights
in LLMs, but that the handling of numerical mag-
nitude is generalized across attributes. For RQ2,
LLMs are susceptible to interference from irrele-
vant numerical inputs, particularly smaller models,
where distractors significantly alter internal repre-
sentations and degrade output reliability. Larger
models can mitigate these perturbations through
more complex computations. Our findings confirm
shared numerical subspaces in LLM internal repre-
sentations, mechanistically explaining previously

observed vulnerabilities such as side effects in in-
tervention and context-induced numerical errors.
These analyses motivate refinements to both inter-
pretability methods and deployment practices in
numerically-sensitive applications.

We make our code publicly available at https:
//github.com/htkg/num_attrs.

2 Preliminaries

To quantitatively investigate our research questions
on the shared subspace hypothesis for numerical
attributes, we employ Partial Least Squares (PLS;
Wold et al., 2001), which simultaneously performs
linear prediction and dimensionality reduction, ef-
fectively identifying internal numerical attribute
representations (Heinzerling and Inui, 2024; El-
Shangiti et al., 2025). To evaluate inter-attribute
generalization, we use Spearman’s rank correlation,
which is robust to scale and offset differences. Ad-
ditionally, partial correlation analysis accounts for
inherent attribute correlations within entities.

Probing via PLS Regression Let h ∈ Z+ be
the hidden dimension of an LLM and xi ∈ Rh

be the hidden representation of the i-th sample,
i.e., the activation of a specific token at a given
layer of the LLM. Collect n samples into X =
[x1, . . . , xn]

⊤ ∈ Rn×h and Y = [y1, . . . , yn]
⊤ ∈

Rn. When h > n, direct regression leads to
overfit, necessitating regularization (Gurnee and
Tegmark, 2024) or dimension reduction (Heinzer-
ling and Inui, 2024). PLS regression (Wold et al.,
2001) addresses this by projecting X onto a low-

1099

https://github.com/htkg/num_attrs
https://github.com/htkg/num_attrs


dimensional space that maximizes covariance with
Y . In a rank-k model, PLS yields W ∈ Rh×k

to calculate the results of dimension reduction
Z = XW ∈ Rn×k and C ∈ Rk to predict
Ŷ = ZC ≈ Y , while reconstructing X ≈ ZP⊤

via P ∈ Rh×k. The model’s fitting and its good-
ness, measured by the R2 score, are calculated us-
ing the algorithm provided in the Scikit-learn (Pe-
dregosa et al., 2011).

Spearman’s (Partial) Rank Correlation To
evaluate agreement between predictions Ŷ and
true values Y , we employ Spearman correlation
r(Ŷ , Y ). When Z confounds Ŷ and Y , partial
correlation (Kim, 2015) is calculated as follows:

r(Ŷ , Y |Z) =
r(Ŷ , Y )− r(Ŷ , Z) r(Y, Z)√
(1− r(Ŷ , Z)2)(1− r(Y,Z)2)

.

This matches the original correlation r(Ŷ , Y ) if Y
and Ŷ are independent of Z, while their correlation
reduces the value. All reported correlations are
either Spearman’s rank or partial rank correlation,
computed via scientific libraries (Virtanen et al.,
2020; Vallat, 2018).

3 RQ1: Representation of Entities with
Multiple Numeric Attributes

This section investigates how LLMs encode the
naturally correlated numeric attributes of entities.
To address RQ1, we particularly focus on:

Preservation: To what extent do LLM represen-
tations preserve the natural correlations among
multiple numeric attributes of the same entity?

Confounding Effects: When probing on a single
attribute, how strongly do other attributes become
unintentionally predictable?

3.1 Dataset for Inter-attribute Analysis
Dataset Construction We begin by extending
the probing corpus for numeric attributes in Heinz-
erling and Inui (2024) to construct the inter-
attribute evaluation set, in which each entity
has all of the specified attributes. The original
1,000-sample training split for each attribute to fit
the probing model is retained unchanged to en-
sure comparability. For inter-attribute analysis,
we crawled Wikidata (Vrandečić and Krötzsch,
2014).*

*We retrieved data from https://www.wikidata.org/
on April 15, 2025, under the Creative Commons Attribution-
ShareAlike 4.0 International License.
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Figure 2: Correlation matrices for human (top) and geo-
graphical (bottom) entities. The year attributes of human
entities or some attributes of geographical entities are
likely to be correlated (with significance: *p < 0.05,
**p < 0.01, ***p < 0.001).

This inter-attribute evaluation set includes:

Human entities with birth year, death year,
and work period start (402 samples),

Geographical entities with area, elevation,
population, latitude, and longitude (777 sam-
ples).

