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Abstract

Multimodal sentiment analysis identifies hu-
man emotional tendencies by analyzing text,
visual, and auditory modalities. In most stud-
ies, the textual modality is usually consid-
ered to contain the most emotional informa-
tion and is regarded as the dominant modal-
ity. Existing methods mostly map auxiliary
modalities into a semantic space close to the
dominant modality, which overly relies on the
dominant modality. In this work, we pro-
pose a Feature Decomposition-Augmentation
(FeaDA) framework, which aims to elevate
the role of auxiliary modalities in multimodal
data fusion. We first design a projector to
decompose auxiliary modalities into partial
features, which contain features for emotion
judgment, and then utilize these decomposed
features to guide the fusion process with KL
loss, thereby enhancing the status of auxiliary
modality fusion. To verify the effectiveness
of our method, we conducted experiments on
the CMU-MOSI, CMU-MOSEI, and CH-SIMS
datasets. The experimental results show that
our FeaDA framework outperforms mutilmodal
sentiment analysis methods of the same type
in main metrics. Our code is available
at https://github.com/PowerLittleYin/FeaDA-
main.

1 Introduction

With the advancement of multimodal learning tech-
nologies, substantial progress has been made in
multimodal representation understanding (Fukui
et al., 2016; Tan and Bansal, 2019; Radford et al.,
2021a) and multimodal fusion (Liu et al., 2018;
Mai et al., 2020). Modern social-media platforms
like TikTok and Twitter have multiplied the ways
we express emotion: a single post and its replies
can now weave together videos and text into a sin-
gle, hybrid utterance, leading to a growing interest

*Corresponding author. This work was supported by the

National Key Research and Development Program of China
under Grant 2022YFB4501704.

86

predict label

real label
. ‘ i
negative H '
[ D alian e
negative 4 positive lamokay.  —

.
negerivd — |
.

0o g v @ i
negative H '

negative- positive /am okay.

H
|

STV 5

negative 1 |
! }

Figure 1: Previous Method a vs. Our Method b

in multimodal sentiment analysis (Tsai et al., 2019;
Hazarika et al., 2020; Wu et al., 2024; Zhang et al.,
2025). Compared with single-modal approaches,
multimodal methods can capture emotional ten-
dencies more comprehensively and dramatically
improve the accuracy of sentiment analysis. Conse-
quently, multimodal sentiment analysis has become
a critical tool for understanding multimedia content.
It is also widely applied in real-world scenarios
such as election polling, public-opinion monitoring
of news events, and customer satisfaction evalua-
tion for products and services.

Current multimodal sentiment analysis primar-
ily focuses on the analysis of three modalities:
text, video, and audio. Drawing on previous re-
search (He et al., 2025; Chen et al., 2025), text is
usually identified as the main modality in multi-
modal sentiment analysis, as it generally contains
a richer array of emotional information. Mean-
while, video and audio are regarded as auxiliary
modalities: although they typically carry less rich
emotional information than text, they can still pro-
vide valuable cues for determining sentiment ori-
entation. Recent research has mainly focused on
two directions—multimodal data fusion and mul-
timodal feature understanding. The former is pur-
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sued through sophisticated attention-based fusion
networks (Tsai et al., 2019; Zhang et al., 2022;
Sun and Tian, 2025), while the latter has recently
leveraged contrastive learning to devise specialized
alignment networks that enhance the comprehen-
sion of multimodal features, such as ConFEDE
(Yang et al., 2023) and QUEST (Song et al., 2025)

There is an inherent flaw in multimodal learning,
when jointly optimizing heterogeneous features,
the model tends to concentrate its capacity on the
primary modality while under-utilising or even dis-
carding cues from auxiliary modalities (Fan et al.,
2023; Lu et al., 2024; Zong et al., 2024; Yang et al.,
2025). Consequently, the fused representation may
only partially capture the subject’s affective state,
resulting in incomplete or erroneous sentiment pre-
dictions. As illustrated in Figure 1, when cross-
modal semantics are inconsistent, accurate infer-
ence becomes unattainable unless the fine-grained
signals residing in the auxiliary streams are suffi-
ciently amplified. In response to this limitation,
recent studies have dedicated considerable effort
to feature-level understanding (Wang et al., 2023b;
Li and Liu, 2025). However, most of them still
condition the learning process on the dominant
modality, leaving auxiliary cues vulnerable to sup-
pression during fusion. Thus, when semantic incon-
sistency arises, task-critical features in the subordi-
nate modality remain under-represented. Despite
the maturity of contemporary multimodal architec-
tures, a systematic approach to auxiliary-modality
feature augmentation is still missing.

