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Abstract

Chemical molecules can be represented as
graphs or as language descriptions. Train-
ing unimodal models on graphs results in dif-
ferent encodings than training them on lan-
guage. Therefore, the existing literature force-
aligns the unimodal models during training
to use them in downstream applications such
as drug discovery. But to what extent are
graph and language unimodal model represen-
tations inherently aligned, i.e., aligned prior to
any force-alignment training? Knowing this
is useful for a more expedient and effective
forced-alignment. For the first time, we ex-
plore methods to gauge the alignment of graph
and language unimodal models. We find com-
pelling differences between models and their
ability to represent slight structural differences
without force-alignment. We also present an
unified unimodal alignment (U2A) benchmark
for gauging the inherent alignment between
graph and language encoders which we make
available with this paper'.

1 Introduction

In chemistry, molecules can be represented in two
primary formats: a language description or a molec-
ular graph (Zeng et al., 2022). Table 7 provides
an example of the malic acid molecule in different
formats (National Center for Biotechnology Infor-
mation, 2025). The language description can be
encoded using language models such as BERT (De-
vlin et al., 2019) and GPT (Radford et al., 2018,
2019). Molecular graphs can be encoded either ex-
plicitly or implicitly. Explicit encoding uses graph-
based models (Hu* et al., 2020; Xia et al., 2023),
such as Graph Convolutional Networks (GCNs)
(Kipf and Welling, 2017) and Graph Isomorphism
Networks (GINs) (Xu et al., 2019), which directly
take the molecular graph as input. Alternatively,
implicit encoding uses sequence models (Wang

'GitHub link: U2A Benchmark Repository
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Figure 1: How Aligned Are Unimodal Language and
Graph Encodings of Chemical Molecules?

et al., 2019; Chithrananda et al., 2020), where the
input sequence is derived from the graph, such as
the Simplified Molecular Input Line Entry System
(SMILES) (Weininger, 1988; Zeng et al., 2022).
SMILES sequences are transformed from molecu-
lar graphs using depth-first tree traversal.

The fact that different modalities, graph and lan-
guage, demand different kinds of unimodal models
and result in different encodings contrasts with the
need for encodings of the same object to align to-
gether. Consequently, as shown in Figure 1, in
this paper we ask whether unimodal graph and lan-
guage encodings corresponding to the same chemi-
cal molecules are inherently aligned together, i.e.,
without specifically training them under an align-
ment objective.

Unlike unimodal language and vision encod-
ings, gauging the alignment between graph and
language unimodal encodings of molecules has not
been studied before. Efforts have concentrated on
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force-aligning the unimodal encodings during train-
ing, to be used in downstream applications such as
drug discovery (Seidl et al., 2023) and new mate-
rial design (Jablonka et al., 2024). Force-aligning
graph-language models aims to bring the two types
of embeddings of the same object closer together,
while pushing the embeddings of different objects
further apart, thereby preserving the properties of
both modalities. For example, MoleculeSTM inte-
grates molecular structures and textual knowledge
to enable zero-shot drug design based on text-based
instructions (Liu et al., 2023).

In this paper, we gauge the inherent alignment
between graph and language unimodal represen-
tations. We believe that encoders that are bet-
ter aligned together (without the need for force-
aligning them) could speed up forced-alignment
training and reduce the amount of training data
needed, as we show in our application experiment
results. Creating paired graph and language (par-
allel) data for molecules is costly, requiring exten-
sive experimental validation and expert knowledge
(Mayr et al., 2018). For example, bioassays and
bioactivities often come from wet-lab procedures
with multiple chemical and biological steps.

In contrast with vision and language unimodal
representations for which there are unified plat-
forms (e.g., Hugging Face), there exist no unified
platforms to gauge the alignment of graph and lan-
guage representations. Therefore, we present a
novel unified benchmark bringing together graph-
and language-models used for encoding molecule
representations from various platforms, ensuring
their compatibility.

Gauging alignment between graph and language
encodings of molecules provides a coarse-grained
approach because the inputs to the unimodal mod-
els do not focus on the topology of the graphs. Here,
we also take a fine-grained approach which focuses
on the topology of the molecular representations.
To do so, we leverage data concerning Isomers
and Tautomers. Isomers share the same molecu-
lar formula, with identical atom counts for each
element, but differ in structure. Tautomers, a spe-
cific type of isomers, result from interconversion,
such as the relocation of a hydrogen atom within
the molecule, creating distinct yet similar struc-
tures. Isomers and tautomers are derived from the
original molecule graphs, consisting of language-
graph pairs. We compare the structural alignment
of molecular graphs using original molecules, iso-
mers, and tautomers, and analyse their alignment

scores.

Centered Kernel Alignment (CKA; Kornblith
et al., 2019) is widely used for alignment evalua-
tion, and in this work, we adopt Debiased CKA
(Murphy et al., 2024), a more robust metric, with
our experiments further validating its effectiveness.

To the best of our knowledge, this is the first

study to explore the inherent alignment between
graph models and language models. Our key find-
ings and contributions are as follows:

* Inherent alignment: Our study is the first
to demonstrate that unimodal graph and lan-
guage models exhibit inherent alignment.
Moreover, we reveal that this alignment varies
between different unimodal models.

» Structure-level alignment: We also show
that these unimodal models align at both
coarse-grained and fine-grained structural lev-
els. MolCLR with GIN is more strongly struc-
turally aligned with language models than
with GCN.

* Unified benchmark: We contribute a bench-
mark for evaluating the inherent alignment
between graph and language encoders.”