These are not duplicates of the data used for single-
attribute fitting or hyperparameter selection. Note
that correlations with a larger sample size, includ-
ing duplicates and missing attributes, are also con-
firmed in Appendix A to ensure consistency with
this limited dataset for computational efficiency.

Observation On inter-attribute evaluation set,
the pairwise correlations are shown in Figure 2. At-
tributes of human entities, such as birth year,
death year, and work period start, exhibit
strong correlations with each other. In addition,
area and population are moderately correlated,
and several other pairs, such as latitude and other
attributes, show non-negligible correlations. These
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Figure 3: Spearman correlations for Llama 3.1 8B (top) and Qwen2.5-32B (bottom): diagonal is within-attribute,
while off-diagonal is inter-attribute. The attributes of human entities can be predicted across attributes. Furthermore,
despite the fact that the diagonal components of geographical entities are less than one and reproduction within
attributes is incomplete, area, population, and latitude exhibit unnatural cross-attribute correlations.

natural correlations can be assumed to be inherent
in the training data of LLMs, serving as a baseline
for subsequent analyses on inter-attribute effects.

3.2 Method and Models
Representation Extraction In order to rigor-
ously examine confounding across attributes of
LLM internal representations for prompts contain-
ing numerical attributes, the following two condi-
tions are used. In the in-question noun setting, each
prompt explicitly asks the model for the value of
a specific attribute of a given entity (the question
templates are detailed in Appendix A); in the iso-
lated noun control, the prompt contains only the
entity name without any attribute query. The hid-
den states of the final tokens at a specified layer are
collected and denoted as X ∈ Rn×h.

Inter-attribute Evaluation For each source at-
tribute s and target attribute t, we define rs as the
Spearman correlation measured in the subspace of
s. For example, rs(Ŷt, Yt) denotes the correlation
between the ground truth Yt and the prediction Ŷt
obtained by applying the PLS model trained on s
to Xt. The overall procedure is as follows:

1. Train PLS on representations Xs from the
training split of attribute s, by sweeping the
hyperparameters such as layer position l and
PLS rank k.

2. Use the single-attribute dataset with 1000 sam-
ples to choose the best hyperparameters.

3. On the inter-attribute evaluation set, predict
Yt using Xt from the trained PLS model, and
compute rs(Ŷt, Yt). When s ̸= t, we also

calculate rs(Ŷs, Ys|Yt) and rs(Ŷt, Yt|Ys).
Intuitively, rs(Ŷs, Ys|Yt) evaluates how well the

PLS on s can predict Ys without interference from
Yt, indicating attribute fidelity. On the contrary,
rs(Ŷt, Yt|Ys) evaluates the degree to which the rep-
resentation on s predicts Yt after controlling for
s, indicating attribute contamination. Regarding
hyperparameters, we focus on cases where probing
is successful by extracting the top five (l, k) pairs
with high R2 in layer-independent analysis. For
layer-wise observations, the top three k with high
R2 is extracted. The mean of the metric on the
selected PLS models is adopted as the result for
robust evaluation.

Models Four transformer-based LLMs: Llama
3.1 8B and Llama 3.1 70B (Grattafiori et al., 2024),
and Qwen2.5-3B and Qwen2.5-32B (Yang et al.,
2025) are employed to comprehensively examine
competitive open models across several sizes.*

3.3 Inter-attribute Correlations in Probing

Correlation Heatmaps Figure 3 shows the ma-
trices of rs(Ŷt, Yt) for two representative models,
Llama 3.1 8B and Qwen2.5-32B, in the in-question
noun setting. The heatmaps for the remaining
two models are in Appendix B to ensure consis-
tency across the models. Diagonal entries (within-
attribute) remain high, confirming that numerical
features are recoverable to a certain degree. Off-

*All experiments in this paper, including LLM inference,
were conducted on an NVIDIA GH200 system (Grace Hopper
Superchip), which integrates a 72-core Neoverse V2 CPU and
a 120 GB Hopper GPU.
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diagonal entries (side effects) are substantial for hu-
man entities, reflecting strong year entanglement,
and moderate for geographical entities, partially
reflecting their natural attribute correlations. Some
off-diagonals unnaturally match or exceed the nat-
ural correlations or the diagonal values, despite
incomplete reconstruction of source attributes in
the diagonal components.

