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Abstract

Large language models (LLMs) often benefit
from verbalized reasoning at inference time,
but it remains unclear which aspects of task
difficulty these extra reasoning tokens address.
To investigate this question, we construct a con-
trolled setting where task complexity can be
precisely manipulated to study its effect on rea-
soning length. Deterministic finite automata
(DFAs) offer a formalism through which we
can characterize task complexity through mea-
surable properties such as run length (number
of reasoning steps required) and state-space
size (decision complexity). We first show that
across different tasks and models of different
sizes and training paradigms, there exists an
optimal amount of reasoning tokens such that
the probability of producing a correct solution
is maximized. We then investigate which prop-
erties of complexity govern this critical length:
we find that task instances with longer corre-
sponding underlying DFA runs (i.e. demand
greater latent state-tracking requirements) cor-
relate with longer reasoning lengths, but, sur-
prisingly, that DFA size (i.e. state-space com-
plexity) does not. We then demonstrate an im-
plication of these findings: being able to pre-
dict the optimal number of reasoning tokens
for new problems and filtering out non-optimal
length answers results in consistent accuracy
improvements. 1

1 Introduction

Large language models (LLMs) can generate and
use additional test time tokens to perform unseen
and challenging reasoning tasks (Wei et al., 2022;
Nye et al., 2021; DeepSeek-AI et al., 2025; Team
et al., 2025). Contemporary work suggests that
during these reasoning processes, LLMs implic-
itly encode task-relevant information within their
hidden states, using these latent representations to
guide prediction (Andreas, 2022; Vafa et al., 2024;

1All code is released at this link.

Hernandez and Andreas, 2021; Zhang et al., 2025).
Despite these empirical successes, it remains un-
clear in what way these additional test-time tokens
contribute to improved reasoning performance, es-
pecially given the increasing cost of inference-time
computation for ever-larger models.

Existing literature generally associates the need
for more reasoning tokens with “harder” prob-
lems (Yang et al., 2025; Chen et al., 2025; Muen-
nighoff et al., 2025). However, we still lack a clear
understanding of which specific properties of a task
dictate this need. Addressing this knowledge gap is
critical for optimizing how we leverage inference-
time compute for reasoning tasks.

In this paper, we propose and empirically vali-
date a framework to study how structural properties
of a task influence the optimal number of reasoning
tokens for LLMs to use. We first demonstrate that
across diverse tasks and models, there consistently
exists an amount of reasoning tokens at which task
accuracy peaks. We refer to this quantity as the crit-
ical length. Importantly, this critical length varies
by task and model.

We next study how task complexity affects a
model’s critical length. Task complexity can be
hard to measure, warranting the need for some
computation framework. For this, we turn to deter-
ministic finite automata (DFAs). Many tasks can
be approximately represented as DFAs, and the lan-
guage of DFAs provide explicit dimensions with
which to characterize complexity. We study two
dimensions: (1) run length, the minimum number
of sequential state transitions required to solve the
task, and (2) state-space size, the complexity of the
task’s underlying decision structure.

By systematically varying properties of under-
lying task DFAs, we measure how problem com-
plexity affects the critical length. We find that in-
creasing the run length required to solve a problem
increases the critical length for that task. Some-
what surprisingly, we find little to no relationship
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between the size of the state space in a problem’s
underlying DFA and the critical length for that task.

We then demonstrate an implication of these re-
sults: because critical length is predictable from
properties of the underlying DFA, we can mod-
ify inference to only include answers that are at a
critical length. We show that doing so improves
average accuracy across models and tasks.

By formalizing reasoning complexity through
the lens of DFAs, our results offer practical insights
into how LLMs use additional reasoning steps at
inference time. The remainder of this paper details
our experimental setup, systematically presents our
key findings, and discusses their implications for
future LLM inference strategies.

2 Related Work

Optimally Scaling Test-Time Compute Recent
works have explored methods to optimize the use
of additional reasoning tokens during inference
to encourage sufficient reasoning while curbing
the “overthinking” tendencies of LLMs trained
with chain-of-thought (Wei et al., 2022) (COT)
reinforcement learning (RL) (Yang et al., 2025;
Muennighoff et al., 2025; Luo et al., 2025; Chen
et al., 2025). These approaches typically construct
“thinking-optimal” training datasets of minimal-
length reasoning chains or intervene in generation
to control for test-time compute, observing per-
formance improvements in advanced mathematics
tasks. Where these prior works use coarse difficulty
groupings for popular reasoning datasets, our work
defines a DFA framework that formally quantifies
task difficulty and reasoning complexity, allowing
us to more precisely correlate the performance im-
provement with reasoning tokens against definable
task properties. This formalism also enables us to
study a broader range of reasoning tasks beyond
mathematics.

Concurrent work by Wu et al. (2025) derives
a scaling law for optimal reasoning length based
on model size and task difficulty for mathemat-
ics datasets, and produces training and inference
methods based on their findings. In contrast, our
DFA-based approach provides a structured lens for
examining general reasoning tasks independent of
model-specific properties.

LLMs and Automata There is substantial the-
oretical and empirical interest in understanding
whether and how LLMs might perform automata-
like reasoning internally (Merrill et al., 2025; Strobl

et al., 2024; Merrill and Sabharwal, 2023; Merrill
et al., 2022). Some theoretical works argue that lin-
ear reasoning chains afford sufficient power for se-
quential reasoning (Merrill and Sabharwal, 2024);
others raise concerns about “unauditable, hidden
computations” inside Transformers LLMs beyond
what is explicitly verbalized (Pfau et al., 2024).

Empirically, mechanistic interpretability works
have yielded mixed findings regarding whether
LLMs internally represent world states. State rep-
resentation have been observed in structured set-
ting such as chess (Toshniwal et al., 2021), Oth-
ello (Li et al., 2023), spacial navigation (Vafa et al.,
2024), and other definable environments (Wong
et al., 2023; Andreas, 2022). Akyurek et al. (2024)
use linear probes to identify the learning algorithms
present in in-context learning for linear regression
tasks. On state tracking problems, Zhang et al.
(2025) find evidence that LLM activations implic-
itly encode finite state automata with test-time to-
kens, supporting the view that intermediate reason-
ing tokens help track latent states.

Our work complements these perspectives by us-
ing formal automata definitions primarily as a tool
for characterizing external task complexity, rather
than making claims about internal LLM architec-
tures or mechanisms. Thus, our framework and
empirical findings remain generalizable and agnos-
tic to specific internal model implementations.

3 Critical Length: LLMs Have an
Optimal Thinking Length

In this paper, we explore how the optimal amount
of reasoning in LLMs is governed by task complex-
ity. In this section, we first demonstrate empirically
that across a variety of tasks and models, there is
a critical length for reasoning: an amount of rea-
soning tokens at which model performance peaks.
The remainder of the paper will be spent studying
what properties contribute to this critical length.

3.1 Setup

Throughout the paper we conduct experiments
across a diverse collection of LLMs, varying by
provider, model size, and post-training paradigms
including instruction tuning and with chain-of-
thought (COT) reinforcement learning (RL). The
models studied in this paper are listed in Table 1,
and we will periodically refer to them with their
corresponding nicknames.

We evaluate reasoning capabilities on a range
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Figure 1: Average per-task accuracy as a function of how many tokens a model includes in its response. Across
tasks and models, accuracy peaks at a critical length (L∗). Each line represents a different model: COT-RL lines
in orange, regular instruction-tuned models in blue, with darker hues indicating larger models. Sequence length
is normalized so that 0 represents the least tokens a model produces per task while L∗ corresponds to the peak
accuracy.

of canonical deterministic tasks that require ex-
plicit logical reasoning or state tracking. The
chosen tasks include selections from Big-Bench-
Hard (Suzgun et al., 2022), CRUXEval (Gu et al.,
2024), GSM8k (Cobbe et al., 2021) and various
other classic reasoning benchmarks. The chosen
tasks effectively capture variations in reasoning
complexity, a point we further elaborate on in
Section 4. Complete task descriptions and exam-
ples for all ten tasks are further detailed in Ap-
pendix A.1.

3.2 Results

We examine the relationship between task perfor-
mance and the number of tokens that models use for
reasoning. For each task, models are prompted with
a description of the task and a task instance. Mod-
els spend any amount of tokens reasoning before
returning the answer in a templated and extractable
form. Correct generations are ones from which the
final extracted answer matches the task instance’s
ground truth correct answer. Sample prompts for
all tasks are available in Appendix A.1. To avoid

tasks that are too difficult for a given model, we
only include results from models that have task
accuracy of at least one standard deviation above
random guessing.