2 Related Work

Force-aligned Graph-Language Models Force-
aligned graph-language models have gained atten-
tion due to their powerful multimodal capabilities.
MoleculeSTM integrates molecular structures and
textual knowledge, enabling drug design using text-
based instructions and biological activity prediction
(Liu et al., 2023). MolFM, a multimodal founda-
tion model, is designed to facilitate joint represen-
tation learning from molecular structures, biomedi-
cal texts, and knowledge graphs (Luo et al., 2023).
MoMu (Su et al., 2022) and CLAMP (Seidl et al.,
2023) use contrastive learning to align molecular
graphs and related textual data, or for activity pre-
diction. All these models widely use transformer-
based SMILES encoders, such as MegaMolBART
(Irwin et al., 2022), and graph-based encoders, such
as Graph Convolutional Networks (GCNs) (Kipf
and Welling, 2017), to encode molecules. Mean-
while, they also use transformer-based language
encoders, such as SciBERT (Beltagy et al., 2019),
to encode language descriptions. In this paper, we
use MolFM as an upper-bound due to its outstand-
ing performance on various downstream tasks.

2GitHub link: U2A Benchmark Repository
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Molecular Models Molecular models have been
widely explored in both graph and SMILES for-
mats. Models such as MolBERT (Fabian et al.,
2020) and ChemBERT (Zhang et al., 2022), in-
spired by the BERT architecture, are trained on
SMILES representations to capture molecular fea-
tures through self-supervised learning. Similarly,
models like Chemformer (Irwin et al., 2022; West-
erlund et al., 2024), MolBART (Irwin et al., 2022),
and BARTSmiles (Chilingaryan et al., 2024) are
based on the BART architecture, focusing on
sequence-to-sequence learning, denoising, and
molecular generation from SMILES data. Mol-
Former (Ross et al., 2022) is a transformer-based
model trained on SMILES sequences of 1.1 bil-
lion unlabeled molecules from the PubChem and
ZINC datasets. On the other hand, MoICLR (Wang
et al., 2022) is a graph-based model that uses con-
trastive learning on molecular graphs and uses both
Graph Convolutional Networks (GCN) and Graph
Isomorphism Networks (GIN) for comparison. In
this paper, we use MolFormer and MolCLR for the
experiment, as they encode SMILES and molecular
graphs respectively.

Language Models Language models encompass
a broader range of architectures. ModernBERT
represents the state-of-the-art in the BERT series,
bringing modern optimizations to bidirectional
encoder-only models and offering a significant
Pareto improvement over older encoders (Warner
et al., 2025). SciBERT, a BERT-based model, lever-
ages unsupervised pretraining on a multi-domain
scientific corpus to enhance scientific NLP tasks
(Beltagy et al., 2019). SentenceBERT is a spe-
cialized BERT-based model that employs siamese
and triplet network structures to generate seman-
tically meaningful sentence embeddings (Reimers
and Gurevych, 2019). The GPT series models,
developed with an auto-regressive approach for
text generation, have also been found effective for
text embedding tasks in various studies (Radford
etal., 2018, 2019). In this paper, we explore vari-
ous BERT-series models, including SciBERT, Sen-
tenceBERT, and ModernBERT, as BERT-like mod-
els are widely used as language encoders in force-
aligned models. Furthermore, we also explore GPT
as an extension.

Alignment Metrics Several approaches have ex-
plored the alignment and similarity of different en-
coders. Fundamental similarity measures include
cosine similarity and Canonical Correlation Analy-

sis (CCA) (Hardoon et al., 2004) along with their
extensions, such as Singular Vector Canonical Cor-
relation Analysis (SVCCA) (Raghu et al., 2017).
Kornblith et al. (2019) proposed Centered Kernel
Alignment (CKA) as a measure of representation
similarity. CKA can be biased, particularly with
limited data, and it may yield artificially high sim-
ilarity scores even for random matrices due to its
sensitivity to differing feature dimensions; Debi-
ased CKA has been introduced to mitigate this
issue (Murphy et al., 2024). We first validate the
effectiveness of Debiased CKA compared to tra-
ditional CKA and then adopt it as the metric for
subsequent experiments.

Molecular Graph Similarity The Jaccard index
method measures graph similarity based on edge
set overlap (Strehl et al., 2000). The Jaccard in-
dex method is also used to measure fingerprint
overlap between molecules for assessing molecu-
lar function similarity (Chung et al., 2019). Graph
edit distance counts the minimum operations (inser-
tion, deletion, substitution) needed to transform one
graph into another (Wilson and Hancock, 1997).
Graph kernels compare substructures such as walks,
paths, and subtrees (Gértner et al., 2003). The
spectral method uses eigenvalues of adjacency or
Laplacian matrices to assess similarity (Wilson and
Hancock, 1997; Wilson and Zhu, 2008). It is math-
ematically robust and invariant to node ordering.
In this paper, we use both the spectral method and
the Jaccard index to evaluate graph similarity and
molecular functional similarity.

3 Data Collection, Processing and
Analysis

3.1 Collection of Isomers and Tautomers

To explore structural-level inherent alignment be-
tween molecular graphs and language descriptions,
we collect isomers and tautomers for each molecule
and designate three of them as control groups. Our
base dataset is ChEBI 20, an open-source dataset
introduced in the Text2Mol paper (Edwards et al.,
2021). This dataset contains 33,008 molecular
SMILES and language description pairs. Isomers
can be found from molecular SMILES using the
open-source toolkit RDKit (Landrum et al., 2025),
while tautomers can be collected via the open API
MAYGEN (Yirik et al., 2021). RDKit is a col-
lection of cheminformatics and machine-learning
software written in C++ and Python. MAYGEN is
an open-source chemical structure generator that
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offers an API for tautomer generation. However,
some molecules do not have isomers or tautomers,
and the toolkit and API lack information for all
33, 008 molecules. After filtering, 3,515 items re-
main. Since a single molecule can have multiple
isomers and tautomers, we randomly select one
isomer and one tautomer as candidate molecules.