Discussion on RQ1 Regarding the preservation
of the correlated structures, the positive/negative
correlations in the inter-attribute evaluation set are
roughly reflected in the correlations through prob-
ing. However, some entries exhibit implausibly
large absolute values, suggesting that the extracted
subspaces are overly shared across attributes. For
instance, as shown in Figure 3, the PLS model
trained on work period start predicts birth
year more accurately than the PLS model trained
on birth year itself. This implies that the model
does not clearly separate these two attributes in
the representation space, indicating substantial sub-
space overlap. Furthermore, certain choices of k
yield even larger non-diagonal components, as il-
lustrated in Figure 9 of Appendix C. This sug-
gests that our linear model is not specialized for
the source attribute. Although it appears to fit the
labels, the extracted subspace retains confounding
factors from the knowledge stored in the LLM. In
this way, conventional probing methods that focus
on a single attribute entangle other attributes and
lead to side effects of the intervention (Heinzerling
and Inui, 2024). Variations in the correlations be-
tween human attributes and geographical attributes
across models indicate that training data or archi-
tecture influence the degree of subspace overlap.

Impact of Prompt Specificity Table 1 compares
in-question noun versus isolated noun prompts.
While the variance of inter-attribute correlations
is relatively large, the within-attribute correlations
show a clear and consistent increase in the in-
question noun setting. This indicates that even
small contextual information in the prompt can
substantially influence the probing results. In con-
trast, inter-attribute correlations exhibit higher vari-
ability, suggesting that the effect is less systematic
across unrelated attributes. Overall, these findings
confirm that prompt specificity primarily sharpens
the probe’s focus within each attribute, while mini-
mal contextual cues can still produce measurable
side effects.

3.4 Layer-wise Fidelity and Contamination

The partial correlation analysis is performed to in-
vestigate the confounding effects in detail at each
layer within LLMs, focusing on highly correlated
attribute pairs in Figure 3 (birth year vs. work
period start in human entities and population
vs. area in geographical entities).

Observation For the first pair with Llama 3.1
8B (left column of Figure 4), apparent correlation
rs(Ŷt, Yt) rapidly rises by layer 10 and plateaus.
When predicting work period start from birth
year, attribute contamination remains low (< 0.2)
while attribute fidelity peaks at a higher level (>
0.3) than the contamination. Conversely, predicting
birth year from work period start yields high
contamination (> 0.4) and lower fidelity (< 0.2).
Furthermore, similar patterns can be observed re-
gardless of the model. The middle column of Fig-
ure 4 shows Qwen2.5-32B, and the same can be
found with less contamination than Llama 3.1 8B.
For the second pair with Llama 3.1 8B (right col-
umn of Figure 4), similar trends can be observed.
The population is highly source-faithful (> 0.7),
and contamination remains at low levels (< 0.3).
On the other hand, there is a certain amount of con-
tamination (> 0.4) in the subspace of area, with
relatively low fidelity (< 0.6), even though the ap-
parent original correlation is about the same. The
results of the remaining models and attribute pairs
are shown in Appendix D.

Discussion on RQ1 The asymmetry in human en-
tities indicates that birth year information is more
strongly encoded, whereas work period start is
entangled with birth year. Also, these results
suggest that geographical entities share an overlap-
ping subspace, with population dominating area.
Linked with a prior finding suggesting that LLMs
tend to remember popular knowledge in training
data with more parametric weights (Mallen et al.,
2023), the expression of minor attributes is mixed
with the memory of related attributes, leading to
confounding effects.

4 RQ2: Confounding Effects by Prompt

In this section, experiments employing few-shot
prompting (Brown et al., 2020) were performed
in order to introduce an additional controllable at-
tribute into queries concerning a specific entity at-
tribute. Motivated by previous studies showing
that poorly organized few-shot examples can dis-
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Prompt Setting Model Within-attribute Inter-attribute

In-question noun Llama 3.1 8B 0.818 ± 0.088 0.251 ± 0.214
(e.g. “What is the area of Texas?”) Qwen2.5-32B 0.766 ± 0.110 0.207 ± 0.205

Isolated noun Llama 3.1 8B 0.736 ± 0.133 0.206 ± 0.204
(e.g. “Texas”) Qwen2.5-32B 0.728 ± 0.108 0.190 ± 0.208

Table 1: Absolute correlation strength (mean ± standard deviation) for within-attribute and inter-attribute cases,
corresponding to diagonal and off-diagonal elements in the correlation matrices of Figure 3. Attribute-specific
prompts in the in-question noun setting raise the value of the within-attribute correlations by approximately 0.04 to
0.08, and by 0.02 to 0.05 for inter-attribute ones.

tort LLM behavior (Zhao et al., 2021; Ma et al.,
2023), we hypothesized that superfluous contex-
tual examples could systematically skew numerical
predictions toward the scale of the provided val-
ues. The prevalence of this effect was evaluated
by varying the number of few-shot examples k. To
control for the influence of the original response,
partial correlation analysis was applied to quan-
tify how strongly errors co-occur under prompt
manipulation. Finally, the characteristics of the
observed output deviations were correlated with
internal representation metrics, providing a novel
interpretation of prompt-induced susceptibility.