To obtain reasoning chains of varying lengths,
we experimented with several prompting strate-
gies. Ultimately, we found that simply providing
no length or reasoning instruction still produced
sufficient variation in reasoning length while mini-
mizing potential noise from factors such as prompt
wording. When possible, we sample greedily with
temperature T = 0.0; otherwise, such as in the case
with o3-mini, we use the default API temperature.

For each task and model combination, we es-
timate the probability of correctness over reason-
ing sequence lengths via Monte Carlo sampling,
Pcorrect(L) ≈ 1

M

∑M
i=1 𝟙correct(yi,L), where M is

the number of samples, yi,L represents a sampled
generation of length L, and 𝟙correct(y) is an indica-
tor function that evaluates to 1 if the generation y
correctly solves the task. See Algorithm 1 for full
details.

Our results, visualized in Figure 1, reveal that
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Model (Nickname) Provider Size RL

Qwen2.5-7B-Instruct (Qw2.5-7B) Qwen 7B Instruct
Llama-3.1-8B-Instruct (Ll3.1-8B) Meta 8B Instruct
Qwen2.5-32B-Instruct (Qw2.5-32B) Qwen 32B Instruct
Llama-3.3-70B-Instruct-Turbo (Ll3.3-70B) Meta 70B Instruct
Llama-3.1-405B-Instruct-Turbo (Ll3.1-405B) Meta 405B Instruct
DeepSeek-V3 (DSV3) DeepSeek 685B Instruct
Ministral-8B-Instruct-2410 (Ministral-8B) Mistral 8B Instruct
gemma-2-9b-it (Ge2-9B) Deepmind 9B Instruct
gpt-4o (gpt4o) OpenAI Instruct
o3-mini (o3-mini) OpenAI COT-RL
DeepSeek-R1 (DSR1) DeepSeek 685B COT-RL
DeepSeek-R1-Distill-Qwen-7B (R1-Qw-7B) DeepSeek 7B COT-RL
DeepSeek-R1-Distill-Llama-8B (R1-Ll-8B) DeepSeek 8B COT-RL
DeepSeek-R1-Distill-Qwen-32B (R1-Qw-32B) DeepSeek 32B COT-RL
DeepSeek-R1-Distill-Llama-70B (R1-Qw-70B) DeepSeek 70B COT-RL

Table 1: The large language models we use in our anal-
ysis. The last column refers to the model’s final RL
training stage: COT-RL or Instruction Tuning.
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Figure 2: The distribution of generation lengths per
model and corresponding critical lengths, averaged
across tasks. COT-RL models (orange) generate longer
sequences and have higher critical lengths.

each task and model combination exhibit a distinct
optimal reasoning length. We refer to this length
as the critical length, and denote it with L∗ (while
L∗ is a function of the model and task, we omit
these from our notation for simplicity when it’s
obvious via text). A sampled response that’s either
shorter or longer than the critical length has a lower
chance of being correct than one sampled at the
critical length. Figure 2 shows how the critical
length varies by models. COT-RL models tend to
produce longer sequences, and also have higher
critical lengths, than do the standard instruction-
tuned models. Specific critical lengths for each
model and task, without normalization, are listed
in Table 5.

Interestingly, the existence of a critical length
reveals that there are places where more tokens are
correlated with worse accuracy. One possible rea-
son for decreased accuracy with longer responses
is that when models output reasoning traces, longer
traces indicate backtracking or roundabout, incor-
rect steps. Similar phenomena have been observed
in related studies on mathematical reasoning tasks,
attributed to increased noise (Wu et al., 2025) or
unnecessary backtracking on initially-correct solu-

tions (Chen et al., 2025). Examples illustrating this
behavior are provided in the Appendix A.4.

4 Optimal Reasoning Length Correlates
With DFA Run Length

In the previous section we established the existence
of an optimal reasoning length, varying across tasks
and models. In this section we seek to understand
what controls this critical length, specifically fo-
cusing on the effect of structural properties of the
task.

4.1 Characterizing Task Complexity with
DFAs

How does task complexity relate to an LLM’s op-
timal reasoning length? Precisely characterizing
task complexity is hard. Standard practices typi-
cally classify complexity based on empirical per-
formance of existing LLMs (e.g. accuracy). While
conveniently benchmarkable, this approach lacks
precision, interpretability, and theoretical ground-
ing. Moreover, we find different critical lengths
for tasks with similar accuracies. A more nuanced
understanding of task complexity is necessary to
understand an LLM’s critical length.

We instead propose a framework based on the
fact that many benchmark resasoning tasks can be
represented as deterministic finite automata (DFAs).
The language of DFAs provides explicit, measur-
able dimensions with which to characterize com-
plexity. All the tasks we consider can be repre-
sented as DFAs, where one way to solve the task
is to implicitly infer a DFA and then traverse its
states. Recent literature frequently uses similar
DFA representations to interpret LLM understand-
ing and reasoning capabilities (Vafa et al., 2024;
Zhang et al., 2025; Merrill and Tsilivis, 2022).

A DFA has a finite set of states (Q) and input
symbols (Σ), a deterministic transition function
(δ : Q × Σ → Q), and defined start and final
(accepting) states (q0 ∈ Q and F ⊆ Q, respec-
tively). The size of the DFA is the number of
states it has, which we denote as k = |Q|. Given
a sequence of input symbols x ∈ ΣN , the DFA
executes a run: (q0, q1, ...qN ) ∈ QN+1 where
∀i ∈ {1, ...N}, qi = δ(qi−1, xi). The run length
N is an instance-wise measure that refers to the
number of transitions in the DFA required to reach
the end state.

For example, consider the problem of evaluating
the parity of a bit string s = 00110 (i.e. whether
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Figure 3: On the left, critical length (L∗) is plotted as the run length and number of states are varied. Each line
represents a different model: blue lines indicate standard instruction-tuned models, orange lines indicate COT-RL
models, and darker hues indicate larger models. On the right, the correlation between L∗ and run length (N) as
well as number of states (k). The values of L∗ are normalized per model and task for both figures. The critical
length correlates strongly with run length N , but weakly with state-space size k.

there are an even or odd number of 1’s). This prob-
lem can be represented as a DFA with two states:
even or odd. One way to determine the parity is to
start at the even state of the DFA, traverse through
the DFA character-by-character, and report the final
state (here, even). In this problem, the run length
N is 5, referring to the 5 characters processed in s.

This formulation yields two explicit measures to
characterize task complexity: DFA state-space size
k, representing the complexity of the underlying
decision space, and run length N , corresponding to
the minimum reasoning steps needed. Importantly,
our tasks can be systematically varied along these
dimensions (see Table 2), enabling combinational
sampling across task complexity configurations.

To understand the effects of complexity on criti-
cal length, we generate new instances within each
task by varying the state-space size k and run length
N (see Figure 4 for an illustration). We then mea-
sure each model’s critical length for each combi-
nation of k and N by bucketing samples by gen-
eration length and measuring the accuracy across
buckets. Note that while we define task complexity
through DFAs, we do not formally provide these
explicit DFA structures to the models. Instead,
models must implicitly infer task structure from in-
structions alone. For example, in the Dyck-D task
(illustrated in Figure 6) the model only sees the
string of brackets and instructions to determine va-
lidity; this requires implicit inference about nesting
depths and possible bracket types.

4.2 How does complexity affect critical
length?

We now empirically examine how these two no-
tions of problem complexity – run length and num-
ber of states – influence the critical length L∗. Us-
ing the same tasks as in the previous section, we
systematically vary both run length N and state-
space size k. We select ranges of values for k
and N such that tasks are challenging but largely
solvable, resulting in task accuracy ranging from
just one standard deviation above random to near-
perfect accuracy.

We quantify the relationship between critical
length L∗ and run length with Pearson correlation
coefficients. The results are shown in Figure 3.
Per-task results are shown in Figure 7. Across all
models, critical length exhibits a strong positive
correlation with DFA run length N . This matches
our intuition that reasoning tokens reflect implicit
traversal across the task’s underlying graph states,
and thus scale naturally with the number of state
transitions required.

Figure 3 also shows the relationship between
critical length L∗ and the number of states in the
DFA. In this case, critical length exhibits relatively
weaker or negligible correlation with DFA state
space size k. This finding is somewhat surprising,
as larger state spaces imply more complex reason-
ing. However, our results indicate that this form
of complexity does not seem to affect optimal rea-
soning length. One possible hypothesis for this
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Figure 4: We systematically vary the complexity of test examples by formulating tasks as DFAs. The left panel of
this figure shows a demonstrative parity task with a small run length (N = 4) and state space (k = 2). In the middle
panel, we increase the run length while keeping state space size constant (N = 5, k = 2). In the final panel, we
keep the run length from the first panel and increase state space size (N = 4, k = 3).

