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Abstract

Retrieval-Augmented Generation (RAG) en-
hances LLMs by grounding answers in re-
trieved passages, which is key in factual Ques-
tion Answering. However, generated answers
may still be unfaithful to the passages, either
due to retrieval or generation errors. Many
RAG downstream applications rely on assess-
ing answer faithfulness for applying fallback
strategies, yet address it implicitly, without a
consistent evaluation methodology. We intro-
duce the task of Answering with Faithfulness
(AwF), which brings faithfulness prediction to
the forefront, explicitly coupling it with answer
generation. We define variants of the precision
and recall metrics tailored to this task, facilitat-
ing direct evaluation and comparison of differ-
ent AwF methods. We then demonstrate, both
theoretically and empirically, that for RAG ap-
plications using AwF as a sub-procedure, an im-
provement to the AwF metrics translates to an
improvement to the downstream performance.
This results in improved performance for re-
cently published results.

1 Introduction

Retrieval-Augmented Generation (RAG) enhances
Large Language Models (LLMs) by grounding an-
swers in an external corpus, ensuring that answers
are based on retrieved evidence rather than only
the LLM parametric memory. An answer is said
to be faithful if it is indeed grounded by the re-
trieved content. This property is especially critical
for factual questions requiring precise information.

Ensuring faithfulness in RAG is challenging, as
errors may stem from irrelevant retrievals or un-
faithful generations due to hallucinations or misin-
terpretation. Existing methods—such as adaptive
retrieval (Zhang et al., 2023; Shi et al., 2024), chain-
of-thought reasoning (Wei et al., 2024), or parallel
generation (Lewis et al., 2020)—aim to mitigate
such issues and improve answer quality, but typi-
cally address faithfulness only implicitly. In this

work, we bring the task of faithfulness prediction
to the spotlight, treating it as an explicit objective
crucial not only for answering quality but also for
transparency, by enabling answers to be verifiably
grounded in retrieved content.

Several downstream applications in RAG-based
QA systems implicitly rely on the model’s ability
to assess faithfulness. For example, Wang et al.
(2024a); Asai et al. (2023) propose an adaptive
RAG system that decides whether the retrieved
content should be used in generation, based on a
faithfulness assessment. Ye et al. (2024); Wei et al.
(2024) provide a chain of thought (CoT) technique
that implicitly evaluates the relevance of individ-
ual passages and filters the irrelevant ones before
generating an answer. Yoran et al. (2024); Jin et al.
(2024) highlight that insufficient/irrelevant context
can cause the LLM to err, even if the answer is in
its parametric memory. In these examples and oth-
ers, the subcomponent of evaluating faithfulness
or context sufficiency is chosen arbitrarily, limit-
ing both transparency and control. By defining a
unified framework, one can allow future works to
choose the most suitable subcomponent implemen-
tation, thereby achieving superior results in their
respective task.

To address this gap, we formally define the task
of Answering with Faithfulness (AwF): given a user
question and retrieved passages, the model gener-
ates both an answer and a faithfulness prediction
indicating whether the answer is grounded in the
passages. Rather than proposing a new application
or method, we present a conceptual and evaluative
framework centered on this task to enable explicit
control over when to trust a generated response. To
the best of our knowledge, this is the first work to
define AwF as a distinct task, along with introduc-
ing tailored evaluation metrics of AwF precision
and AwF recall, to support systematic comparison
and analysis of different AwF methods. To illus-
trate the value of this comparison, we demonstrate
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that our metrics remain consistent across diverse
benchmarks and language models. Moreover, us-
ing the AwF framework and metrics, we show both
theoretically and empirically that improvements
in AwF directly enhance answering quality across
RAG-based downstream applications.