4.1 Behavioral Experiments

Method A few-shot prompt is constructed, aug-
mented with k examples of question–answer pairs.
The k examples are selected without replacement,
unsorted, and have no overlap in entity name
with each other or with the target question. Each
prompt presents two numeric attributes (the mean
of the example answers Āref and the target an-
swers A) within a single prompt context. For
each prompt, the model’s numeric response is
recorded, and the partial Spearman correlation
r(LLM Output, Āref|A) is calculated.

Dataset and Models A subset of the single-
attribute dataset with the same question tem-
plates provided in Section 3 was used: three at-
tributes in human entities (birth year, death
year, and work period start) and three attributes
in geographical entities (area, elevation, and
population). 1000 questions per attribute were
input into the LLM with k examples, and the an-
swers were parsed into numerical values.* The
same four LLMs as in Section 3 were employed.

*Responses that failed to parse numerical values from
string answers (< 20%) were discarded.

Results and Analysis Figure 5 presents the corre-
lations r(LLM Output, Āref|A) varying the number
of examples and models. A monotonic increase in
confounding is observed as the number of examples
increases across all models. Furthermore, smaller
models (e.g. Llama 3.1 8B, Qwen2.5-3B) exhibit
consistently higher correlation values compared to
their larger counterparts, indicating greater suscep-
tibility to example bias. These findings suggest that
few-shot exposure can systematically skew numer-
ical predictions and that model capacity inversely
moderates this effect.

4.2 Linking to Internal Representations

In this experiment, we integrate the behavioral ex-
periment in Subsection 4.1 and the analysis of inter-
nal representations using PLS probing in Section 3
to address RQ2.

Method For each attribute, the PLS model is fit-
ted by using the training split, which was not in-
cluded in the previous behavioral experiments. We
input the hidden state of the token corresponding to
the final question mark (i.e., ”?”) in each few-shot
prompt into this PLS model. The predicted value
represents the numerical quantity currently repre-
sented by the LLM, as indicated by the numerical-
attribute subspace. We collect these and denote
them I . Few-shot prompting with k = 8 is used
to analyze examples where the LLM output is dis-
torted, and r(Āref, I|A) and r(I,LLM Output|A)
are calculated for evaluation.

Results and Analysis Figure 6 shows layer-wise
trends for the Llama and Qwen families. The mean
of the references distorts the internal state; this
distortion is observable in the low-dimensional sub-
spaces extracted by PLS (also see Figure 11 in Ap-
pendix E). In Llama, r(Āref, I) increases in early
layers, peaks around the middle 20 layers, and then
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Figure 4: Layer-wise apparent Spearman correlation rs(Ŷt, Yt) (blue), attribute fidelity rs(Ŷs, Ys | Yt) (orange), and
attribute contamination rs(Ŷt, Yt | Ys) (green) for Llama 3.1 8B and Qwen2.5-32B, shown for (birth year, work
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Figure 5: Correlations between the model outputs and
the reference means in prompts. All models show higher
correlations as the number of few-shot examples in-
creases, with smaller models being more susceptible.

declines. This aligns with Hendel et al. (2023), sug-
gesting that Llama acquires the essential internal
representations through in-context learning in early
layers, then uses them for inference. In contrast,
Qwen shows an initial drop in r(Āref, I), followed
by a slower rise and a late-stage secondary peak.
This suggests that context processing differs by
model architecture or training.

Discussion on RQ2 The correlations between
the internal states and the actual outputs are also
observed, though weaker than those with the inputs.
Notably, this gap widens with model size. These
findings, together with Subsection 4.1, indicate that
larger models retrieve memorized information ro-
bustly against contextual perturbations, leveraging
nonlinear or high-dimensional mechanisms beyond
linear subspace analysis. In summary, numerical
attributes referenced in context are transiently mod-
ulated in a shared internal subspace, and model
robustness differs with respect to whether such per-
turbations propagate to the output.