Therefore, we propose a novel framework for
enhancing the features of the auxiliary modali-
ties based on feature decomposition Feature
Decomposition-Augmentation (FeaDA). The main
contributions of our framework are as follows:

* We propose an effective feature enhancement
framework. For the auxiliary modalities, we
introduce a feature decomposition module that
can extract the parts of the auxiliary modali-
ties that contain more emotional information.

During the interaction between the main and
auxiliary modalities, we employ an efficient
feature augmentation method to compensate
for the weaker position of the auxiliary modal-
ities in multimodal interactions.

* Our proposed method achieves overall excel-
lent performance on the public datasets CMU-
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MOSI, CMU-MOSEI, and CH-SIMS, demon-
strating the effectiveness of our approach.

2 Related Work

2.1 Multimodal Sentiment Analysis

In recent years, with the development of multi-
modal learning, researchers have increasingly diver-
sified their studies on multimodal sentiment anal-
ysis. Initially, methods for fusing multimodal sen-
timent features were explored. Early researchers
employed straightforward techniques such as di-
rect concatenation and weighted summation of fea-
tures from different modalities to achieve prelim-
inary multimodal feature fusion (Boulahia et al.,
2021; Tsai et al., 2019). More recently, fusion
methods utilizing transformer architectures or at-
tention mechanisms have been proposed (Zhang
et al., 2022; Sun and Tian, 2025).

Another significant area of research is multi-
modal representation understanding. The con-
trastive feature decomposition framework (Yang
et al., 2023) leverages contrastive learning mecha-
nisms to decompose features from each modality
into similarity features and dissimilarity features.
Gradient modulation in multimodal sentiment anal-
ysis is another important direction to understand
representation. To address the issue of modality
imbalance, researchers have proposed a series of
gradient modulation-based methods. For instance,
classifier-guided gradient modulation (Peng et al.,
2022; Guo et al., 2025) introduces a classifier to
evaluate the utilization of each modality and adap-
tively adjusts the gradient magnitude of the encoder
based on this assessment.

2.2 Multimodal Learning with Contrastive
Learning

Multimodal learning aims to integrate data from
multiple modalities to achieve a more comprehen-
sive understanding and representation of features.
Contrastive learning has recently demonstrated sig-
nificant potential in multimodal learning. In 2021,
the CLIP model (Radford et al., 2021b) proposed
by OpenAl marked an important milestone in the
field of multimodal contrastive learning. The con-
trastive learning objective employed by CLIP en-
ables learning from weakly supervised web-scale
data with only pair-wise relationships but no ex-
plicit labels. The same year, a global-local rep-
resentations framework (Ma et al., 2021) is pro-
posed, which based on global and local perspec-



tives, where the model can learn spatially localized
correspondences between audio and visual signals
through contrastive learning. Unlike existing con-
trastive learning methods that focus on maximizing
the mutual information between two views while
ignoring unique information, the QUEST (Song
et al., 2025) framework advances towards learning
more disentangled representations, where shared
and unique factors are effectively separated. Sim-
ilarly, ConFEDE (Yang et al., 2023) introduced a
contrastive feature decomposition framework that
also aims to disentangle similar and dissimilar fea-
tures across modalities while utilizing multiple as-
pects of features from each modality.

Despite learning more comprehensive features,
these methods still face the modality-bias prob-
lem in multimodal sentiment analysis. This paper
propose a decomposition-augmentation method to
alleviate the modality-bias issues caused by over-
reliance on dominant modalities.

3 Methodology

In this section, we present the overall architecture
of the proposed FeaDA, with the pipeline of FeaDA
illustrated in Figure 2.

3.1 Feature Embedding

Let the input be denoted as Input = [T,V, A],
where T € RS*d: V¢ RS ¥dv A ¢ RSaxda g
denotes the sequence length per modality, and d the
feature dimensionality. After encoding, we obtain
the unified feature representation F' = [f, f, f¢].
For the textual modality, we employ BERT as the
encoder. For vision and audio modality, we follow
the same feature extraction as previous work (Tsai
et al., 2019). Then, we can obtain f?, f, f% as
follow:

f'' = BERT(T), (1)
Y = VEncoder(V), (2)
f* = AEncoder(A). 3)

3.2 Feature Association with Prompt

Since the encoded modalities mentioned above lack
interaction with each other, in order to effectively
determine which parts of the features from each
modality are more important for judging emotional
tendency, this paper employs cross-modal attention
to generate interaction information between differ-
ent modalities. Next, we will introduce the role of
the Feaure Association module shown in Figure 2.