3.2 Extraction of Chemically Relevant Terms

Language descriptions often contain general terms
that are not relevant to graph structures or molec-
ular functions, such as phrases like "The molecule
is...". Removing these may yield better represen-
tations, though they may also encode important
indirect associations. Therefore, in our experimen-
tal setup, we test both natural language descriptions
and term-extracted descriptions, for which we ap-
ply an extraction process to identify and extract
chemically relevant terms. Specifically, we first
use ChatGPT-40-mini to extract an initial list of
terms related to graphs and chemistry from each
language description. This list is then manually
curated to ensure the relevance and accuracy of the
extracted terms. Finally, we obtain the extracted
chemical terms and pair them with the correspond-
ing molecules. Section B provides details about the
extraction prompt.

3.3 Molecular Similarity Analysis

Theoretically, tautomerization conversion com-
monly results from the relocation of compounds
within the molecule. Therefore, tautomers have
a more similar structure to the original molecular
graph, whereas isomers can be completely different.
A concrete example can be seen in the molecular
formula Cy HgOs, illustrated in Figure 4. To ver-
ify whether our collected dataset aligns with this
theoretical expectation, we assessed the similarity
between the original molecules and their isomers,
as well as their tautomers. We evaluate two kinds
of similarities: graph similarity and functional sim-
ilarity.

Graph similarity We use spectral distance (Wil-
son and Zhu, 2008), which ranges from zero to
positive infinity, as a metric for evaluating graph
similarity, as mentioned in Section 2. In our dataset,
the mean spectral distance between the original
molecular graphs and their isomers is 2.69, while
the mean spectral distance to their tautomers is
2.03. These values indicate that tautomer graphs
are more similar to the original molecular graphs

(a) Original (b) Tautomer (c) Isomer

Figure 2: Original Cy HgOj and its tautomer and isomer.
The original molecular is more similar to the tautomer
compared with the isomer. The structure shows nodes
(carbon implied at vertices) connected by bonds.

than isomer graphs.

Functional similarity To assess molecular func-
tional similarity, we use the Jaccard index to mea-
sure fingerprint overlap (ranging from zero to one)
(Chung et al., 2019). Molecular fingerprints are
molecular descriptors that describe a molecule’s
features or functional groups as binary digits. The
functional similarity between original molecules
and their isomers is 0.029, whereas that between
original molecules and their tautomers is 0.4178.
These values, consistent with graph similarity re-
sults, further indicate that tautomers are function-
ally more similar to the original molecules.

After data processing, we obtain a dataset in
different molecular graphs (original molecules,
isomers and tautomers) and different corpora
(language description and extraction of chemical
terms), resulting in six control groups (see in sec-
tion C). An example of the dataset is shown in
Appendix D, and the structural visualizations of
isomers and tautomers are in Figures 2b and 2c.
More examples are provided in Appendix E.

4 Experimental Setting
4.1 Questions and hypotheses

Is There Inherent Alignment Between Unimodal
Graph and Language Encodings? We hypothe-
size that there exists a degree of inherent alignment
between molecule graph and language encodings.
This may vary across different graph and language
encoders and it is influenced by the representation
capacity and pretraining of the unimodal encoders.
Moreover, inherent alignment is also affected by
the architecture, as prior research (Csiszarik et al.,
2021) suggests that models with similar architec-
tures tend to exhibit higher alignment.

To What Extent Is Structure-Level Inherent
Alignment Present? We further hypothesize that
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the inherent alignment between graph and language
encodings is sensitive to structural variations due
to the topological encoding capability of the graph
encoder.

4.2 Setup

In Section 5.1, we use MolFM and its randomly ini-
tialized counterpart as the upper- and lower- bound,
respectively, because MolFM achieves state-of-the-
art performance with force-aligned training and
randomly initialized encoders lack training and
modality-specific properties. Our experiment for
the two models builds three control groups respec-
tively as reference bounds (see Appendix G for
details). We gauge the alignment of MolFM be-
tween the same language descriptions and differ-
ent molecular structures (original molecules, tau-
tomers, and isomers). As described in Section 3.3
and Section 4.1, tautomers are more similar to
original molecules than isomers. The alignment
score between the language description and origi-
nal molecules, tautomers, and isomers should theo-
retically decrease progressively (three-descending
pattern). We use this pattern as a reference for
gauging structural inherent alignment.

In Section 5.2, using the defined bounds, we
gauge inherent alignment between unimodal graph
and language within six different language en-
coders (BERT, SciBERT, SentenceBERT, Mod-
ernBERT, and GPT) and two molecular graph en-
coders (MoICLR and MolFormer) (Appendix H).

In Section 5.3, we gauge different inherent
alignment across different structures, considering
structural changes from the original molecules
to isomers and tautomers. Theoretically, sharing
the same language encoding, inherent alignment
should decrease as structures change from original
molecules to isomers and tautomers. We evaluated
whether unimodal graph and language models can
detect major structure changes from the original
molecular graph to isomers with decreasing Debi-
ased CKA scores and whether the models’ inherent
alignments follow the three-descending pattern as
well as force-aligned models.

In Section 5.4, we present our application ex-
periments. To investigate whether better-aligned
encodings can accelerate forced-alignment training,
we train a two-layer multilayer perceptron (MLP)
to align graph and language encodings of the same
dimensionality using two different training regimes
(1,000 and 10,000 steps), and measure alignment
improvement using Debiased CKA scores. To eval-

uate whether higher inherent alignment translates
into better retrieval performance, we train another
two-layer MLP to perform cross-modality retrieval
between the graph and language encodings. In both
experiments, we randomly sample 200 unimodal
graph—language encoding pairs, using 100 for train-
ing and 100 for testing. To ensure robustness, we
conduct each experiment over 10 runs and report
the mean Top-10 accuracy for the second task.

4.3 Encoders

We selected multiple language and molecular en-
coders for our experiments based on their perfor-
mance and their use in force-aligned models.