5 Related Work

Probing Methods for LLMs While binary clas-
sifiers are employed to probe language mod-
els (Belinkov, 2022) to identify specific noun con-
cepts (Burns et al., 2023; Zhao et al., 2025) embed-
ded in internal representations, probing with regres-
sion models suggests that numerical concepts such
as spatial and temporal information are linearly en-
coded (Liétard et al., 2021; Gurnee and Tegmark,
2024; Heinzerling and Inui, 2024). Other analyses
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Figure 6: Layer-wise Spearman correlations of PLS predictions with (blue) example’s answer mean and (orange)
few-shot model output. The shaded area shows the standard deviation for 18 samples, using the top three PLS rank
from Subsection 3.4 for six attributes. The (red) line shows the difference between the two. The input references
correlate well with the intermediate layers, and smaller models show a smaller the gap between these values and
their correlations with the output, indicating easier context propagation.

report circular representations for modular arith-
metic (Engels et al., 2025), and helical embeddings
for periodic numerical attributes (Kantamneni and
Tegmark, 2025; Lei and Cooper, 2025). Through
these analyses, we can assume that numerical at-
tributes are linearly represented in terms of mag-
nitude, allowing linear models for probing. While
prior work typically probed isolated concepts indi-
vidually, our study makes a unique contribution by
examining relationships across multiple correlated
numerical attributes and offering insights through
the comprehensive layer-wise analysis.

Confounding in LLM Representations While
several works have shown that LLMs’ internal
representations entangle multiple concepts (Wu
et al., 2025; Zhao et al., 2025), the direct impact of
this entanglement on downstream interventions re-
mains unexplored. In the related domain of knowl-
edge editing, similar unintended side effects have
been documented when modifying stored knowl-
edge (Li et al., 2024b; Duan et al., 2025). To miti-
gate these effects and improve response accuracy
for inserted target knowledge, methods such as

conflict-aware edits (Jung et al., 2025) and orthog-
onal editing directions (Fang et al., 2025) have
been proposed. In contrast, our study quantifies
the confounding influence of mutually dependent
numerical attributes via a novel partial-correlation
setup for interpretability. We also highlight the
limitations of conventional linear probing when
assessing these intertwined subspaces.

Prompt Vulnerabilities Prompt engineering (Sa-
hoo et al., 2025) has become central to control-
ling LLM behavior, with methods such as few-shot
prompting improving accuracy and format consis-
tency (Brown et al., 2020). However, prompts re-
main susceptible to manipulation and misunder-
standing—ranging from conflicts with a model’s
internal knowledge (Xie et al., 2024) to prompt-
injection exploits (Liu et al., 2024) and jailbreak
attacks (Shen et al., 2024). Although several stud-
ies document that numerical contexts can induce
degraded or erratic LLM outputs (Shi et al., 2023;
Zhao et al., 2024), the internal mechanisms gov-
erning these failures under realistic and complex
prompts have not been elucidated. In this work,
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we close that gap by investigating how numerically
confounding prompts influence internal representa-
tions across different model scales.

6 Conclusions and Future Work

In this work, we systematically applied linear prob-
ing models to dissect how large language models
encode multiple numerical attributes, integrating
confounding analysis and prompt-based vulnera-
bility testing within numerical contexts. Our prob-
ing results reveal that LLMs not only capture real-
world numerical correlations but tend to exaggerate
these relationships across internal representations.
Moreover, we demonstrate that irrelevant numeri-
cal information embedded in prompts can induce
significant representation drift, with pronounced
variability across model scales.

These findings elucidate concrete risks for LLM-
powered data-driven decision support in numerical
contexts and suggest avenues for extending the
analysis to biases at the intersection of multiple so-
cial factors in language models (Lalor et al., 2022;
Li et al., 2024a). Our investigation can also link to
representation–based hallucination detection and fi-
delity enhancement (Li et al., 2023; Du et al., 2024;
Sriramanan et al., 2024). Integrating these tech-
niques with our approach could enable the targeted
mitigation of biases from interacting attributes in
prompts before output generation, thereby advanc-
ing fairness and reliability in complex contexts.
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Limitations

We hypothesized that numerical magnitude is en-
coded in shared linear subspaces across attributes.
However, our experiments did not identify a sin-
gle subspace that uniformly represents arbitrary
numerical features. While we extended standard
probing with partial-correlation analysis under a
single-confounder assumption, this method does
not scale to multiple concurrent confounders. Fu-
ture work should employ multivariate causal infer-
ence or factor-analytic techniques to disentangle
complex attribute relationships.

We used few-shot prompts to introduce irrelevant
numerical attributes into the context but focused
only on fact-retrieval tasks. We did not explore the
dynamics of arithmetic reasoning under in-context
learning. A broader study—including generative
and multi-step arithmetic reasoning scenarios—is
needed to fully understand how LLMs manipulate
numerical information in their internal representa-
tions for realistic prompts.
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Attribute Pair Correlation n

(birth year, death year) 0.964*** 12578
(birth year, work period start) 0.980*** 8094
(death year, work period start) 0.849*** 3936

(area, elevation) 0.127*** 5643
(area, population) 0.574*** 9722
(area, latitude) -0.263*** 10196
(area, longitude) 0.039*** 10196
(elevation, population) -0.093*** 5587
(elevation, latitude) -0.095*** 5995
(elevation, longitude) 0.009 5995
(population, latitude) -0.286*** 9997
(population, longitude) 0.230*** 9997
(latitude, longitude) 0.053*** 14735
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Figure 7: (Left) Spearman correlation and sample size n. Significance: ***p < 0.001. Note that significance is
easily achieved due to large sample size. (Right) Correlation matrix between attributes of geographical entities.