88

‘We observe that, in other multimodal feature-
understanding tasks (Zhou et al., 2022; Liang et al.,
2024), soft prompts have been employed to en-
hance image understanding. In order to make
the modality features interact more fully, we add
the auxiliary modality features to the learnable
soft prompt P™ initialized to all zeros, where
m € {t,v,a}, representing the text, video and au-
dio modalities respectively. The resrepresentation
can be described as follow:

fo=1[f" P, 4)

fo =11 P9, (5)

where [-] denotes vector concatenation. We em-
ploy cross-modal attention to generate interaction
information between different modalities. Let the
weight matrices of each modality be W'". Let the
product of the dominant modality feature and its
corresponding weight matrix, that is, f* - W? as
the Query (). Let the products of the auxiliary
modality features and their corresponding weight
matrices, that is the, audio feature f(; - W% be the
Key K¢ and Value V¢ respectively. Taking the
interaction between the text and audio modalities
as an example:

QK"
Vv,

where dj, represents the dimension of the Key K°.

% = softmax( ywe. (6)

3.3 Feature Decomposition-Augmentation

After the the feature association stage, although the
textual modality has interacted separately with the
audio and visual modalities, the dominant role of
the textual modality may lead to an over-reliance
on textual features in the resulting fused represen-
tations. This dominance can consequently cause
information loss in the visual and audio modalities
during cross-modal interactions. To address this
issue, we propose a Decomposition-Augmentation
mechanism for the post-interaction text-visual fea-
ture f! and text-audio feature %, aiming to miti-
gate the imbalance in cross-modal representation.

3.3.1 Modality Selective Decomposition

Traditional approaches typically align visual de-
tails with textual attributes to generate pseudo-
representations for feature enhancement (Zhao
et al., 2025). However, such methods fail to capture
the dynamic temporal patterns in videos or spectral
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Figure 2: The architecture of FeaDA. Initially, features from each modality are extracted from the input, which
follows the previous work (Tsai et al., 2019). First, vision and audio features are concatenated with the soft prompt,
the correlated features are generated with the Feature Association module. Then, the features of the video and audio
modalities are decomposed with the Feature Decomposition Projector to select features for the next augmentation
state. Following this, the decomposed features are utilized to enhance the correlated text-video/audio features with
Feature Augment module. Finally, the enhanced text-video/audio features are concatenated with the textual features

for the ultimate sentiment classification.

nuances in audio, as these modalities cannot be suf-
ficiently summarized by static textual descriptors.
‘We consider the method of feature reuse, but not all
features are what we need, and reusing features that
do not carry sentiment information will obviously
increase noise, which will hinder our analysis of
sentiment.

Inspired by ConFEDE (Yang et al., 2023),
we leverage contrastive learning’s discriminative
power to address this limitation. In our proposed
method, we decompose features into similarity-
preserving and dissimilarity-preserving compo-
nents. Unlike ConFEDE, our decomposition
is modality-selective: we exclusively apply it
to visual and audio features, retaining only the
similarity-preserving subset. This design is mo-
tivated by following consideration: prior work (Xu
et al., 2017) demonstrates that dissimilarity compo-
nents can degrade model performance by introduc-
ing noisy or conflicting information. Our retention
of similarity features ensures cleaner cross-modal
interactions while maintaining discriminative abil-
ity.

Next, we introduce the components of feature
decomposition, taking visual features as an
example; audio features can be handled in a
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similar way. The encoded video feature f" is
processed through a modality-specific projector,
which decomposes it into similarity-preserving
features f¥® and dissimilarity-preserving features
[V The projector consists of layer normalization
for feature stabilization, a linear layer with Tanh
activation and dropout for regularization. To train
the projector, we employ a dual-loss objective
comprising: unimodal prediction loss L,,; and
contrastive decomposition 1oss Loy, .

Unimodal Loss The unimodal loss ensures
each modality independently extracts its emotion-
discriminative features, preserving modality-
specific emotional cues, so that capture modality-
unique emotional patterns. As previously de-
scribed, contrastive decomposition loss enforces
the anchor-based decomposition to make sure that
features aligned with the textual anchor are at-
tracted and dissimilar features are repelled. When
predicting the unimodal label %, we concatenate
auxiliary modalities’ the similar and dissimilar fea-
tures and pass them through an MLP with a ReLU
activation function as the classifier. Then, the uni-
modal prediction loss L,,,,; is computed using the
Mean Squared Error (MSE). The specific process



is as follows:

= MLP(f',[f**, f<LIF*, %), (D
u = [ym7y7rhym7yt7y’uaya]a (8)

where y,,, represents the ground-truth multimodal
label, while y;, y,, and y, denote the ground-truth
unimodal labels for text, vision, and audio modal-
ities respectively. M SFE(-) stands for calculating
the Mean Squared Error loss.
Contrastive Decomposition Loss Unlike tradi-
tional contrastive learning methods (Radford et al.,
2021b), this paper adopts a feature pair perspec-
tive (Yang et al., 2023) and designs Algorithm 1
to compute this loss. To divide positive and nega-
tive feature pairs, for any sample ¢, other samples
will be selected to construct two sets according to
the cosine similarity with ¢: a similar sample set
Nei' and an outlier sample set Out’. The concrete
computation is given in Lines 1-5 of Algorithm 1.
We divide positive and negative feature pairs
from two perspectives. First, given a single sample,
in Lines 6-9 of Algorithm 1: treat similar features
across different modalities as intra-sample positive
feature pairs Pg; we treat similar versus dissimilar
features within the same modality or across modal-
ities as intra-sample negative pairs N¢. Second,
between samples, in Lines 10-12 of Algorithm 1:
if sample j comes from the Nei’, we treat the sim-
ilar features in the same modality between sample
(i, ) as inter-sample positive pairs P}; if sample
§ comes from the Out’, we treat the similar fea-
tures in the same modality between sample (i, j)
as inter-sample negative pairs Ni. We then merge
these sets to obtain the positive and negative feature
pairs respectively:

P'=PLU P}, (10)

N* = N} U Nj. (11)
Subsequently, we calculate the contrastive loss
Lt for sample i through the NT-Xent contrastive

learning framework:

. cos(a,p)
b= ¥ —log—P ) (12)
(ap)ep” 2 ()
(a,k)e PIUN?

here, (a, p) and (a, k) denote a pair of decomposed
feature vectors, cos(-) denotes the calculation of
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cosine similarity. Therefore, the contrastive decom-
position loss L., can be expressed as:

1 <&
Econ = - e, ) 13
n ; con (13)

where n is the number of samples in a batch.

3.3.2 Feature Independence Augmentation

After the video and audio features have undergone
feature decomposition, the trained projector out-
puts the feature components f¥% and f*°. Next,
we use these two components to enhance the text-
video feature f' and the text-audio feature f'@
independence to overcome reliance on the textual
modality after the feature association stage.

To enhance the features, we first directly aug-
ment the features after the feature association stage
using the similar features. We notice a star opera-
tion (Ma et al., 2024), which is essentially matrix
element-wise product, can capture more subtle data
differences. We reduce the star operation from a
matrix operation to a vector one, which is the dot
product of vectors, to augment the common fea-
tures in the auxiliary modality and those after the
feature association stage. For instance, to get the
augmented text-visual feature fo"9 :

f;}zug — fvt ® fvs. (14)

In the second phase, we address the weaker role
of the auxiliary modality during the feature asso-
ciation stage by using KL Loss. To improve the
auxiliary modality’s interaction with the dominant
modality, we employ KL loss to guide the interac-
tion between the dominant and auxiliary modalities
with the auxiliary modality’s similar features:

Ly =KL(f*, f*), (15)

£a :KL(fasafgug)a (16)

where K L(-) represents the calculation of KL loss.

3.4 Final loss function

We use an MLP with three layers as the classifier.
The predicted output ¢ and the prediction loss are
expressed as follows:

g =MLP(f*, f5"9, fo"9). (17)
The predict loss is:
Epred = MSE(?/JQ) (18)



Algorithm 1: Feature Divide Algorithm

Input: Dataset D, multimodal features
ft Y, £, multimodal labels 3.
Output: positive pairs P*, negative pairs

Ni
1 fori e D do
2 S¢, < samples that share the same y" as
sample ¢, and sorted by cosine
similarity;

3 | S% < samples that have different y™
with sample ¢, and sorted by cosine

similarity;

4 Nei® < Randomly select samples with
high cosine similarity from the samples
in Sé;

5 Out® < Randomly select samples from

samples with high similarity in S% and
samples with low similarity in S ;

6 fori,j € Ddo
7 if i == j then

8 P} + Similar features across
different modalities;

9 N¢ < Dissimilar features of both
same modality and different
modalities;

10 else
1 P} « The same modality features

across different samples i, 7,
wherej € Nei' ;

12 Ni + The same modality features
across different samples ¢, j, where
j € Out®;

13 P'=PiU P

14 N'= N{U N},

The final loss £ can be expressed as:
L= ‘Cpred +aLlyni+BLeon+ W(Ea + Ev)a (19)

where «, § and ~ are pre-defined hyperparameters.
The training objective is to minimize the final loss

L.