Task Number of states Run length

Dyck-D maximum depth, distinct operators string length
Index Tracking possible values number of steps

Even/Odd Tracking possible values number of steps
Navigate grid size, grid dimensions number of turns

Nested Boolean distinct operators expression depth
CRUXEval AST size trace length

Multi-Step Arithmetic number range, operators number of steps
Shuffled Objects number of objects number of swaps

Web of Lies number of people number of people
Logical Deduction number of objects number of steps

GSM8k number of intermed. values tracked number of arith. ops.

Table 2: The reasoning tasks we consider. Each task can be represented as a DFA. Here we include the interpretation
of the number of states in the underlying DFA and run length for each task.

phenomenon is that an LLM may be relying on
“shortcuts” to represent an automata rather than ex-
plicitly representing it in full (Zhang et al., 2025;
Liu et al., 2023). Together our results are consistent
with the hypothesis that additional reasoning tokens
support implicit state tracking (which is measured
by run length) rather than for representing more
complex DFAs (as measured by number of states).

5 Filtering Generations to Predicted
Optimal Thinking Length Improves
Accuracy

In previous sections, we established that optimal
reasoning length (L∗) strongly reflects some mea-
surable properties of task complexity. In this sec-
tion, we investigate a natural practical implication:
can we use the predictable relationship between

complexity measures of complexity and optimal
reasoning length to improve inference-time model
accuracy?

To make this problem more tractable, we focus
on predicting a model’s critical length for a new
instance within some task. Specifically, we want
to model the critical length for a new task instance
featuring DFA properties we haven’t seen before:
P (L∗|k,N,LLM, task). If we can accurately pre-
dict the optimal reasoning length, we can use it
to filter generated reasoning sequences, focusing
inference within the range where the probability of
a correct sequence is higher.

The previous section charted the predictability of
L∗ from complexity properties of the DFA. Given
this simple predictability, we employ a straight-
forward linear regression model to perform this
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Figure 5: Critical lengths are predicted for held-out task configurations, then used to filter generations. On the left,
arrows indicate change in accuracy for each model as a result of filtering. Accuracy values and changes are reported
on the right. Results are averaged across tasks; see Table 3 for task-specific results.

prediction. Specifically, we regress L∗ with just
two DFA-based features: run length N and num-
ber of states k2. Despite its simplicity, our linear
model can accurately predict L∗ with an average
R2 = 0.65 across tasks and models, as shown in
the right side of Figure 5.

For each task instance and model, we first esti-
mate the optimal reasoning length L∗

new using the
model above. We then sample multiple reason-
ing chains, keeping only responses whose lengths
fall within a tolerance range around the predicted
optimal length:

L∗
new − ϵ ≤ Lgen ≤ L∗

new + ϵ,

where ϵ accommodates a range of lengths dictated
by the tolerance of peak accuracy in existing dat-
apoints and standard deviation of residuals in the
linear regression.

Figure 5 summarizes the accuracy improvements
resulting from filtering reasoning chains by pre-
dicted optimal lengths. We report accuracy before
filtering (Aold) and after filtering (Anew), as well as
their (∆A). The results in Figure 5 are averaged
across tasks; per-task results are shared in Table 3.

This simple length-based filtering consistently
improves accuracy across models. Larger models
and models with COT-RL, i.e. the models that al-
ready exhibit relatively high baseline performance,

2Details in Appendix A.3

benefit the most from length-controlled inference
in our experiments. For example, the smaller mod-
els Qw2.5-7B and Ll3.1-8B see modest improve-
ments, but their COT-RL counterparts R1-Qw-7B
and R1-Ll-8B see more drastic improvements of
around 3%. The larger models like Qw2.5-32B and
Ll3.3-70B already see similar improvements, and
the improvements are further exaggerated in their
COT-RL counterparts.

These results underscore the practical value of
our DFA-based complexity analysis: even a simple
prediction model leveraging run length and state-
space size enables observable inference-time im-
provements. More sophisticated prediction or filter-
ing approaches built upon our framework have the
potential to result in even greater improvements,
and are promising directions for future research.

6 Discussion and Future Work

Our DFA-based analysis provides new insights into
how task structure influences optimal reasoning
lengths. Below, we outline several observations,
limitations, and open questions that emerged dur-
ing our experiments, identifying several interesting
avenues for future research.

Why does accuracy drop after critical reason-
ing length? We observed that accuracy consis-
tently declines once rasoning chains exceed their
optimal length, aligning with similar observations
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in prior non-DFA-based work (Chen et al., 2025;
Yang et al., 2025). This phenomenon, however,
is not inherently explained by DFA theory itself;
models could theoretically cycle indefinitely in cor-
rect final states, maintaining correctness with no
upper limit on number of “reasoning steps.” Inves-
tigating why excessively-long reasoning sequences
frequently go astray, perhaps due to redundant rea-
soning steps, unnecessary backtracking, or accu-
mulated generation noise, remains an interesting
theoretical and qualitative question for future inves-
tigation.

Understanding COT-RL Training through rea-
soning length. Models trained using chain-of-
thought reinforcement learning (COT-RL) tend to
produce longer reasoning chains (Figure 2) and
achieve better accuracy than their non-COT-RL
counterparts (Figure 8).

Given our finding that critical length strongly
correlated with DFA run length, future work
should examine whether COT-RL training im-
plicitly aligns model-generated reasoning lengths
closer to this optimum. Along this line of research,
tracking reasoning length during training could po-
tentially serve as a useful diagnostic signal indicat-
ing training progress or task mastery.

Extending the DFA framework to more complex
tasks. While our DFA framework characterizes
reasoning complexity for many structured reason-
ing tasks, more complex domains such as CRUXE-
val, which involves large implicit program states,
are challenging to formalize. One direction is ex-
tending our framework to handle such complexity,
including tasks with multimodal distributions of
critical lengths arising from multiple valid solving
strategies. Assessing how alternate DFA represen-
tations of the same task affect the observed optimal
reasoning length(s) and overall performance could
yield insights into prompting and model inference
strategies for different tasks and models.

Developing more sophisticated predictors of
critical length. Our experiments took advantage
of the simplicity of a linear regression model to
predict critical length based on DFA complexity
measures, using previously observed lengths for
other in-domain task configurations with the model.
Follow-up work might explore more advanced pre-
diction methods, such as LLM-based methods us-
ing textual text descriptions or minimal demon-
strations to predict critical length. These more

general predictors could make our framework for
critical length-based filtering more practically us-
able across diverse reasoning scenarios.

7 Conclusion

In this paper, we presented a DFA-based frame-
work with which we analyzed how structural prop-
erties of reasoning tasks influence optimal test-
time reasoning in LLMs. Our empirical findings
show a consistent optimal reasoning length which
is strongly correlated with run length in the under-
lying task DFA rather than state-space complexity
of the DFA itself. This suggests the primary role
of test-time compute as a mechanism for implicit
state-tracking in reasoning tasks. The patterns iden-
tified in this work are robustly validated across
many models of diverse sizes, providers, and post-
training setups. The insights leave open various
interesting questions for future LLM research.

Limitations

The findings of this paper have only been tested on
post-trained models that exhibit some competency
in using test-time tokens to improve task perfor-
mance, and on tasks that can latently be represented
using the DFA formalism. Since many tasks can
theoretically be solved using different DFAs with
distinct state-space and run length properties, care
must be taken to de-risk LLM usage in sensitive
settings so that it does not rely on undesirable task
properties.
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A Appendix

A.1 Tasks
Index Tracking is a task for which LLM must
identify the pointer value as it nagivates around a
circular array. We vary k with two properties: ks:
the number of possible pointer values in the array,
km: the increment value of each step in this array.
N is the number of turns in a given instance.

An example prompt with k = (ks = 9, km = 9)
and N = 10:

You a r e a s m a r t and h e l p f u l AI
a s s i s t a n t . P l e a s e h e l p me wi th

t h e f o l l o w i n g t a s k .