A Detailed Configuration of Experiments

Natural Correlations in Larger Data By col-
lecting entities with each attribute pair in Wiki-
data (Vrandečić and Krötzsch, 2014), the correla-
tion between two attributes with a larger sample
size is evaluated, resulting in Figure 7. For visibil-
ity, the heatmap of the correlation matrix is also
displayed in Figure 7 for geographical entities with
the five attributes. These correlations align with
the trend observed in the correlation matrices in
Figure 2. Based on these observations, similar cor-
relation patterns may also be present in the large
corpora on which LLMs are trained.

Question Templates For the probing in the In-
question noun setting, the prompt for extracting a
specific numerical attribute of an entity is as fol-
lows, where the input string to the LLM is a ques-
tion containing the entity name {Noun}.

birth year In what year was {Noun} born?
death year In what year did {Noun} die?
work period start In what year did {Noun} start

working?
area What is the area of {Noun}?
elevation How high is {Noun}?
population What is the population of {Noun}?
latitude What is the latitude of {Noun}?
longitude What is the longitude of {Noun}?

Prompt Example The question sentence in the
original noun setting and the prompt to the LLM in
the few-shot prompting setting are as follows. In
this instance, the number of shots is set to k = 4.
As illustrated in Brown et al. (2020), the Q and A
are explicitly shown and connected by line breaks.

Original Question:

"What is the area of Sapporo?"

Question with Four Irrelevant Examples:

"Q: What is the area of Anaheim?
A: 131

Q: What is the area of Saanen?
A: 120

Q: What is the area of Yazd?
A: 131

Q: What is the area of Gdynia?
A: 135

Q: What is the area of Sapporo?
A: "

This constitutes the few-shot prompting format
adopted throughout our experiments. To evaluate
the robustness of our setup in Subsection 4.1, we
conducted a supplementary evaluation by testing
several combinations formed by combining three
factors: (i) prompt layout (separated Q–A pairs
with line breaks vs. compact sequences without
them), (ii) answer value order (randomized vs. as-
cending) and (iii) answer value diversity (narrow
vs. wide range). Across all six numerical attributes,
we observed no systematic differences in the trend
of LLM outputs for the first two factors. Accord-
ingly, we adopt the line break-separated, randomly
ordered format as the default in this work.
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Figure 8: Spearman correlations for Llama 3.1 70B (top) and Qwen2.5-3B (bottom): diagonal is within- attribute,
off-diagonal is inter-attribute.

Prompt Setting Model Within-attribute Inter-attribute

In-question noun Llama 3.1 70B 0.807 ± 0.092 0.291 ± 0.210
(e.g. “What is the area of Texas?”) Qwen2.5-3B 0.731 ± 0.115 0.196 ± 0.204

Isolated noun Llama 3.1 70B 0.736 ± 0.124 0.196 ± 0.205
(e.g. “Texas”) Qwen2.5-3B 0.674 ± 0.131 0.178 ± 0.184

Table 2: Absolute correlation strength (mean ± standard deviation) for within-attribute and inter-attribute cases,
corresponding to diagonal and off-diagonal elements in the correlation matrices of Figure 8. While attribute-specific
prompts improve the within-attribute correlation, Llama shows larger side effects on the inter-attribute correlation.

For the third factor, increasing the diversity of ex-
ample answer values within a single context raises
within-context variety. However, when comparing
behaviors across multiple contexts to assess cor-
relations, it reduces the between-context variance
of the mean answer values. When compared at
k = 8, the correlation slightly decreased, but the
same qualitative tendency was observed. Although
the composition quality of few-shot examples can
affect model behavior in certain cases (Yao et al.,
2024), the overall results reported in this paper re-
main robust for single-answer numerical attribute
tasks.

B Correlation Matrices for Other Models

In addition to the results in Figure 3 and Table 1,
the experiments in Subsection 3.3 were conducted
for Llama 3.1 70B and Qwen2.5-3B. The correla-
tion matrices and their summaries are displayed in
Figure 8 and Table 2. These results are indicative of
the natural statistical dependencies present within
the dataset, especially among attributes belonging
to the same entities. However, correlations between
attributes across human and geographical entities
reflect model-dependent behavior. This occasion-

ally manifests as moderate inter-attribute values in
the Llama models.