4 Experiments

In this section, we introduce the details of our exper-
iments, including the datasets, evaluation metrics,
baselines and relevant settings.

4.1 Datasets

In our work, we conducted evaluations on three
publicly available multimodal sentiment analysis
datasets: CMU-MOSI (Zadeh et al., 2016), CMU-
MOSEI (Bagher Zadeh et al., 2018), and CH-SIMS
(Yu et al., 2020). The information of the datasets is
listed in Table 1.

train | validation | test

CMU-MOSI 1284 229 686
CMU-MOSEI | 16326 1871 4659
CH-SIMS 1368 456 457

Table 1: Dataset Information

4.2 Experimental Setting

To demonstrate the performance of our FeaDA net-
work, we select state-of-the-art baselines from re-
cent multimodal sentiment analysis research for
comparison. TEN (Poria et al., 2017) , LMF (Liu
etal., 2018) , MulT (Tsai et al., 2019) , MISA (Haz-
arika et al., 2020) , Self-MM (Yu et al., 2021) , FD-
MER (Yang et al., 2022) , ConFEDE (Yang et al.,
2023) , SFTTR (Sun and Tian, 2025) . The first
four baselines are early fusion methods, and the last
four are methods of the same kind as ours, employ-
ing representation-learning approaches that decom-
pose features, which makes the effectiveness of our
method even more directly evident. Additionally,
to investigate the differences from text-centric ap-
proaches, we also included ALMT (Zhang et al.,
2023) and TETFN (Wang et al., 2023a) for com-
parison.

All experiments were conducted on a single
Tesla V100-SXM2 GPU, to mitigate device-related
discrepancies, we reproduced Self-MM, ConFEDE,
and SFTTR on our hardware following the original
authors’ replication guidelines. For CMU-MOSEI
and CMU-MOSI, we follow Tsai et al. (2019) to
extract features. For CH-SIMS, we follow Yu et al.
(2020) to extract features. We employ a two-stage
training pipeline: in the first stage we train the en-
coders, and in the second we frozen the encoders
and train our multimodal framework. In CMU-
MOSI and CMU-MOSEI we use BERT as the text
encoder, and in CH-SIMS we use BERT-Chinese as
the text encoder. For vision and audio encoder, we
use transformer encoders. In the second stage,we
train our FeaDA with the above trained encoders.
Through multiple experiments, we set o« = 0.02, 8
=0.03 and v = 0.01, the procedure for selecting the



Model CMU-MOSI CMU-MOSEI
Acc-2 T Acc-77T F1 71 MAE | Corr T Acc-2 T Acc-77 F11 MAE | Corr T
TFN -/80.8 349 -/80.7 0907 0.698 78.50/81.89  51.60 78.96/81.74 0.573  0.714
LMF+ -/82.5 332 -/82.4 0917 0.695 80.54/83.48 51.59 80.94/83.36 0.576  0.717
Multf -/83.0 40.0 -/82.8 0.871 0.698 81.15/84.63 82.84  81.56/84.52 0.559  0.733
MISAT 81.8/83.4 423 81.7/83.6 0.783 0.776 83.6/85.5 52.2 83.8/85.3 0.555 0.756
Self-MM  81.38/83.87 46.51  81.57/84.12 0.713  0.790  82.89/85.0 52.17  82.78/84.57 0.528  0.755
FDMERt -/84.6 44.1 -/84.7 0.724  0.788 -/86.1 54.1 -/85.8 0.536  0.741
TETFN  83.24/85.37 - 83.01/85.33  0.708  0.798 84.12/85.18 - 84.18/85.27 0.551  0.748
ALMT  83.08/85.41 - 83.11/85.42  0.722  0.791 84.66/84.49 - 85.13/85.16  0.609  0.776
ConFEDE 81.53/85.06 44.75  83.61/85.09 0.726  0.795 81.13/85.69  52.35 81.68/85.67 0.539  0.769
SFTTR  82.94/84.60 46.50  82.92/84.63 0.709  0.795 81.69/86.16 53.53  82.25/86.18 0.530  0.776
FeaDA  83.97/86.13 4431 83.90/86.12 0.723  0.796 84.25/85.47 53.49 84.22/85.16 0.548 0.771

Table 2: Results on CMU-MOSI and CMU-MOSEI. { means the result from Sun and Tian (2025). “Acc” is
Accuracy, "F1" is F1 Score. The "/" in Acc-2 (Zadeh et al., 2017) corresponds to "negative/non-negative" and the "/"

in F1 (Tsai et al., 2019) corresponds to "negative/positive

nonon

s indicates that the method does not take this metric

into account. “MAE” is Mean Absolute Error, "Corr" is Pearson Correlation.