You a r e g i v e n a l e n g t h −81 a r r a y
and must t r a c k t h e i n d e x of a
0− i n d e x e d p o i n t e r t o t h e a r r a y
. The p o i n t e r u n d e r g o e s
s e v e r a l m o d i f i c a t i o n s . The
p o i n t e r wraps a round t h e
l e n g t h o f t h e a r r a y on bo t h
ends , so when i t r e a c h e s 81 i t

becomes 0 , when i t r e a c h e s 82
i t becomes 1 , when i t r e a c h e s
−1 i t becomes 80 , e t c . What

i s t h e i n d e x of t h e p o i n t e r
a f t e r a l l t h e m o d i f i c a t i o n s
a r e c o m p l e t e ? P r o v i d e t h e
answer i n t h e r a n g e [ 0 , 81) .

p o i n t e r = 0
p o i n t e r = p o i n t e r + 9
p o i n t e r = p o i n t e r − 18
p o i n t e r = p o i n t e r − 9
p o i n t e r = p o i n t e r + 36
p o i n t e r = p o i n t e r − 63
p o i n t e r = p o i n t e r + 54
p o i n t e r = p o i n t e r + 27
p o i n t e r = p o i n t e r − 63
p o i n t e r = p o i n t e r + 63
p o i n t e r = p o i n t e r − 18

P r o v i d e your f i n a l answer
f o l l o w i n g t h i s t e m p l a t e : [
ANSWER]

p o i n t e r == YOUR ANSWER
[ /ANSWER]

Even/Odd Tracking is like the Index Tracking
task, except the LLM only must determine whether
the final pointer has an even or odd value.

An example prompt with k = (ks = 17, km =
1) and N = 10:

You a r e a s m a r t and h e l p f u l AI
a s s i s t a n t . P l e a s e h e l p me w i th

t h e f o l l o w i n g t a s k .

You a r e t r a c k i n g a p o i n t e r i n t o a
l e n g t h −17 a r r a y . The p o i n t e r

i s zero − i n d e x e d . I t u n d e r g o e s
s e v e r a l m o d i f i c a t i o n s . The
p o i n t e r wraps a round t h e
l e n g t h o f t h e a r r a y on bo th
ends , so when i t r e a c h e s 17 i t

becomes 0 , when i t r e a c h e s 18
i t becomes 1 , when i t r e a c h e s
−1 i t becomes 16 , e t c . A f t e r

a l l t h e m o d i f i c a t i o n s a r e
comple te , i s t h e f i n a l p o i n t e r

i n d e x even ?

p o i n t e r = 0
p o i n t e r = p o i n t e r + 13
p o i n t e r = p o i n t e r + 7
p o i n t e r = p o i n t e r − 7
p o i n t e r = p o i n t e r − 5
p o i n t e r = p o i n t e r − 12
p o i n t e r = p o i n t e r + 6
p o i n t e r = p o i n t e r + 15
p o i n t e r = p o i n t e r − 16
p o i n t e r = p o i n t e r + 8
p o i n t e r = p o i n t e r + 13

P r o v i d e your f i n a l answer
f o l l o w i n g t h i s t e m p l a t e : [
ANSWER]

p o i n t e r == YOUR ANSWER
[ /ANSWER]

Navigate is inspired from Big-Bench Hard (Suz-
gun et al., 2022)’s navigate task, where the model
must respond whether after a sequence of naviga-
tion, the agent has returned to the original location.
We vary k with two properties: kd: the number of
dimensions that the agent can move in: 1 (left and
right), 2 (left, right, forward, back), or 3 (left, right,
forward, back, up, down) ; ks: the amount that it
can move in any dimension. N is the number of
turns that the agent may take.

An example prompt with k = (kd = 2, ks =
100) and N = 5:

You a r e a s m a r t and h e l p f u l AI
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a s s i s t a n t . P l e a s e h e l p me wi th
t h e f o l l o w i n g t a s k .

I f you f o l l o w t h e s e i n s t r u c t i o n s ,
do you r e t u r n t o t h e s t a r t i n g
p o i n t ? Always f a c e f o r w a r d .

Take 90 s t e p s l e f t . Take 146
s t e p s r i g h t . Take 39 s t e p s
l e f t . Take 10 s t e p s r i g h t .
Take 27 s t e p s l e f t .

P r o v i d e your f i n a l answer as True
o r F a l s e , f o l l o w i n g t h i s

t e m p l a t e : [ANSWER]
r e t u r n e d _ t o _ s t a r t == YOUR ANSWER
[ /ANSWER]

Boolean Expression is inspired from Big-Bench
Hard (Suzgun et al., 2022)’s boolean expressions
task, to evaluate the truth value of a given nested
boolean expression. We vary k as the number of
distinct boolean operators. N the maximum depth
of the given boolean expression parse tree. An
example prompt with k = 4 and N = 3:

You a r e a s m a r t and h e l p f u l AI
a s s i s t a n t . P l e a s e h e l p me wi th

t h e f o l l o w i n g t a s k .

E v a l u a t e t h e f o l l o w i n g b o o l e a n
e x p r e s s i o n :

t r u t h _ v a l u e = ( ( F a l s e o r F a l s e )
o r ( True and True ) ) and ( ( True

and True ) and ( F a l s e and True
) )

P r o v i d e your f i n a l answer
f o l l o w i n g t h i s t e m p l a t e : [
ANSWER]

t r u t h _ v a l u e == YOUR ANSWER
[ /ANSWER]

Dyck-D is a task for which the LLM must eval-
uate whether a given string belongs to the Dyck-D
language, where D defines the maximum nesting
depth of any set of brackets. We vary k as the
maximum depth and number of distinct bracket
types. N the length of the given string. An ex-
ample prompt with depth 2 and 4 distinct bracket
types and N = 16:

You a r e a s m a r t and h e l p f u l AI
a s s i s t a n t . P l e a s e h e l p me w i th

t h e f o l l o w i n g t a s k .

De te rmine whe the r t h e f o l l o w i n g
s t r i n g b e l o n g s t o t h e Dyck
language , i . e . i s a b a l a n c e d
s t r i n g o f b r a c k e t s such t h a t
e v e r y s i n g l e open b r a c k e t has
a c o r r e s p o n d i n g c l o s e d b r a c k e t

l a t e r i n t h e s t r i n g .

I n p u t : < >[] < >{}{}{ < >}{{}}

P r o v i d e your f i n a l answer
f o l l o w i n g t h i s t e m p l a t e : [
ANSWER]

t r u t h _ v a l u e == YOUR ANSWER
[ /ANSWER]

CRUXEval (Gu et al., 2024) asks a LLM to
predict the resulting value after a given input is
passed to a given simple Python function. We make
a slight modification to the original CRUXEval data
by inlining the function and variable initializations.

We vary k as the size of the abstract syntax
tree (AST) of the Python function. N is given
by the length of the stack trace of passing the in-
put through the function. An example prompt with
AST size 28 and trace length 4:

You a r e a s m a r t and h e l p f u l AI
a s s i s t a n t . P l e a s e h e l p me w i th

t h e f o l l o w i n g t a s k .

You a r e g i v e n a s n i p p e t o f Python
code . Complete t h e a s s e r t i o n

wi th t h e r e s u l t i n g v a l u e i n ‘
answer ‘ .

s = ’ OOP ’
a r r = l i s t ( s . s t r i p ( ) )
a r r . r e v e r s e ( )
answer = ’ ’ . j o i n ( a r r )

a s s e r t answer == ??

P r o v i d e your f i n a l answer
f o l l o w i n g t h i s t e m p l a t e : [
ANSWER]

a s s e r t answer == YOUR ANSWER
[ /ANSWER]
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k = 3 k = 8

N = 2 ( ) - yes 
) ) - no

[ ] - yes 
( ] - no

N = 4 ( ) ( ) - yes
( ( ) ( - no

[ ( ) ] - yes
[ ( ] ) - no

 . . .

N = 8 ( ) ( ) ( ) ( ) - yes
( ) ( ) ( ) ( ( - no

[ [ ( ) ] ] ( ) - yes
] [ ( ( ( ) ) ) - no

Figure 6: We generate test examples of varying complexity by formulating tasks as DFAs and systematically
sweeping the state-space size (k) and run length (N ). In this figure, the Dyck-D task is shown with a small (k = 3)
and a larger (k = 8) underlying DFA. Corresponding runs of different lengths (N = 2, 4, 8) are shown in the table
(right).

Multi-Step Arithmetic is from Big-Bench
Hard (Suzgun et al., 2022)’s arithmetic task, where
the model must compute the output of a multi-step
mathematic formula. We vary k as the range of
atomic values and number of distinct arithmetic
operators. N the number of steps in the expression.
An example prompt with range 5 and 2 operators
and N = 2:

You a r e a s m a r t and h e l p f u l AI
a s s i s t a n t . P l e a s e h e l p me wi th

t h e f o l l o w i n g t a s k .