C Potential of Misalignment in Linear
Probing

Instead of selecting hyperparameters (k, l) to best
fit the source attributes, we computed, for each
source–target attribute pair, the average of the top
five correlations with the highest absolute values.
These aggregated scores are visualized as heatmaps
in Figure 9. These results demonstrate that lin-
ear probing can achieve high correlation scores
even with simple models, highlighting its utility
in assessing representational structure. However,
they also reveal that such scores may arise from
a misalignment between the probed attribute and
the internal representations. Specifically, we ob-
serve cases where a target attribute can be predicted
from representations primarily encoding a different
source attribute.

1111



bir
th 

ye
ar

de
ath

 ye
ar

work
 pe

rio
d

sta
rt

are
a

ele
va

tio
n

po
pu

lat
ion

lat
itu

de

lon
git

ud
e

Source Property

bir
th 

ye
ar

de
ath

 ye
ar

work
 pe

rio
d

sta
rt

are
a

ele
va

tio
n

po
pu

lat
ion

lat
itu

de

lon
git

ud
e

Ta
rg

et
 P

ro
pe

rty
0.83 0.70 0.92 -0.55 0.57 -0.57 -0.23 -0.46

0.78 0.84 0.86 -0.50 0.31 -0.58 -0.33 -0.51

0.78 0.68 0.90 -0.43 0.45 -0.55 0.38 -0.42

0.29 0.33 0.37 0.71 0.44 0.59 -0.49 0.29

0.18 -0.17 -0.14 0.27 0.71 -0.19 0.16 0.03

0.07 0.44 0.49 0.72 0.54 0.84 -0.60 0.31

-0.06 -0.41 -0.54 -0.62 -0.47 -0.60 0.94 0.25

-0.42 0.38 0.39 0.39 0.41 0.33 0.23 0.90

Llama 3.1 8B

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

bir
th 

ye
ar

de
ath

 ye
ar

work
 pe

rio
d

sta
rt

are
a

ele
va

tio
n

po
pu

lat
ion

lat
itu

de

lon
git

ud
e

Source Property

bir
th 

ye
ar

de
ath

 ye
ar

work
 pe

rio
d

sta
rt

are
a

ele
va

tio
n

po
pu

lat
ion

lat
itu

de

lon
git

ud
e

Ta
rg

et
 P

ro
pe

rty

0.84 0.79 0.93 -0.73 -0.58 -0.55 0.51 0.41

0.81 0.83 0.88 -0.70 -0.74 -0.69 -0.51 0.53

0.75 0.74 0.92 -0.62 -0.52 -0.45 0.47 0.40

0.08 -0.45 -0.48 0.71 0.51 0.61 -0.51 0.28

-0.31 -0.25 -0.34 0.37 0.74 -0.19 -0.15 -0.24

-0.48 0.08 0.54 0.71 0.65 0.85 -0.61 0.37

0.44 0.39 -0.44 -0.51 -0.43 -0.48 0.93 0.28

-0.50 0.46 0.44 0.42 -0.07 0.43 0.29 0.88

Llama 3.1 70B

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

bir
th 

ye
ar

de
ath

 ye
ar

work
 pe

rio
d

sta
rt

are
a

ele
va

tio
n

po
pu

lat
ion

lat
itu

de

lon
git

ud
e

Source Property

bir
th 

ye
ar

de
ath

 ye
ar

work
 pe

rio
d

sta
rt

are
a

ele
va

tio
n

po
pu

lat
ion

lat
itu

de

lon
git

ud
e

Ta
rg

et
 P

ro
pe

rty

0.72 0.59 0.89 -0.51 -0.41 -0.30 0.40 -0.35

0.75 0.66 0.81 -0.47 -0.42 -0.39 0.40 -0.37

0.70 0.57 0.87 -0.44 -0.42 -0.36 0.41 -0.35

-0.28 -0.29 -0.05 0.66 0.32 0.60 -0.52 0.27

-0.15 0.18 0.10 0.14 0.64 -0.20 -0.02 0.02

-0.35 -0.36 0.31 0.66 0.27 0.82 -0.57 0.36

0.32 0.40 -0.51 -0.44 -0.30 -0.45 0.88 0.27

-0.36 -0.37 0.16 0.36 0.30 0.38 0.25 0.84

Qwen2.5-3B

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

bir
th 

ye
ar

de
ath

 ye
ar

work
 pe

rio
d

sta
rt

are
a

ele
va

tio
n

po
pu

lat
ion

lat
itu

de

lon
git

ud
e

Source Property

bir
th 

ye
ar

de
ath

 ye
ar

work
 pe

rio
d

sta
rt

are
a

ele
va

tio
n

po
pu

lat
ion

lat
itu

de

lon
git

ud
e

Ta
rg

et
 P

ro
pe

rty

0.74 0.59 0.90 -0.27 -0.33 -0.27 -0.32 -0.39

0.77 0.66 0.79 -0.29 -0.35 -0.14 -0.31 -0.38

0.73 0.60 0.89 -0.28 -0.37 -0.29 -0.26 -0.37

-0.31 -0.31 0.27 0.68 0.33 0.60 -0.52 0.28

0.11 0.16 0.12 0.19 0.71 -0.21 -0.08 -0.10

-0.36 -0.35 0.37 0.66 0.23 0.84 -0.63 0.34

-0.06 0.40 -0.43 -0.46 -0.28 -0.47 0.90 0.30

-0.34 -0.45 0.06 0.31 0.05 0.28 0.24 0.86

Qwen2.5-32B

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 9: Maximized correlations of probing model predicting target attributes from source attributes. In Llama
models, inter-attribute correlations grow with model size, suggesting entangled internal representations, whereas
in Qwen, larger models exhibit increased emphasis only on diagonal components, indicating more disentangled