Model CH-SIMS
Acc-2T Acc-3T FI1T MAE] Corr?
TEN 78.38 65.12  78.62 0.432  0.591
LMF+ 77.77 64.68 77.88 0441 0.576
MulT+¥ 78.56 65.12 79.66 0.453  0.561
MISAT 76.54 - 76.59 0447  0.563
Self-MM 78.07 65.08 78.27 0.431  0.601
ConFEDE  78.34 67.83 78.72 0.395  0.640
SFTTR 78.56 68.49 78.82 0.380 0.645
FeaDA 79.43 6543 7943 0417 0.595

Table 3: Results on CH-SIMS.

hyperparameters is provided in the appendix A.S.

4.3 Result Comparison

Table 2 and Table 3 compare our method with the
state-of-the-art approaches on three datasets. We
highlight the best-performing values in bold.

Table 2 reports our results on CMU-MOSI and
CMU-MOSEI. On both classification and regres-
sion metrics, our method is either superior to or
on par with most baselines. For coarse-grained
classification (Acc-2 and F1) we achieve the best
performance: In CMU-MOSI, Acc-2 improves the
SFTTR by about 1.5%, and F1 by about 1.6%,
demonstrating our model’s stronger understand-
ing of sentiment polarity. On fine-grained metrics
(Acc-7) and regression metrics we do not outper-
form the baseline, but the performance remains
broadly comparable.

Table 3 also presents results on the more chal-
lenging CH-SIMS dataset, where the overall trend
is consistent with MOSI and MOSEI. For coarse-
grained classification we again outperform best,
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confirming that our method can effectively extract
affective cues and grasp sentiment polarity across
diverse scenarios. Although we lag slightly on
fine-grained and regression metrics, the overall per-
formance remains excellent.

4.4 Ablation Study and Error Analysis

We conducted five ablation studies on CMU-MOSI
to validate the contribution of each component
and to explain why some metrics fall short of
expectations. The results are reported in Table
4, where “-un?” removes the unimodal loss,
con’” removes the contrastive-decomposition loss,
“_KL” removes the KL loss, “-P” removes the
soft prompts. Consistent with the main experi-
ments, our full model achieves the best Acc-2 and
F1 scores.
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Notably, when the soft prompts are removed,
Corr reach the highest values, and Acc-7 also
shows a certain degree of improvement. We hy-
pothesize that soft prompts tend to over-emphasize
similar features during training, thereby suppress-
ing fine-grained cues, which explains the observed
boost in fine-grained and regression metrics once
they are ablated. Similarly, removing the KL loss
also yields better fine-grained classification and re-
gression results, which aligns with our expectation.
The KL loss is intended to let similarity features
guide the auxiliary modality during fusion. While
this strengthens the auxiliary modality’s role, it si-
multaneously causes the loss of unique dissimilar
features, which may in fact carry affective infor-
mation. Since sentiment analysis is ultimately a
classification-centric task, we nonetheless regard



the full model as the most effective configuration.

CMU-MOSI

Model
Acc-2 1 Acc-77 F171 MAE | Corr 1
-uni  83.67/85.98  43.00 83.57/85.95 0.735  0.794
-con  82.94/84.60 39.50 82.90/84.61 1.793  0.790
-KL 82.27/84.4 50.98 82.40/84.12 0.559  0.755
-P 83.82/85.82  48.10  83.76/85.83  0.694  0.808
FeaDA 83.97/86.13 4431  83.90/86.12 0.723  0.796

Table 4: Ablation Study on CMU-MOSI.

4.5 Visualization

Figure 3 shows the 2D visualization of the features
on the CH-SIMS dataset using the t-SNE method.
We mainly focus on the distribution of the red, yel-
low, and blue points in the figure. Without any
optimization method, it can be seen that the sim-
ilar features of the three modalities still remain
independently distributed and do not interact with
each other. After applying our FeaDA method, the
similar features of the three modalities become as-
sociated. Unlike ConFEDE (Yang et al., 2023) and
SFTTR (Sun and Tian, 2025), whose interactions
among similar features are highly intensive, our
method maintains a certain degree of independence
while allowing interaction. The comparisons with
prior methods confirms that the auxiliary modality
has indeed gained prominence without becoming
overly reliant on the textual modality; the learned
features preserve the desired independence during
interaction. Similarity-driven features form a com-
pact cluster, which aligns with our strong perfor-
mance on the binary task.