Language Encoders As mentioned in Section 2,
BERT-like models (Devlin et al., 2019; Reimers
and Gurevych, 2019; Beltagy et al., 2019) are
widely used in molecular graph-language models
as language encoders for encoding language de-
scriptions. Therefore, we select BERT, the domain-
specific SciBERT, and Sentence-BERT as candi-
date language models. In addition, we explore the
recent ModernBERT (Warner et al., 2025), which
brings modern model optimizations to encoder-
only models. GPT-series models (Radford et al.,
2018, 2019) are autoregressive and are widely used
for generative tasks. These models can also be used
for language embedding (Jiang et al., 2024). We
employ the [CLS] token and mean pooling as lan-
guage encodings for BERT-like models, whereas
for GPT-like models, we use mean pooling as lan-
guage encodings.

Molecular Graph Encoders As mentioned in
Section 2, there are two main categories of molec-
ular models. Adapted language models trained
on SMILES sequences, such as MolFormer (Ross
et al., 2022), implicitly encode molecular graphs,
while GNN-based encoders, such as Graph Con-
volutional Networks (GCN) and Graph Isomor-
phism Networks (GIN), explicitly encode molecu-
lar graphs, as seen in MolCLR (Wang et al., 2022).
Therefore, we employ both MolFormer and Mol-
CLR as molecular encoders to explore both implicit
and explicit methods.

4.4 Benchmark Configuration and Release

We present an unified unimodal alignment (U2A)
benchmark, which supports three encoder types:
graph, language, and force-aligned graph-language
models. The U2A benchmark includes an evalua-
tion toolkit for alignment scores, such as Centered
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Kernel Alignment (CKA) (Kornblith et al., 2019),
Debiased CKA (Murphy et al., 2024), and other
metrics. Our U2A benchmark reduces the effort
required to find and configure encoders and evalua-
tion tools, as various graph and language models
originate from different platforms and applications.
The U2A benchmark unifies these models, ensur-
ing compatibility and facilitating further research.
Appendix F provides runtime details.

5 Results and Analysis

In our experiments, we first establish the upper
and lower bounds. Then, we explore the inherent
alignment between molecular graphs and language
encoders, followed by an assessment of structural-
level alignment.

5.1 Upper-, Lower-Bound and Comparison

As set up in Section Section 4.2, we use MolFM to
build the upper-bound and its randomly initialized
counterpart to build the lower-bound.

CKA v.s. Debiased CKA As shown in Table 1,
the randomly initialized encoder shows a low CKA
score, which should be zero, indicating a bias in the
general CKA compared to Debiased CKA (Murphy
et al., 2024). To further assess these two metrics,
we compare them using ten independent random
samples, each selecting 2, 000 out of 3, 515 molec-
ular graph and language pairs. The results are pre-
sented in Appendix K. The results show that be-
yond reducing bias, Debiased CKA is more stable
than general CKA, with lower standard deviation.
Therefore, we employ Debiased CKA as the met-
ric for our subsequent experiments.

Alignment Comparison As shown in Table 1,
all Debiased CKA scores from MolFM outper-
form those from the randomly initialized encoder,
demonstrating that force-alignment training effec-
tively aligns the two encoders. The Debiased CKA
score between the original molecule and language
description from MolFM is nearly 0.5, while that
from randomly initialized encoders is close to zero.

Tautomers v.s. Isomers In a comparison be-
tween the original molecule, tautomers, and iso-
mers, the scores exhibit three-descending pattern:
0.497, 0.431, and 0.021 (Table 1). This result
aligns with our theoretical expectation, demonstrat-
ing that the force-aligned graph-language model
can effectively detect structural differences.

Model Method  Language Type Molecule Type
Ori. Iso. Tau.
CKA Language des. 0499 0.022 0434
MolFM De. CKA Language des. 0.497 0.021 0.431
CKA Extraction 0.508 0.023 0.443
De. CKA  Extraction 0.505 0.021 0.440
CKA Language des. 0.068 0.068 0.068
Random De. CKA Language des. 0.000 0.000 0.000
Initial CKA Extraction 0.068 0.068 0.069
De. CKA  Extraction 0.000 0.000 0.001

Table 1: Performance comparison of upper- and lower-
bound with CKA and Debiased CKA (De. CKA). Ori.,
Iso. and Tau. represent original molecule, isomers and
tautomers respectively.

Language Description v.s. Chemical Extraction
The results also show a slight improvement in
alignment between molecular graphs and extracted
chemical descriptions compared to that between
molecular graphs and language descriptions, indi-
cating that MolFM is more sensitive to chemical
information.

5.2 Is There Inherent Alignment Between
Unimodal Graph and Language
Encodings?

5.2.1 MolCLR

Inherent Alignment between MolCLR and Lan-
guage Encoders MOolCLR employs two types of
graph encoders: Graph Convolutional Networks
(GCN) (Kipf and Welling, 2017) and Graph Iso-
morphism Networks (GIN) (Xu et al., 2019). There-
fore, we explore the inherent alignment between
these two encoders and language encoders. As
presented in Table 2, all Debiased CKA scores be-
tween graph embeddings and language embeddings
fall within the upper- and lower- bound. For ex-
ample, Debiased CKA scores are 0.246 (MolCLR
(GCN) and SciBERT mean pooling), 0.256 (Mol-
CLR (GCN) and SentenceBERT), 0.206 (MolCLR
(GIN) and SciBERT mean pooling), and 0.222
(MoICLR (GIN) and SentenceBERT). These re-
sults demonstrate the inherent alignment that al-
ready exists in MolCLR and language encoders.

Different Degrees of Alignment Between Mol-
CLR and Language Encoders The results re-
veal that different unimodal models exhibit vary-
ing degrees of alignment. For example, the Debi-
ased CKA score of embeddings from GPT mean
pooling and MolCLR (GCN) is 0.235 whereas the
Debiased CKA score of embeddings from SciB-
ERT mean pooling and MolCLR (GCN) is 0.246.
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ModernBERT, the state-of-the-art model, does not
demonstrate an advantage in inherent alignment
while SentenceBERT achieves the highest Debi-
ased CKA scores. In MolCLR, the results also
show that GCN get higher Debiased CKA scores
across all language models and embedding meth-
ods. For example, Debiased CKA score of embed-
dings from ModernBERT mean pooling and Mol-
CLR (GCN) is 0.152 while Debiased CKA score
of embeddings from ModernBERT mean pooling
and MolCLR (GIN) is 0.114.