attribute representations.

D Layer-wise Confounding Analysis

The layer-wise correlation trends for models that
were not included in Figure 4 of Subsection 3.4
are shown in Figure 10. For the birth year at-
tribute, PLS models show consistently higher fi-
delity and lower contamination when work start
period is treated as a confounding factor. Inter-
estingly, this relationship often reverses when the
source and target attributes are swapped. Predict-
ing work start period from birth year yields
substantially higher fidelity across layers, whereas
predicting birth year from work start period
results in weaker fidelity and stronger contamina-
tion. In the case of geographical entities, models
fitted to area are more susceptible to confound-
ing from population, resulting in a smaller gap
between fidelity and contamination. These asym-
metric patterns suggest that the strength and direc-
tion of attribute-specific encoding may reflect how
prevalent or salient the corresponding knowledge
is in the training corpus.

E Detailed Analysis on Prompt-induced
Perturbations of Attribute Subspaces

We further investigate the dimensionality required
to capture the effects of contextual attribute per-
turbations within the low-dimensional subspaces
extracted by PLS, as introduced in Section 4.2.
While Figure 6 reports partial correlations using
the top-3 ranks selected based on their performance
in single-attribute probing (see Section 3.2), Fig-
ure 11 explores how the required dimensionality
changes when capturing context-induced effects.
Specifically, the odd-numbered rows show results
using the top-3 ranks from the single-attribute setup.
The even-numbered rows correspond to the top-3
ranks per layer that maximize partial correlation
(i.e., r(Āref, I|A) or r(I,LLM Output|A)). These
results indicate that magnitude-related contextual
effects are captured in compact, low-dimensional
subspaces, suggesting that prompt-level numerical
interference is encoded along low-rank directions.
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Figure 10: Layer-wise apparent Spearman correlation rs(Ŷt, Yt) (blue), attribute fidelity rs(Ŷs, Ys|Yt) (orange),
and attribute contamination rs(Ŷt, Yt|Ys) (green) for Qwen2.5-3B and Llama 3.1 70B, shown for birth year/work
period start and area/population pairs.
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Figure 11: Optimal layer-wise PLS ranks across models. For each of six attributes, the top three ranks (18 samples
total) are averaged and their standard deviations plotted. Odd-numbered rows display ranks yielding the highest
R2 in conventional single-attribute PLS probing; even-numbered rows display ranks with the largest context
effects measured by r(Āref, I|A) (Input Reference) and r(I,LLM Output|A) (Output Answer), and the difference
between the latter and the former is shown. These results show that the subspace dimensions capturing r(Āref, I|A)
and r(I,LLM Output|A) differ only slightly, but they are much smaller than in single-attribute settings. The
effectiveness of PLS in extracting low-dimensional representations is also highlighted.
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F Broader Impacts

Our findings reveal significant risks of numerical at-
tribute confounding in LLMs. Amplified numerical
correlations and sensitivity to irrelevant numerical
cues can lead to erroneous or biased outputs, pos-
ing serious concerns in high-stakes domains such
as finance, healthcare, and policy. Smaller models,
in particular, are more susceptible to such context-
driven distortions and should be evaluated with
caution before use in sensitive applications. At
the same time, understanding these vulnerabilities
opens avenues for mitigation through better prompt
design, robust training, and improved interpretabil-
ity. These strategies can enhance the reliability and
fairness of LLMs in numerically intensive settings.
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