-

a. Raw Feature b. Feature with ConFeDE

c. Feature with SFTTR d. Feature with FeaDA

Figure 3: The figure a shows the visualization of feature
distribution without optimization, the figure b shows the
feature distribution using ConFEDE, the figure ¢ shows
the feature distribution using SFTTR, the figure d shows
the feature distribution using FeaDA. The colors red,
green, bule represent similar features of Text, Vision,
Audio, and cyan, yellow and magenta represent dissimi-
lar features of Text, Vision, Audio.
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4.6 Discussion

Here we analyze why our model degrades on fine-
grained classification and regression metrics. We
argue there are two main reasons. According to the
t-SNT visualization, the auxiliary modality is in-
deed strengthened and becomes less dependent on
the dominant one. However, the features we exploit
to enhance the auxiliary modality are similarity-
based, which causes their weights to dominate the
auxiliary feature space. In some scenarios, fine-
grained classification and regression may hinge on
features that carry distinctive emotional cues; un-
der such conditions, our similarity-oriented feature
augmentation inadvertently dilutes these unique
signals, leading to performance decline.

Moreover, compared to SFTTR, our approach
demonstrates a marked superiority in model com-
plexity. While maintaining accuracy on par with,
or slightly better than SFTTR, it reduces the num-
ber of trainable parameters by approximately 60%.
Since SFTTR uses the intricate sequential cross
modality fusion network during feature fusion,
which incurs substantial computational overhead.
In contrast, we forgo any elaborate fusion architec-
ture in the final stage and instead employ a simple
concatenation operation, yet still preserve the accu-
racy required for emotion analysis.

5 Conclusion

In this paper, we present FeaDA, a feature decom-
position and augmentation framework for multi-
modal sentiment analysis. FeaDA comprises three
collaborative components: a feature-decomposition
projection module, a feature-fusion module, and
a feature augmentation module. Together, they
elevate the role of the auxiliary modality during
fusion. At the final stage we deliberately adopt
the simplest strategy, direct concatenation, to avoid
overshadowing the augmentation effects with an
overly sophisticated fusion network. Experimental
results show that we effectively elevated the status
of auxiliary modalities, mitigating modal bias in
multimodal sentiment analysis to a certain extent.
While the independence of auxiliary modalities is
strengthened, their ability to discern sentiment po-
larity remains uncompromised. Future work will
seek more appropriate features to reinforce the aux-
iliary modality, aiming to improve fine-grained sen-
timent analysis.



Limitations

Although FeaDA advances several metrics on main-
stream benchmarks, two limitations remain. First,
to suppress noise while strengthening the auxiliary
modality, we rely on similarity-based features for
augmentation; this inadvertently causes the model
to overlook unique yet affective cues inherent in
the auxiliary modality. Second, being grounded in
contrastive learning, our approach is highly sensi-
tive to batch size: larger batches yield better results
but demand prohibitive hardware resources. The
details between batch-size and metrics are shown
in Appendix A.4.
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A Appendix

A.1 Baseline Details

1)TEN (Poria et al., 2017) Jointly models intra-
modality dynamics within each modality and inter-
modality dynamics across modalities, enabling a
richer understanding of a speaker’s affective orien-
tation in videos.

2)LMF (Liu et al., 2018) Factorizes the high-
order weight tensor into modality-specific low-
rank factors, eliminating the need to explicitly con-
struct high-dimensional tensors and thus mitigating
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the exponential growth in computational cost and
parameter count that plagues tensor-based multi-
modal fusion.

3)MulT (Tsai et al., 2019) Introduces a novel
cross-modal attention mechanism that can directly
process unaligned multimodal language sequences.

4)MISA (Hazarika et al., 2020) Decomposes
each modality’s features into modality-invariant
and modality-specific subspace representations,
then fuses these representations for prediction.

5)Self-MM (Yu et al., 2021) Leverages self-
supervision to automatically generate unimodal la-
bels, guiding the model to learn both inter-modal
consistency and inter-modal differences without
any human annotation cost.

6)FEMER (Yang et al., 2022) Explicitly disen-
tangles each modality’s representation into shared
and private components, combining adversarial
training with attentive fusion to address the het-
erogeneity challenge in multimodal emotion recog-
nition.

7)ConFEDE (Yang et al., 2023) Unifies con-
trastive learning to decompose each modality’s
features into similar and dissimilar parts, using
the text modality’s similar features as anchors to
jointly perform cross-sample contrastive learning
and within-sample modality decomposition.