Language Description v.s. Chemical Extraction
Unlike the force-aligned graph-language model,
the extraction of chemical information (Extrac-
tion condition) does not provide advantages across
BERT-series models. The embeddings of extracted
information show a decline across all BERT-series
language encoders, such as the score between SciB-
ERT mean pooling and MolCLR (GCN) decrease
from 0.246 to 0.228.

In MoICLR, both MolCLR(GIN) and Mol-
CLR(GCN) combined with SentenceBERT and
SciBERT achieve the highest and second-highest
Debiased CKA scores. This result aligns with
our hypothesis that SentenceBERT and SciB-
ERT have advantages in representation expression
that achieve better inherent alignment with Mol-
CLR(GIN) and MolCLR(GCN). The results also
show that GCN consistently obtains higher Debi-
ased CKA scores across all language models and
embedding methods, which is a new phenomenon
that has not been reported before.

5.2.2 MolFormer

Inherent Alignment between MolFormer and
Language Encoders MolFormer, which uses
SMILES as input, is adapted from masked lan-
guage models. As seen in Table 2, the results also
fall within the upper- and lower- bound, revealing
inherent alignment between MolFormer and vari-
ous language models, such as 0.267 (MolFormer
and SciBERT) and 0.356 (MolFormer and Sen-
tenceBERT)

Different Degrees of Alignment Between Mol-
Former and Language Encoders The highest
Debiased CKA score, 0.387, is observed between
MolFormer and SciBERT with mean pooling, fol-
lowed by SentenceBERT with mean pooling at
0.356. The results indicate that different unimodal
models exhibit varying degrees of alignment. SciB-
ERT with MolFormer achieves the highest score,

Model Embedding ‘ M ‘ MolFormer
| GCN  GIN |
CLS 0215 0.184 0.267
) Mean 0.246 0.206 0.387
SCiBERT Extraction CLS | 0.199 0.171 |  0.299
Extraction Mean | 0.228 0.193 0.361
Mean Embedding | 0.256 0.222 0.356
SentenceBERT . ction Mean | 0202 0.181 | 0313
CLS 0.156 0.132 0.209
Mean 0.109 0.093 0.165
BERT Extraction CLS | 0.101 0.091 0.157
Extraction Mean 0.094 0.083 0.146
CLS 0.141 0.105 0.143
Mean 0.152 0.114 0.157
ModemBERT . raction CLS | 0.117 0,083 | 0.131
Extraction Mean | 0.071 0.053 0.096
GPT Mean 0.235 0.198 0.298
Extraction Mean 0.254 0.222 0.344

Table 2: Debiased CKA score comparison between dif-
ferent language models with different embedding types
and MoICLR (GCN and GIN), as well as between that
and MolFormer. The double and single underlines mark
the highest and second-highest CKA scores. CLS and
Mean represent the language embedding extracted from
[CLS] embedding and mean pooling over all output
embedding, respectively. with and without Extraction
means the language model takes full language descrip-
tion and the extracted chemical terms as input.

while ModernBERT achieves the lowest scores
across all embedding types.

Language Description v.s. Chemical Extraction
Apart from SciBERT and GPT, the extraction of
chemical information leads to a decline in the De-
biased CKA score, such as a decrease from 0.356
to 0.313 with SentenceBERT.

The results are consistent with our hypothesis.
On the graph side, MolFormer is pretrained on 1.1
billion SMILES sequences using a Transformer-
based architecture and has the largest parameter
size (46.8M). Therefore, MolFormer exhibits the
strongest inherent alignment across language en-
coders. In contrast, MolCLR is pretrained on
10 million unique molecules, with a GCN vari-
ant having 3.98M parameters and a GIN variant
with 9.18M parameters. MolCLR (GCN) and Mol-
CLR (GIN) generally demonstrate similar inherent
alignment. On the language side, BERT-based en-
coders with similar parameter sizes tend to exhibit
comparable representational capacity. Sentence-
BERT (Reimers and Gurevych, 2019), which is
trained to enhance sentence representations, may re-
tain advantages in representing chemical language.
SciBERT (Beltagy et al., 2019), pretrained on a
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\ GIN \ GCN

Model Emb. ‘Ori. Iso. Tau. ‘ Ori. Iso. Tau.
. CcLS 0.184 0058 0.120 | 0215 0.035 0222
SciBERT Mean 0206 0084 0.148 | 0.246 0.054 0261

Extraction CLS | 0.171 0.043 0.111 | 0.199 0.026 0.199
Extraction Mean | 0.193 0.075 0.141 | 0.228 0.047 0.237

SentenceBERT Mean 0222 0.043 0.126 | 0.256 0.026 0.250
Extraction Mean | 0.181 0.044 0.113 | 0.202 0.027 0.197
BERT CLS 0.132 0.048 0.091 | 0.156 0.031 0.161
Mean 0.093 0.058 0.076 | 0.109 0.041 0.128

Extraction CLS | 0.091 0.028 0.070 | 0.101 0.018 0.098
Extraction Mean | 0.083 0.049 0.067 | 0.094 0.034 0.104

CLS 0.105 0.060 0.070 | 0.141 0.037 0.141
Mean 0.114 0.077 0.082 | 0.152 0.046 0.158
Extraction CLS | 0.083 0.062 0.069 | 0.117 0.039 0.125
Extraction Mean | 0.053 0.046 0.047 | 0.071 0.031 0.076

GPT Mean 0.198 0.058 0.115 | 0.235 0.040 0.253
Extraction Mean | 0.222 0.062 0.131 | 0.254 0.043 0.266

ModernBERT

Table 3: Structural levels inherent alignment between
different language models and the MolCLR with GIN
or GCN. Ori., Iso. and Tau. represent original molecule,
isomers and tautomers respectively.

large-scale scientific corpus within the biomedical
domain, may also have an advantage in represent-
ing chemical language, leading to better inherent
alignment with graph encoders.