So lve t h e f o l l o w i n g m u l t i − s t e p
a r i t h m e t i c problem :

answer = (3 − 3 − 1 * 0) * (3 − 4
− 1 * 4)

P r o v i d e your f i n a l answer
f o l l o w i n g t h i s t e m p l a t e : [
ANSWER]

answer == YOUR ANSWER
[ /ANSWER]

Shuffled Objects is from Big-Bench Hard (Suz-
gun et al., 2022)’s shuffled objects tasks, where
the model must determine the absolute position of
some object after a sequence of exchanges. We
vary k with the number of objects being shuffled.
N is the absolute number of swaps done in shuf-
fling.

An example prompt with k = 5 and N = 3:

You a r e a s m a r t and h e l p f u l AI

a s s i s t a n t . P l e a s e h e l p me w i th
t h e f o l l o w i n g t a s k .

C l a i r e , Bob , I z z i , Lola , and
O p h e l i a a r e on t h e same team
i n a s o c c e r match . At t h e
s t a r t o f t h e match , t h e y a r e
each a s s i g n e d t o a p o s i t i o n :
C l a i r e i s p l a y i n g s t r i k e r , Bob

i s p l a y i n g l e f t winger , I z z i
i s p l a y i n g g o a l k e e p e r , Lola i s

p l a y i n g f u l l b a c k , and O p h e l i a
i s p l a y i n g r i g h t winger .

As t h e game p r o g r e s s e s , p a i r s o f
p l a y e r s o c c a s i o n a l l y swap
p o s i t i o n s . F i r s t , Bob and
I z z i t r a d e p o s i t i o n s . Then ,
I z z i and Bob t r a d e p o s i t i o n s .
F i n a l l y , O p h e l i a and I z z i
t r a d e p o s i t i o n s .

At t h e end of t h e match , what
p o s i t i o n i s Bob p l a y i n g ?

P r o v i d e your f i n a l answer
f o l l o w i n g t h i s t e m p l a t e : [
ANSWER]

Answer : YOUR ANSWER
[ /ANSWER]

Web of Lies is from Big-Bench Hard (Suzgun
et al., 2022), a task in which the model must deter-
mine whether someone is telling the truth, given
truths about other peoples’ truth-telling and what
they say about other people telling the truth or not.
We vary k with the number of people involved. N
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is the length of a truth-telling chain from absolute
to the final answer. In this task, k and N are equal.

An example prompt with k = 5 and N = 5:

You a r e a s m a r t and h e l p f u l AI
a s s i s t a n t . P l e a s e h e l p me wi th

t h e f o l l o w i n g t a s k .

Q u e s t i o n : Ka t e l l s t h e t r u t h .
Jamey s a y s Ka l i e s . D e l b e r t
s a y s Jamey l i e s . M i l l i c e n t
s a y s D e l b e r t t e l l s t h e t r u t h .
F l e t c h e r s a y s M i l l i c e n t t e l l s
t h e t r u t h . Does F l e t c h e r t e l l
t h e t r u t h ?

P r o v i d e your f i n a l answer as Yes
o r No , f o l l o w i n g t h i s t e m p l a t e
: [ANSWER]

Answer : YOUR ANSWER
[ /ANSWER]

Logical Deduction is from Big-Bench
Hard (Suzgun et al., 2022), a task in which the
model must determine the absolute position of
some object in a set of objects, given information
about relative positions of other objects in the set.
We vary k with the number of objects involved. N
is the length of an information chain from absolute
to the final answer.

An example prompt with k = 9 and N = 2:

You a r e a s m a r t and h e l p f u l AI
a s s i s t a n t . P l e a s e h e l p me wi th

t h e f o l l o w i n g t a s k .

The f o l l o w i n g i s a l o g i c a l
d e d u c t i o n t a s k which r e q u i r e s
d e d u c i n g t h e o r d e r o f a
s e q u e n c e o f o b j e c t s .

The f o l l o w i n g s e n t e n c e s each
d e s c r i b e a s e t o f n i n e o b j e c t s

a r r a n g e d i n a f i x e d o r d e r .
The s t a t e m e n t s a r e l o g i c a l l y
c o n s i s t e n t w i t h i n each
p a r a g r a p h . A f r u i t s t a n d s e l l s

n i n e f r u i t s : l o q u a t s , peaches
, b l a c k b e r r i e s , o ranges ,
a p p l e s , guavas , c h e r r i e s ,
r a s p b e r r i e s , and k i w i s .
l o q u a t s a r e two d o l l a r s more
e x p e n s i v e t h a n o r a n g e s . The
a p p l e s a r e f o u r t h −most

e x p e n s i v e . guavas a r e t h r e e
d o l l a r s more e x p e n s i v e t h a n
l o q u a t s . p e a c h e s a r e s i x
d o l l a r s c h e a p e r t h a n guavas .
b l a c k b e r r i e s a r e two d o l l a r s
more e x p e n s i v e t h a n c h e r r i e s .
k i w i s a r e f o u r d o l l a r s c h e a p e r

t h a n guavas . o r a n g e s a r e two
d o l l a r s c h e a p e r t h a n l o q u a t s .
r a s p b e r r i e s a r e one d o l l a r s
c h e a p e r t h a n p e a c h e s . The
c h e r r i e s a r e t h i r d −most
e x p e n s i v e . Which f r u i t s a r e
most e x p e n s i v e ?

P r o v i d e your f i n a l answer
f o l l o w i n g t h i s t e m p l a t e : [
ANSWER]

Answer : YOUR ANSWER
[ /ANSWER]

A.2 Monte Carlo Sampling

Algorithm 1 Monte Carlo Sampling

Require: k,N, ptask, pLLM ▷ Task parameters and
model

Require: M ▷ Number of Monte Carlo samples
1: Initialize empty dataset D
2: for i = 1 to M do
3: (task, true_answer) ∼ ptask(k,N) ▷

Sample a task instance
4: y ∼ pLLM(y|task) ▷ Generate response
5: correct← match(true_answer, y) ▷

Check correctness
6: D ← D ∪ {(y, correct)}
7: end for
8: Return D

A.3 Regression Details

In this section, we detail the parameters of the criti-
cal length regression models used in Section 5.

For each task-model pair, we use approximately
100 examples per (N, k) (run length, state-space
size) pair. With 4 to 36 such configurations per task
(range and number of possible examples depending
on attributes of the task itself, as described in the
earlier Appendix section A.1), this gives us from
300 to 3500 examples per regression. All points
used for training are disjoint from the evaluation
set.
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A.4 Errors When We Reason for Too Long

Too-long generations suggest noisy back-
tracking (DS-R1)

Prompt:
You are a smart and helpful AI
assistant. Please help me with the
following task.
Determine whether the following
string belongs to the Dyck language,
i.e. is a balanced string of
brackets such that every single open
bracket has a corresponding closed
bracket later in the string.
Input: {{{{}}{}}{}{}}{}{}{}
Provide your final answer as True
or False, following this template:
[ANSWER] is_balanced == YOUR ANSWER
[/ANSWER]

Model Output:
<think> Okay, let’s see. I need
to determine if the given string
of brackets is balanced, meaning
it’s part of the Dyck language. The
input is {{{{}}{}}{}{}}{}{}{}. Hmm.
Alright, so Dyck language requires
that every opening bracket has a
corresponding closing bracket in
the correct order. So, I should
check if the brackets are properly
nested and closed.
Let me start by writing down the
string to visualize it better. The
string is: { { { { } } { } } { } {
} } { } { } { }
Wait, let me count the brackets
step by step. Maybe using a stack
approach would help. The idea is
to iterate through each character,
push an opening bracket onto the
stack, and pop when a closing
bracket is encountered. If the stack
is ever empty when trying to pop,
it’s unbalanced. At the end, the
stack should be empty.
Let’s go through each character one
by one.
1. First character is ’{’ → stack
becomes [ ’{’ ] 2. Second ’{’ →
stack [ ’{’, ’{’ ] 3. Third ’{’ →