8)SFTTR (Sun and Tian, 2025) Adopts a con-
trastive decomposition and sequential fusion strat-
egy that thoroughly excavates the commonalities
and discrepancies between textual and audio/visual
modalities.

9ALMT (Zhang et al., 2023) Introduces an
adaptive late-fusion mechanism with modality-
specific transformers that dynamically re-weights
textual and acoustic/visual streams, enabling fine-
grained alignment of cross-modal emotional cues
while preserving unimodal discriminability.

10)TETFN (Wang et al., 2023a) Devises a
temporal-enhanced Transformer fusion network
that hierarchically models text—audio—visual in-
teractions via time-aware cross-modal attention,
jointly optimizing synchronous alignment and asyn-
chronous discrepancy mining for robust multi-
modal sentiment detection.

A.2 Datasets Details
CMU-MOSI (Zadeh et al., 2016).

This is an English-language dataset, comprising a
collection of 2199 opinion video clips. The dataset
is divided into 1284 training samples, 229 vali-
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dation samples, and 686 testing samples. Each
opinion video is annotated with sentiment values
within the range of [-3, 3]. Lower annotation
values indicate more negative sentiment, while
higher values indicate more positive sentiment. The
dataset is meticulously annotated by humans, in-
cluding labels for subjectivity, sentiment intensity,
visual features annotated on a per-frame and per-
opinion basis, and audio features annotated on a
per-millisecond basis.

CMU-MOSEI (Bagher Zadeh et al., 2018).

This dataset can be considered an extended ver-
sion of CMU-MOSI. The CMU-MOSEI dataset is
larger in scale, containing 22,852 annotated video
clips from 1,000 different speakers. It covers a
broader range of topics and emotional expressions.
The dataset is divided into 16,326 training sam-
ples, 1,871 validation samples, and 4,659 testing
samples.

CH-SIMS (Yu et al., 2020).

This is a Chinese-language dataset, consisting of
60 original videos and 2,281 video segments. Each
video segment is annotated with sentiment values
within the range of [-1, 1], and is accompanied
by unimodal sentiment labels. Lower annotation
values indicate more negative sentiment, while
higher values indicate more positive sentiment. The
dataset is divided into 1,368 training samples, 456
validation samples, and 457 testing samples.

A.3 Evaluation Metrics

Since sentiment data is inherently both continu-
ous and discrete in nature, and the complexity of
multimodal data as well as the demands of prac-
tical applications require models to handle both
sentiment categories and sentiment intensity simul-
taneously. Therefore, it is necessary to evaluate
the performance of multimodal sentiment analysis
on both classification and regression. For CMU-
MOSI and CMU-MOSE]I, in the classification, we
select the accuracy of 2-class prediction(Acc-2),
7-class prediction(Acc-7), and F1-score as the clas-
sification evaluation metrics. For CH-SIMS, in
the classification, we select the accuracy of 2-class
prediction(Acc-2), 3-class prediction(Acc-3), and
F1-score as the classification evaluation metrics. To
maintain consistency with prior work, we calculate
Acc-2 and F1-Score in two ways for CMU-MOSI
and CMU-MOSEI. For Acc-2 (Zadeh et al., 2017),
we set negative/non-negative evaluations. For F1-
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Score (Tsai et al., 2019), we set negative/positive
evaluations. For regression, we evaluate using
Mean Absolute Error (MAE) and Pearson correla-
tion (Corr).

A.4 Analysis of Batch Size

As we employed contrastive learning in the feature
decomposition module, this section examines how
batch size affects model performance. We select
batch sizes of {2, 4, 8, 16, 32} to observe the trends
of various metrics under different settings. Figure
A4 illustrates the trends of all metrics across differ-
ent batch sizes. It can be observed that performance
improves as the batch size increases.

15 2
batchsize batch-size

Figure A4: The trends of each metric under varying
batch sizes, blue denotes Acc-2, and green denotes Acc-
7.

A.5 Hyperparameter Setting

We set x € {0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.09},
the results are shown in Figure A5. Notably, the
choice of hyperparameter has a significant impact
on model performance. When testing «, we fix 3
and ~; likewise, when testing 8 and -, we fix the
other two hyperparameters, respectively. We select
the value of each hyperparameter that yields the
best F1 score, therefore, we select o = 0.02, 5 =
0.03, and vy = 0.01.
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Figure AS5: Experimental results with different hyperpa-
rameter settings. The x-axis represents the values of the
hyperparameter, and the y-axis denotes the average F1
score.