5.3 To What Extent Is the Structure-Level
Inherent Alignment Present?

5.3.1 MolCLR

Structure-Level Inherent Alignment Between
MoICLR and Language Encoders The results
from Table 3 show that MoICLR with GIN fol-
lows the same three-descending pattern as the
force-aligned model MolFM across all graph and
language encoders, as the Debiased CKA score
follows the three-descending pattern for original
molecules, tautomers, and isomers. For example,
the Debiased CKA scores between MolCLR (GIN)
and mean pooling of SciBERT are 0.206, 0.148,
and 0.084, respectively.

However, the results also show varying per-
formance under the same settings with MolCLR
(GCN). For example, the scores between MolCLR
(GCN) and mean pooling of SciBERT are 0.246,
0.261, and 0.054 for the original molecular graph,
tautomers, and isomers, respectively. This pattern
diverges from that of the force-aligned model. The
results indicate that MolCLR (GCN) is not sensi-
tive to slight structural differences between the orig-
inal molecule and its tautomers, but can identify
major structural differences between the original
molecule and its isomers.

Language Description v.s. Chemical Extraction
In Table 3, for extraction of chemical terms, the

Debiased CKA scores between MolCLR (GIN) and
mean pooling of SciBERT are 0.193, 0.141, and
0.075 for the original molecular graph, tautomers,
and isomers, respectively, while the scores between
MOolICLR (GCN) and mean pooling of SciBERT
are 0.228, 0.237, and 0.047, respectively. The ex-
traction of chemical information with MolCLR fol-
lows the same pattern: MolCLR (GIN) can identify
structural changes across original molecules, tau-
tomers, and isomers, whereas MolCLR (GCN) can
only detect major structural changes.

5.3.2 MolFormer

Structure-Level Inherent Alignment Between
MolFormer and Language Encoders As seen
in Table 4, the results show that the Debiased CKA
scores between MolFormer and language mod-
els, including ModernBERT and GPT, follow the
same pattern as the force-aligned model MolFM.
With GPT, the Debiased CKA scores are 0.298,
0.276, and 0.107. This pattern aligns with the
force-aligned model when using chemical extrac-
tion. However, MolFormer with other language
models does not follow the same pattern, indicat-
ing that while they can identify major structural
changes between the original molecule and its iso-
mers, they cannot detect slight structural changes
between the original molecule and its tautomers.

Language Description v.s. Chemical Extrac-
tion As seen in Table 4, the extraction of chem-
ical information with MolFormer does not show
advantages in detecting structural changes. For
example, the Debiased CKA scores between Mol-
Former and mean pooling of SciBERT are 0.361,
0.377, and 0.131 for the original molecular graph,
tautomers, and isomers, respectively, which does
not exhibit the same structural pattern with force-
aligned model when use chemical extraction. The
Debiased CKA scores between MolFormer and
GPT follow the same pattern as the force-aligned
model MolFM, whereas that scores between Mol-
Former and other language encoders do not.

The results are consistent with our hypothesis.
Structural-level alignment is influenced by the topo-
logical encoding capability of the encoders. Mol-
Former encodes graphs as SMILES, which loses
the topological information of the graph and thus
limits its ability to capture topology. Therefore, al-
though MolFormer exhibits the strongest inherent
alignment, it can only detect significant structural
changes. GCN is weaker than GIN in distinguish-
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Model Embedding Ori. Iso. Tau.
. CLS 0.267 0.108 0.278
SCIBERT Mean 0387 0.149 0.394
Extraction CLS | 0.299 0.086 0.315

Extraction Mean | 0.361 0.131 0.377

CLS 0.209 0.085 0.215

BERT Mean 0.165 0.099 0.177
Extraction CLS | 0.157 0.054 0.166

Extraction Mean | 0.146 0.081 0.157

SentenceBERT Mean 0.356 0.103 0.365
Extraction Mean | 0.313 0.085 0.321

CLS 0.143 0.093 0.137

ModemBERT 1o 0.157 0.119 0.155
Extraction CLS | 0.131 0.098 0.138

Extraction Mean | 0.096 0.090 0.110

GPT Mean 0.298 0.107 0.276
Extraction Mean | 0.344 0.112 0.328

Table 4: Structural levels inherent alignment between
MolFormer and different language models.

Before 1,000 steps 10,000 steps
Model Training After A1 After A1
SentenceBERT+MoICLR ~ 0.263 0292 0.029 0.347 0.084
SciBERT+MolFormer 0.484  0.542 0.058 0.670 0.186

Table 5: Debiased CKA before training and after
1,000/10,000 steps. A 1 indicates the improvement
over the initial value.

ing graph structures. Theoretically, GCN is non-
injective due to mean aggregation, whereas GIN
achieves injective mappings through sum aggrega-
tion, matching the expressiveness of the Weisfeiler-
Lehman test (Xu et al., 2019). Empirical stud-
ies (Hu et al., 2020; Xiao et al., 2024) also demon-
strate GIN’s superior structural performance. Con-
sequently, MolCLR (GCN) and MolICLR (GIN)
achieve similar levels of inherent alignment with
language encoders, while MolCLR (GIN) is ex-
pected to achieve better structural alignment.

5.4 Application Experiments

Better Inherently Aligned Encodings Accel-
erate Forced-Alignment Training As shown
in Table 5, for both training regimes, encoding
pairs from SciBERT+MolFormer, initially exhibit-
ing higher Debiased CKA, achieve greater im-
provements after training compared to Sentence-
BERT+MoICLR (GCN). These results indicate
that, given the same number of training steps, en-
codings with better inherent alignment can acceler-
ate forced-alignment training.