stack [ ’{’, ’{’, ’{’ ] 4. Fourth
’{’ → stack [ ’{’, ’{’, ’{’, ’{’ ] 5.
Fifth is ’}’ → pop → stack becomes
[ ’{’, ’{’, ’{’ ] 6. Sixth ’}’ →
pop → stack [ ’{’, ’{’ ] 7. Seventh
’{’ → stack [ ’{’, ’{’, ’{’ ] 8.
Eighth ’}’ → pop → stack [ ’{’, ’{’
] 9. Ninth ’}’ → pop → stack [ ’{’
] 10. Tenth ’{’ → stack [ ’{’, ’{’
] 11. Eleventh ’}’ → pop → stack [
’{’ ] 12. Twelfth ’}’ → pop → stack
empty? Wait, no. Let me recount the
positions. Maybe I miscounted.
Wait the original string is:
{{{{}}{}}{}{}}{}{}{}
Breaking it down:
Indices (starting at 1):
1: { 2: { 3: { 4: { 5: } 6: } 7: {
8: } 9: } 10: { 11: } 12: } 13: }
14: { 15: } 16: { 17: } 18: { 19: }
Wait, maybe I should write
the entire string as individual
characters. Let me count them
properly.
Original input:
{{{{}}{}}{}{}}{}{}{}
Let me split it into each bracket:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. } 13. }
14. { 15. } 16. { 17. } 18. { 19. }
20. }
Wait, wait, maybe I’m getting
confused. Let me count the exact
number of characters. Let’s see:
The input is: {{{{}}{}}{}{}}{}{}{}
Breaking it down:
- The first part is {{{{}}{}}{}{}},
then followed by }{}{}{}
Wait, no. Let me parse it step by
step.
Let me write the string as a list:
Characters:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. } 13. }
14. { 15. } 16. { 17. } 18. { 19. }
20. }
Wait, but when I count the original
input, maybe the actual count is
different. Let me check again.
Original input:
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{{{{}}{}}{}{}}{}{}{}
Let me count each bracket:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. } 13. } →
this is the end of the first part,
then comes:
14. { 15. } 16. { 17. } 18. { 19. }
20. }
Wait, but the original input after
the first part (which ends with })
is followed by three sets of {}. Let
me see:
The entire string is:
{{{{}}{}}{}{}}{}{}{}
Breaking it down:
- The first part is {{{{}}{}}{}{}}
which is 12 characters? Let’s see:
Inside the first part:
- { { { { } } { } } { } { } }
Wait, perhaps:
First group: {{{{}} { } } { } { } }
Wait, maybe I should parse the first
part as follows:
Start with four {, then two }, then
a {, then }, then }, then { }, then {
}, then }, but I’m getting confused.
Let me try to split the string into
parts.
Alternatively, perhaps the stack
approach is better. Let’s process
each character step by step, keeping
track of the stack.
Initialize stack = empty.
Processing each character:
1. ’{’ → push. Stack: [’{’] 2. ’{’
→ push. Stack: [’{’, ’{’] 3. ’{’
→ push. Stack: [’{’, ’{’, ’{’] 4.
’{’ → push. Stack: [’{’, ’{’, ’{’,
’{’] 5. ’}’ → pop. Stack becomes
[’{’, ’{’, ’{’] 6. ’}’ → pop. Stack
becomes [’{’, ’{’] 7. ’{’ → push.
Stack: [’{’, ’{’, ’{’] 8. ’}’ →
pop. Stack: [’{’, ’{’] 9. ’}’ → pop.
Stack: [’{’] 10. ’{’ → push. Stack:
[’{’, ’{’] 11. ’}’ → pop. Stack:
[’{’] 12. ’}’ → pop. Stack is now
empty. Wait, but after step 12, the
stack is empty. Then comes the next
characters:
13. ’{’ → push. Stack: [’{’] 14.

’}’ → pop. Stack empty again. 15.
’{’ → push. Stack: [’{’] 16. ’}’ →
pop. Stack empty. 17. ’{’ → push.
Stack: [’{’] 18. ’}’ → pop. Stack
empty. 19. ’{’ → push. Stack: [’{’]
20. ’}’ → pop. Stack empty.
Wait, but how many characters are
there? Let me count again. The input
is:
{{{{}}{}}{}{}}{}{}{}
Let me count each character:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. } 13. }
14. { 15. } 16. { 17. } 18. { 19. }
20. }
Wait, but the original input after
the first part (which ends with the
13th character as }) is followed by
three {}{}{}, which is three pairs.
So the total length is 13 + 6 = 19?
Let me check:
Original input:
{{{{}}{}}{}{}}{}{}{}
Breaking it down:
- The first part is {{{{}}{}}{}{}} →
which is 12 characters? Let’s see:
Inside the first part:
- 4 opening brackets: {{{{ - Then
two closing: }} → positions 5 and 6
- Then { } → positions 7 and 8 - Then
} → position 9 - Then { } → positions
10 and 11 - Then } → position 12 -
Then } → position 13? Wait, maybe
I’m getting the counts wrong.
Alternatively, perhaps the first
part is {{{{}}{}}{}{}} which is 12
characters. Let’s see:
Each pair of brackets:
- The first four {{{{, then two }},
then { }, then }, then { }, then },
then }.
Wait, perhaps the first part is
structured as follows:
{ { { { } } { } } { } { } }
Wait, let’s parse that:
1. { (1) 2. { (2) 3. { (3) 4. {
(4) 5. } (5) 6. } (6) 7. { (7)
8. } (8) 9. } (9) 10. { (10) 11.
} (11) 12. } (12) 13. } (13) →
Wait, but the first part ends with
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}, so perhaps the first part is 13
characters? No, because the first
part is {{{{}}{}}{}{}} which is 12
characters. Let me count:
Each bracket in the first part:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. }
So the first part is 12 characters.
Then comes }, {, }, {, }, {, },
which would be 6 more characters.
Wait, no. The entire input is
{{{{}}{}}{}{}}{}{}{} → after the
first part (12 characters), the
remaining is }{}{}{} → which is 6
characters. Wait, no. Let me see:
The entire input is:
{{{{}}{}}{}{}} {}{}{}
Wait, perhaps the first part
is {{{{}}{}}{}{}} (12 characters),
then followed by three {}{} pairs.
Wait, but the input after the
first part is }{}{}{} → which is
} followed by {}{}{}? No, perhaps
the input is structured as:
After the first part (which ends
with }), the next characters are
{}{}{} → three pairs. So the entire
input is:
First part: {{{{}}{}}{}{}} → 12
characters.
Then three pairs: {}{}{} → each pair
is two characters, so 3*2=6. Total
characters 12+6=18.
Wait, but the input given is
{{{{}}{}}{}{}}{}{}{} → let’s count
the brackets:
Let me count each bracket:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. } 13. }
→ this is the first part’s closing
bracket. Then comes:
14. { 15. } 16. { 17. } 18. { 19.
} 20. } → Wait, no. Let me count
again.
Wait, the input is:
{{{{}}{}}{}{}}{}{}{}
Breaking it down:
- The first part is {{{{}}{}}{}{}} →
which is 12 characters. Let’s see:
1. { 2. { 3. { 4. { 5. } 6. } 7. {

8. } 9. } 10. { 11. } 12. }
Then comes }, which is the 13th
character. Then {, }, {, }, {, },
which are characters 14-19. So total
19 characters? Or perhaps I’m making
a mistake here.
Alternatively, perhaps the input
is:
After the first 12 characters (the
first part), the remaining is
}{}{}{} → which is 6 characters.
So the entire input is 12 +6=18
characters. Let me check:
Original input:
{{{{}}{}}{}{}}{}{}{}
Let me count each bracket:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. } → this
ends the first part (12 characters).
Then comes:
13. { → 13th 14. } →14th 15. { →15th
16. } →16th 17. { →17th 18. } →18th
So total 18 characters. So the input
is 18 characters long.
Now, let’s process each character
step by step with the stack.
Initialize stack = empty.
Processing each character:
1. ’{’ → push. Stack: [’{’] 2. ’{’
→ push. [’{’, ’{’] 3. ’{’ → push.
[’{’, ’{’, ’{’] 4. ’{’ → push. [’{’,
’{’, ’{’, ’{’] 5. ’}’ → pop. Stack
becomes [’{’, ’{’, ’{’] 6. ’}’ →
pop. Stack [’{’, ’{’] 7. ’{’ → push.
[’{’, ’{’, ’{’] 8. ’}’ → pop. [’{’,
’{’] 9. ’}’ → pop. [’{’] 10. ’{’
→ push. [’{’, ’{’] 11. ’}’ → pop.
[’{’] 12. ’}’ → pop. Stack is empty
now.
Wait, after the 12th character
(which is a ’}’), the stack is empty.
Then comes the 13th character, which
is ’{’ → push. Stack: [’{’].
14th character is ’}’ → pop. Stack
empty again.
15th character ’{’ → push. [’{’].
16th ’}’ → pop. Stack empty.
17th ’{’ → push. [’{’].
18th ’}’ → pop. Stack empty.
So after processing all characters,