Better Inherently Aligned Encodings Benefit
Cross-Modal Retrieval As shown in Table 6,

Model Debiased CKA  Top-10 Accuracy
Random Initialization 0.000 6.4%
SentenceBERT + MolCLR (GCN) 0.245 24.0%
SciBERT + MolFormer 0.388 36.8%
MolFM 0.576 59.5%

Table 6: Higher inherent alignment (as measured by
Debiased CKA) corresponds to better retrieval perfor-
mance.

encoding pairs with higher inherent alignment
(SciBERT + MolFormer, Debiased CKA of 0.388)
achieve better retrieval performance (36.8%) than
those with lower inherent alignment (Sentence-
BERT + MolCLR, Debiased CKA of 0.245, ac-
curacy 24.0%). Encoding pairs from MolFM, a
forced-alignment model, serve as a baseline and
outperform both in terms of Debiased CKA and
retrieval accuracy. In contrast, encoding pairs
from randomly initialized models achieve only
6.4% mean Top-10 accuracy. These results further
demonstrate a strong positive correlation between
inherent alignment and retrieval performance.

6 Conclusion

In this paper, we propose, for the first time, that
inherent alignment exists in unimodal graph and
language encoders and further verify the existence
of structural alignment. Additionally, we intro-
duce a novel U2A benchmark to facilitate further
research.

Force-aligned graph-language models, such as
MoleculeSTM, MoMu, and MolFM, widely use
SciBERT as the language encoder and the Graph
Isomorphism Network (GIN) as the molecular en-
coder. Although these models select encoders
based on downstream tasks rather than inher-
ent alignment, their choices align with our find-
ings. Better-aligned encodings accelerate forced-
alignment training, therefore our benchmark and
method can be used to decide on encoder pairs
for graph-language modelling when more powerful
unimodal encoders are released in the future.

We believe this research opens new directions for
the alignment of molecular graph-language models,
and our findings should also apply to the graph-LM
interface in other domains.
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7 Limitations

As both graph and language are encoded implicitly,
there is no transparent way to determine what is
aligned and what is not. Specifically, in structural-
level alignment, while the CKA score allows us to
identify structural changes, the encoding process
remains unknown.

Despite these promising results, our study fo-
cuses on the inherent alignment stage. There-
fore, more fine-grained alignment tasks involving
unimodal graph and language encoders, such as
molecule retrieval and molecule captioning, remain
unexplored and will be the focus of our future work.

Moreover, the metrics for graph similarity and
molecular function similarity measurement are lim-
ited, particularly since molecular function similar-
ity based on the Jaccard similarity primarily consid-
ers common functional groups while overlooking
other functional elements.

Additionally, our study focuses on small
molecules due to data limitations. In our dataset,
the mean length of molecule SMILES strings is
36, with the maximum length being 119. This
constraint may affect the generalizability of our
findings to larger or more complex molecules.

8 Ethics Statement

We do not foresee any particular ethical concerns
with our study, which explores existing models
and is unlikely to lead to unforeseen uses of those
models. The base dataset, ChEBI 20, is publicly
available and was introduced in the Text2Mol paper
(Edwards et al., 2021). RDKit, which is available
under the BSD license (Landrum et al., 2025), and
MAYGEN (Yirik et al., 2021) are also publicly
available. Additionally, the encoders used in our
study are open-sourced from various platforms.
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A Example: Malic Acid Molecule

This is an example of a molecule, malic acid,
shown in different formats, including a graph, a
language description, SMILES, and a chemical for-
mula (Table 7).

Name: Malic Acid

Molecular Formula: CyHzO5

Molecule Graph: The structure shows nodes (car-
bon implied at vertices) connected by single and
double bonds, with two carboxyl (-COOH) groups
and a hydroxyl (-OH) group labeled in red.

)
OH

HO

@)
OH

Language Description: The molecule is a 2-
hydroxydicarboxylic acid that is succinic acid in
which one of the hydrogens is replaced by a hy-
droxyl group. It has a role as a food acidity reg-
ulator and a fundamental metabolite. It is a 2-
hydroxydicarboxylic acid and a C4-dicarboxylic
acid. It derives from succinic acid and is a conju-
gate acid of malate(2-) and malate.

SMILES: C(C(C(=0)0)0)C(=0)O

Table 7: An example of a malic acid molecule with
different modalities.

B Prompt

Figure 3 is the prompt for extracting chemistry-
relevant terms.

C Control Groups

After extracting chemical terms and collecting iso-
mers and tautomers, we can pair our data into six
groups with different combinations (see Table 8).
We use these six groups to gauge inherent align-
ment under different controlled conditions.
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(Instrution) Process the following molecular description text to extract
chemistry-related keywords. Please do this carefully, ensuring only
chemistry-related words are retained while keeping as many
chemistry-relevant words as possible. Extract the chemical terms one by
one from the entire sentence.

(Example) Here is an example: original text: The molecule is a
2-hydroxydicarboxylic acid that is succinic acid in which one of the
hydrogens attached to a carbon is replaced by a hydroxy group. It has a
role as a food acidity regulator and a fundamental metabolite. It is a
2-hydroxydicarboxylic acid and a C4-dicarboxylic acid. It derives from a
succinic acid. It is a conjugate acid of a malate(2-) and a malate.

(Answer of example) Extracted text: 2-hydroxydicarboxylic acid,
succinic acid, hydroxy group, a food acidity regulator and a fundamental
metabolite, a 2-hydroxydicarboxylic acid and a C4-dicarboxylic acid,
conjugate acid, malate(2-), malate.

(prompt final answer) Please extract terms from this text and return the
results only: { Language Description}

Figure 3: Example prompt for extracting the chemical
terms

Corpus Molecule

Language description original molecules

Language description tautomers
Language description isomers

Chemical extraction  original molecules
Chemical extraction  tautomers
Chemical extraction  isomers

Table 8: Control groups used in the experiments.