1054



the stack is empty. But wait, during
processing, did we ever try to pop
from an empty stack? Let’s check
each step.
At step 5: popping when stack has 4
elements. Okay.
At step 6: popping when stack has 3
elements. Okay.
At step 8: popping when stack has 2
elements. Okay.
At step 9: popping when stack has 1
element. Now stack is empty.
At step 10: pushing, stack becomes
[’{’].
At step 11: popping, stack becomes
empty again.
At step 12: popping, but stack is
already empty here? Wait, no. Let
me recheck steps 10-12.
Wait, after step 9, stack is empty.
Then step 10 is ’{’ → push. Stack:
[’{’].
Step 11 is ’}’ → pop. Stack becomes
empty.
Step 12 is ’}’ → trying to pop from
empty stack. Oh! Here’s the problem.
At step 12, when we encounter a ’}’,
the stack is already empty. So this
would be an error. Because you can’t
pop from an empty stack. So this
would make the string unbalanced.
Wait, but according to the input
breakdown, the 12th character is the
closing bracket of the first part.
Let me recheck the steps again.
Wait, perhaps I made a mistake in
the order of processing. Let me
redo the processing with the correct
order.
Let me list all the characters in
order:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. } 13. }
14. { 15. } 16. { 17. } 18. { 19. }
20. }
Wait, but earlier I thought the
input is 18 characters. Hmm. Maybe
I’m getting confused with the actual
count. Let me count the input again.
The input is: {{{{}}{}}{}{}}{}{}{}

Let me count each bracket:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. } 13. }
→ this is the first part’s closing
bracket. Then comes:
14. { 15. } 16. { 17. } 18. { 19. }
20. }
Wait, that’s 20 characters. But that
can’t be right. Let me count again.
Original input:
{{{{}}{}}{}{}}{}{}{}
Breaking it down:
- The first part is {{{{}}{}}{}{}} →
let’s count:
Each bracket in this part:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. }
So that’s 12 characters. Then comes
another }, making it 13? No, wait,
the first part is enclosed in the
outermost brackets. Let me see:
Wait, the first part is
{{{{}}{}}{}{}} → which is:
- The first { (1) - Then three more
{ (2,3,4) - Then two } (5,6) - Then
{ (7) - } (8) - } (9) - { (10) - }
(11) - } (12)
So the first part is 12 characters.
Then the remaining part is }{}{}{}
→ which is:
13. } 14. { 15. } 16. { 17. } 18. {
19. } 20. }
Wait, but that’s 8 more characters,
making the total 20. But that can’t
be right. Let me check again.
Wait, the input after the first part
is }{}{}{} → which is:
} { } { } { }
So that’s 6 characters. So the
entire input is 12 +6 = 18
characters. So the first part is
12 characters, then the next 6 are
} { } { } { }.
Wait, but that would make the input:
Characters 1-12: {{{{}}{}}{}{}} →
12 characters.
Characters 13-18: }{}{}{} → 6
characters.
So total 18 characters.
So the characters are:
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1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. } 13. }
14. { 15. } 16. { 17. } 18. }
Wait, no. The 13th character is },
then 14th {, 15th }, 16th {, 17th
}, 18th {, 19th }, but that would
be 19 characters. Hmm, perhaps I’m
getting mixed up. Let me write the
entire input as a list:
Input string: { { { { } } { } } { }
{ } } { } { } { }
Wait, perhaps the input is:
After the first 12 characters (the
first part), the remaining is
}{}{}{} → which is:
} { } { } { }
So that’s 6 characters. So the
entire input is 12 +6 = 18
characters.
So the characters are:
1. { 2. { 3. { 4. { 5. } 6. } 7. {
8. } 9. } 10. { 11. } 12. } → end
of first part.
Then:
13. } 14. { 15. } 16. { 17. } 18.
{ 19. } 20. } → Wait, no. If the
remaining part is }{}{}{}, that’s 6
characters: }, {, }, {, }, {, }?
No, that’s 6 characters: positions
13-18.
Wait, the remaining part is }{}{}{}
→ which is:
13. } 14. { 15. } 16. { 17. } 18. }
So that’s six characters. So the
entire input is 18 characters.
Now, let’s process each character
step by step:
1. ’{’ → push. Stack: [’{’] 2. ’{’
→ push. [’{’, ’{’] 3. ’{’ → push.
[’{’, ’{’, ’{’] 4. ’{’ → push. [’{’,
’{’, ’{’, ’{’] 5. ’}’ → pop. Stack
becomes [’{’, ’{’, ’{’] 6. ’}’ → pop.
[’{’, ’{’] 7. ’{’ → push. [’{’, ’{’,
’{’] 8. ’}’ → pop. [’{’, ’{’] 9. ’}’
→ pop. [’{’] 10. ’{’ → push. [’{’,
’{’] 11. ’}’ → pop. [’{’] 12. ’}’ →
pop. Stack is now empty.
Now, processing the remaining
characters:
13. ’}’ → trying to pop from

empty stack. This is invalid.
So the string is unbalanced here.
Therefore, the entire string is not
balanced.
But wait, according to the input,
after the first part (which ends at
character 12), the next character
is ’}’ (position 13). But at this
point, the stack is already empty.
So popping here would cause an
underflow, which means the string
is invalid. Therefore, the answer
should be False.
But wait, perhaps I made a mistake
in the processing steps. Let me
recheck.
After processing the first 12
characters:
At step 12, the stack is empty.
Then character 13 is ’}’, which
requires popping from an empty stack.
That’s invalid. So the string is not
balanced. Therefore, the answer is
False. </think>
[ANSWER] is_balanced == False

A.5 Per-Task Results
Figure 7 shows correlation between critical length
and task DFA properties, split by task. Tasks
mapped more abstractly to their underlying DFAs
exhibit less clear correlation patterns.

A.6 Generation Patterns by Model
Table 5 shows how critical length varies by task
and model. Observe that models with COT-RL
consistently produce longer sequences than their
non-COT-RL counterparts.

Figure 8 plots average task accuracy against av-
erage generation length, for all models used in this
paper. It reflects that often, longer generations cor-
relate with higher task accuracy.
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Model Aold Anew ∆A (SE) Aold Anew ∆A (SE) Aold Anew ∆A (SE)

Multi-Step Arithmetic Index Tracking Dyck-D
Qw2.5-32B 72.2 78.2 +6.0 (±2.6) 95.4 96.0 +0.6 (±0.3) 81.0 81.4 +0.4 (±0.2)
Qw2.5-7B – – – 51.2 51.5 +0.2 (±0.1) 81.2 80.6 −0.6 (±3.0)
R1-Qw-32B 69.6 71.0 +1.3 (±0.5) 96.0 97.7 +1.8 (±0.7) 78.8 79.2 +0.4 (±1.1)
o3-mini 99.4 100.0 +0.6 (±0.4) 99.6 99.6 −0.0 (±0.1) 88.9 92.9 +4.0 (±0.8)
DSR1 99.2 99.6 +0.4 (±0.4) 98.6 98.7 +0.1 (±0.4) 76.4 88.0 +11.6

(±2.6)
R1-Ll-8B 65.8 73.0 +7.2 (±1.2) 87.3 88.8 +1.5 (±0.5) 56.6 54.7 −1.9 (±2.4)
R1-Ll-70B 95.7 96.8 +1.0 (±0.7) 96.2 96.3 +0.1 (±0.3) 75.1 85.6 +10.4

(±1.9)
Ll3.1-8B – – – 33.8 33.8 +0.1 (±0.0) 59.1 59.0 −0.1 (±0.0)
Ll3.1-405B 83.3 84.5 +1.2 (±0.8) 97.4 98.4 +0.9 (±0.4) 86.8 88.8 +1.9 (±1.0)
gpt4o 93.1 96.6 +3.5 (±1.4) 99.8 99.8 −0.0 (±0.2) 89.7 91.0 +1.3 (±1.5)
Ll3.3-70B 79.9 79.9 −0.0 (±0.2) 93.0 93.3 +0.3 (±0.4) 80.9 82.5 +1.7 (±0.5)
DSV3 90.5 90.9 +0.4 (±0.4) 99.9 99.9 +0.0 (±0.1) 88.2 88.1 −0.1 (±0.2)
Ge2-9B – – – 54.5 60.4 +5.9 (±3.3) 71.0 71.1 +0.1 (±0.0)
Ministral-8B – – – 51.2 51.4 +0.1 (±0.1) – – –
R1-Qw-7B 65.9 73.9 +8.0 (±2.6) 60.8 61.3 +0.5 (±0.1) – – –

Navigate Even/Odd Tracking CRUXEval
Qw2.5-32B 82.7 83.8 +1.0 (±0.6) 97.8 98.3 +0.5 (±0.2) 78.4 82.4 +4.1 (±1.7)
Qw2.5-7B 71.9 74.1 +2.2 (±1.4) 66.5 71.3 +4.9 (±4.3) 53.1 58.2 +5.1 (±4.0)
R1-Qw-32B 95.9 98.9 +3.1 (±1.5) 98.5 98.8 +0.3 (±0.2) 87.6 93.4 +5.8 (±2.0)
o3-mini 99.8 99.8 −0.0 (±0.1) 99.7 99.5 −0.2 (±0.1) 90.3 96.1 +5.7 (±1.7)
DSR1 99.8 99.8 −0.1 (±0.2) 98.8 99.3 +0.5 (±0.4) 82.4 89.6 +7.1 (±1.3)
R1-Ll-8B 79.5 81.2 +1.7 (±0.6) 91.2 93.7 +2.5 (±0.6) 69.2 77.0 +7.7 (±3.4)
R1-Ll-70B 98.6 98.7 +0.1 (±0.3) 95.6 96.1 +0.5 (±0.2) 84.9 97.5 +12.6

(±3.1)
Ll3.1-8B 50.3 50.1 −0.2 (±0.3) 64.3 64.4 +0.2 (±0.1) – – –
Ll3.1-405B 96.0 96.7 +0.7 (±0.9) 98.1 98.2 +0.1 (±0.1) 78.9 85.5 +6.6 (±1.5)
gpt4o 97.5 98.1 +0.6 (±0.4) 96.5 96.7 +0.1 (±0.8) 86.4 92.7 +6.2 (±2.2)
Ll3.3-70B 92.6 97.7 +5.1 (±0.9) 97.2 98.0 +0.8 (±0.3) 77.4 88.2 +10.8

(±2.4)
DSV3 97.7 98.0 +0.3 (±0.3) 99.9 100.0 +0.1 (±0.1) 86.7 91.1 +4.4 (±1.6)
Ge2-9B 63.9 62.6 −1.2 (±0.9) 65.8 65.4 −0.4 (±0.5) – – –
Ministral-8B 64.0 63.9 −0.1 (±0.8) 70.0 70.0 −0.0 (±0.5) 50.2 59.2 +9.1 (±3.1)
R1-Qw-7B 84.6 84.2 −0.3 (±0.5) 75.2 76.0 +0.8 (±0.3) 80.8 89.2 +8.3 (±3.2)

Table 3: Per-task improvement by constraining to L∗. (Part 1)
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Model Aold Anew ∆A (SE) Aold Anew ∆A (SE) Aold Anew ∆A (SE)

Shuffled Objects Nested Boolean Expression Web of Lies
Qw2.5-32B 87.1 96.5 +9.5 (±2.4) 86.2 86.8 +0.6 (±0.8) 80.8 98.7 +17.9

(±8.1)
Qw2.5-7B – – – 79.1 78.6 −0.5 (±0.5) – – –
R1-Qw-32B 65.1 65.7 +0.7 (±1.0) 92.2 92.4 +0.2 (±1.0) 76.3 80.1 +3.9 (±4.1)
o3-mini 96.5 94.6 −1.9 (±1.2) 97.7 96.6 −1.1 (±1.3) 99.0 100.0 +1.0 (±0.7)
DSR1 98.4 99.1 +0.7 (±0.6) 98.4 100.0 +1.6 (±0.8) 100.0 100.0 +0.0 (±0.0)
R1-Ll-8B 91.1 93.4 +2.3 (±0.8) 77.1 78.0 +0.9 (±1.2) 79.6 96.7 +17.0

(±3.1)
R1-Ll-70B 97.5 98.0 +0.5 (±0.6) 93.6 92.7 −0.9 (±0.7) 98.6 98.8 +0.2 (±1.3)
Ll3.1-8B 50.6 53.7 +3.1 (±2.7) 72.2 69.2 −3.0 (±2.0) – – –
Ll3.1-405B 95.3 94.6 −0.7 (±1.6) 88.3 87.7 −0.6 (±0.6) 96.1 100.0 +3.9 (±1.2)
gpt4o 99.7 100.0 +0.3 (±0.3) 84.6 82.2 −2.5 (±2.2) 100.0 100.0 +0.0 (±0.0)
Ll3.3-70B 98.6 98.2 −0.3 (±0.3) 87.7 87.1 −0.6 (±0.3) 97.6 100.0 +2.4 (±0.9)
DSV3 89.9 98.5 +8.6 (±3.7) 90.2 91.3 +1.1 (±1.1) – – –
Ge2-9B 65.1 68.5 +3.4 (±5.7) 69.8 64.8 −5.0 (±5.9) 88.9 91.5 +2.6 (±3.5)
Ministral-8B – – – 73.0 70.8 −2.3 (±2.8) – – –
R1-Qw-7B – – – 81.6 81.6 −0.0 (±1.1) – – –

Logical Deduction GSM8k
Qw2.5-32B 70.7 79.3 +8.7 (±2.4) 95.3 96.6 +1.3 (±0.9)
Qw2.5-7B 11.3 10.7 −0.6 (±0.5) 87.3 87.0 −0.3 (±0.3)
Ge2-9B 25.8 25.9 +0.1 (±1.6) 47.0 45.7 −1.3 (±7.1)
R1-Qw-32B 90.8 100.0 +9.2 (±2.3) 93.4 94.9 +1.5 (±1.8)
o3-mini 94.0 98.8 +4.8 (±1.4) 96.9 97.9 +1.0 (±0.6)
DSR1 98.9 100.0 +1.1 (±0.6) 96.1 93.2 −2.9 (±4.9)
R1-Ll-70B 98.8 100.0 +1.2 (±0.4) 95.5 95.5 −0.0 (±0.0)
Ll3.1-8B – – – – – –
Ll3.1-405B 78.8 93.9 +15.0

(±1.3)
98.0 98.6 +0.6 (±0.5)

gpt4o 79.9 85.7 +5.8 (±3.5) 96.2 97.3 +1.1 (±0.7)
Ll3.3-70B 77.1 95.5 +18.4

(±2.5)
98.0 98.5 +0.4 (±0.4)

DSV3 85.7 87.0 +1.3 (±3.1) 96.9 97.6 +0.7 (±0.3)
R1-Ll-8B 66.1 75.7 +9.6 (±6.7) 90.5 93.7 +3.2 (±1.0)
R1-Qw-7B – – – 94.5 97.0 +2.5 (±1.0)

Table 4: Per-task improvement by constraining to L∗. (Part 2)
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Model Index
Tracking

Even/Odd
Tracking

Navigate Boolean
Expr.

Arith.

Qw2.5-32B [13, ..1006] [78, ..1186] – [13, ..1892] –
R1-Qw-32B [355, ..1897] [277, ..2344] [297, ..1177] [161, ..4031] –
o3-mini [49, ..1273] [51, ..1183] [242, ..1140] [49, ..4230] [113, ..2357]
gpt4o [83, ..653] [98, ..975] [126, ..299] [26, ..2359] [106, ..509]
DSR1 [258, ..1683] [173, ..1405] [283, ..849] [134, ..4145] [316, ..2453]
Ll3.1-405BT [76, ..482] [75, ..567] [103, ..458] [75, ..1081] –
R1-Ll-70B [319, ..2285] [263, ..1760] [271, ..746] [170, ..3637] [236, ..2858]
Ll3.3-70BT [80, ..1378] [97, ..761] [145, ..519] [72, ..1603] –
DSV3 [99, ..549] [83, ..501] [116, ..928] [43, ..841] [97, ..823]
R1-Ll-8B [376, ..1646] [407, ..1668] – – –
R1-Qw-7B [213, ..11342] – – [150, ..2452] –

Model Shuffled
Objects

Web of
Lies

Dyck-D CRUXEval Logical
Deduction

Qw2.5-32B [203, ..690] [65, ..267] – – [232, ..519]
R1-Qw-32B – [88, ..298] – [284, ..545] [465, ..975]
o3-mini [145, ..1248] [146, ..544] [341, ..2489] [117, ..342] [370, ..4573]
gpt4o [102, ..260] [93, ..240] [86, ..1257] [13, ..320] [213, ..491]
DSR1 [415, ..1325] [243, ..434] – [263, ..989] [535, ..957]
Ll3.1-405BT [120, ..540] [82, ..205] [169, ..575] – [195, ..324]
R1-Ll-70B [442, ..3226] [207, ..484] – [335, ..964] [503, ..866]
Ll3.3-70BT [160, ..516] [98, ..191] – – [258, ..405]
DSV3 [164, ..355] – [158, ..3394] [47, ..394] [338, ..2315]
R1-Ll-8B [477, ..2294] [286, ..948] – – [839, ..2831]
Ge2-9B – [85, ..215] – – –

Table 5: L∗ varies by task and model. The smallest and largest critical lengths, for across all k and N task
configurations, are shown. Tasks that the model cannot do with accuracy at least a standard deviation above random
are omitted and instead marked with ‘–’.
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Figure 8: Longer generations often correlate with higher task accuracy.
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