D Example: Data Details

The example of the data obtained after process-
ing is shown in Table 9. It presents the language
description, chemical extraction, tautomers, and
isomers, respectively.

Category Details

Language description | The molecule is a 2-
hydroxydicarboxylic acid that is
succinic acid in which one of the
hydrogens attached to a carbon is
replaced by a hydroxyl group. It
has a role as a food acidity regulator
and a fundamental metabolite. It is
a 2-hydroxydicarboxylic acid and a
C4-dicarboxylic acid. It derives from a
succinic acid. It is a conjugate acid of a
malate(2-) and a malate.
2-hydroxydicarboxylic acid, succinic
acid, hydrogen, carbon, hydroxyl group,
food acidity regulator, fundamental
metabolite, 2-hydroxydicarboxylic acid,
C4-dicarboxylic acid, conjugate acid,
malate(2-), malate.
C(C(C(=0)0)0)C(=0)0

Extraction

Original molecule

Tautomers 0C(0)=CC(0)=C(0)0
0=C(0)CC(0)=C(0)0
0=C(C=C(0)0)C(0)0

Isomers 0=C10C2=C3000C132

Table 9: Example of data details.

E Structural Visualization of Cy HO5
and Its Isomers and Tautomers

We show the isomers and tautomers in Figure 4.
Tautomers exhibit a structure similar to the original
molecule, whereas isomers do not.

]
OH

HO

OH

(a) Isomers of C4 HsOs; the first one is the original molecule.

o} OH
OH OH
\ \
HO HO
0 OH
OH OH
OH o}
OH OH
— HO
/
HO
o) OH
OH OH

(b) Tautomers of Cy HsOs; the first one is the original
molecule.

Figure 4: Structure visualization of CyHgOs5 and its
isomers and tautomers.

F Benchmark and Experimental
Environment

Our benchmark and experimental environment is
as follows:

* Python 3.9

* GPUs: Nvidia A100

* Operating system: CentOS 7
e Platform: Snellius

G Upper- and Lower- Bound Setup

The experimental setup is shown in Table 10. It
presents the upper-bound model along with its
counterpart and six control groups.

H Inherent Alignment Setup

The setup can be seen in Table 11. It includes
two graph models (MolCLR and MoLFormer), five
language models (BERT, SciBERT, SentenceBERT,
ModernBERT, and GPT), and two control groups
(language description with original molecules and
chemical extraction with original molecules).
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Experiment  Model Control Group

Language description with original molecules
Language description with tautomers
Language description with isomers

Chemical extraction with original molecules
Chemical extraction with tautomers
Chemical extraction with isomers

Upper-bound MolFM

Language description with original molecules
Language description with tautomers
Language description with isomers

Chemical extraction with original molecules
Chemical extraction with tautomers
Chemical extraction with isomers

Lower-bound Random Initial

Table 10: Experimental setup of upper- and lower-
bound with MolFM, random initial encoder, and control
groups.

Graph Language
Encoder Encoder Control Group
BERT
MolICLR SciBERT Language description with original molecules
MolF SentenceBERT Chemical extracti ith original molecules
olFormer .\ BERT emical extraction with original molecules
GPT

Table 11: Experimental setup of inherent alignment
with molecule graph encoders, language encoders, and
control groups.

I Structural Alignment Setup

The setup can be seen in Table 12. It includes two
graph models (MolCLR and MoLFormer), five lan-
guage models (BERT, SciBERT, SentenceBERT,
ModernBERT, and GPT), and six control groups
(Language description with original molecules ,
Language description with tautomers , Language
description with isomers , Chemical extraction with
original molecules , Chemical extraction with tau-
tomers , Chemical extraction with isomers).

Graph Language
Control Grou
Encoder Encoder P
Language description with original molecules
BERT o .
. Language description with tautomers
SciBERT S Lo
MolCLR Language description with isomers
SentenceBERT R . . ..
MolFormer Chemical extraction with original molecules
ModernBERT . . .
GPT Chemical extraction with tautomers

Chemical extraction with isomers

Table 12: Experimental setup of structural alignment
with molecule graph encoders, language encoders, and
control groups.

J Encoder Pairings and Configurations

We present the different embedding sizes of various
encoders in Table 13.

Molecular Model | NLP Model Embedding
MolFormer (768) ModernBERT (768) MCLS toke_n
ean pooling
CLS token
MolFormer (768) | BERT (768) Mean pooling
MolFormer (768) | SciBERT (768) Ml token
ean pooling
MolFormer (768) Sentence-BERT (768) | Mean pooling
Mean pooling
MolFormer (768) GPT-2 (768) Last word token
Summarized prompt
MOoICLR (512) ModernBERT (768) MCLS token
ean pooling
CLS token
MoICLR (512) BERT (768) Mean pooling
MoICLR (512) | SciBERT (768) CLS token
Mean pooling
MolICLR (512) Sentence-BERT (512) | Mean pooling
Mean pooling
MolICLR (512) GPT-2 (768) Last word token
Summarized prompt

Table 13: Encoder Pairings and Configurations. The
number in brackets represents the output size from dif-
ferent encoders.

K Comparison of CKA and Debiased
CKA

Table 14 presents the mean and standard deviation
of CKA and Debiased CKA scores, calculated from
ten independent random samples.

Original molecule Isomers Tautomers

MolFM CKA 0.499 +0.007 0.024 £0.001  0.436 £ 0.006
Debiased CKA 0.496 + 0.006 0.021 £0.001  0.430 £ 0.006

Random Initial CKA 0.113+£0.001 0.113+£0.001  0.113 £0.001
i Debiased CKA 0.000 % 0.000 0.000 +0.000  0.001 £ 0.000

Table 14: Comparison of CKA and Debiased CKA. This
value represents the mean + standard deviation.

1097