Summarizing, our contributions are as follows:
(i) We define the AwF task, allowing explicit tun-
ing of faithfulness predictions, and provide tailored
precision–recall metrics within a unified frame-
work that supports direct comparison across AwF
methods (Section 3). (ii) We show that our for-
mulation unifies methods originally developed for
other tasks (Section 4). (iii) We conduct a com-
prehensive study across models and benchmarks,
revealing consistent performance trends of AwF
methods (Section 5). (iv) We demonstrate both
theoretically and empirically how AwF improve-
ments lead to better performance in downstream
applications with different strategies for handling
unfaithful answers (Section 6).

2 Related Work

Evaluating Context Relevance Faithfulness is
closely related to the problem of evaluating whether
the retrieved context is relevant or sufficient for an
adequate answer. There are several approaches
towards assessing the quality of retrieved context.
Thakur et al. (2024) provide a dataset (NoMiracl)
of queries and related passages along with labels
for answerability of queries. Using this dataset,
they show that LLMs perform poorly in identifying
these unanswerable cases. Wang et al. (2024a) pro-
pose an adaptive RAG system that decides whether
retrieved content should be used in the generation
phase. Ye et al. (2024) and Wei et al. (2024) fine-
tune an LLM to generate a response using CoT,
where it first decides which passages are useful,
then generates a response. Meng et al. (2024) pro-
pose using LLM-generated binary relevance labels
that are subsequently used to compute continuous
scores assessing the quality of the retrieved con-
tent in terms of a desired retrieval metric, such as
the precision-oriented reciprocal rank, or the recall-
oriented NDCG. Joren et al. (2025) take a different
perspective on retrieval quality assessment by ex-
ploring several ways of determining whether the
context is sufficient to answer a question. They
apply their approach to design a Q&A system that
can abstain and is measured by its abstention rate
and answer accuracy on the non-abstained ques-

tions. Finally, some papers (Yoran et al., 2024; Jin
et al., 2024) have an implicit approach to the prob-
lem, where rather than letting the LLM or another
model decide whether retrieved content is useful,
they fine-tune the LLM to be robust to irrelevant
data. We note that while our methods aim to eval-
uate faithfulness, a key insight we present is that
for many downstream tasks, when replacing the
retrieval quality estimations listed here with faith-
fulness prediction, the overall quality improves.

Evaluating Faithfulness Here, the challenge is
to decide whether a given response has sufficiently
high quality given the retrieved content, or phrased
inversely, whether the content was used in gener-
ating the response. A natural way of doing so is
to determine whether the answer is implied by the
retrieved content. This challenge is closely related
to fact-checking (Wang et al., 2024b), where NLI is
a popular approach for verifying a statement given
evidence (see Honovich et al. (2022) and references
within). A computationally expensive alternative
to standard NLI models is represented by RAGAS
faithfulness (Es et al., 2024), based on prompting a
powerful LLM. While the above treat faithfulness
as an evaluation task, our work treats it as a predic-
tion task tightly coupled to answer generation.

Wu et al. (2024) studied the inclination of RAG
models to prefer their parametric memory over the
provided context, and vice versa. They provide
a test for faithfulness in which they compare the
perplexity of an answer generated by an LLM with
and without retrieved content. (Asai et al., 2023)
provide a RAG framework where, among other
things, they generate sentences in parallel with and
without retrieval and choose an output based on a
(self) evaluation of faithfulness. While these works
do couple faithfulness assessment with answer gen-
eration, they do not formulate it as a distinct pre-
diction task with dedicated evaluation metrics. In
contrast, our work explicitly defines and evaluates
this task, and systematically studies its behavior
across language models, datasets, and its impact on
downstream system performance.

Uncertainty Estimation. A somewhat related
body of work involves estimating uncertainty or
confidence (Geng et al., 2024). From a high-level
perspective, both AwF and uncertainty estimation
attempt to estimate answer quality. However, the
definition of that quality is quite different; in AwF,
it relates to retrieved content, while in uncertainty
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estimation, it relates to the parametric memory of
the LLM. Due to this significant difference, we do
not consider such methods as AwF methods.

3 Task Definition & Metrics

We provide a formal definition of the AwF task
and then show how a line of methods fits into this
framework. The input to the AwF task consists of a
question q, and a collection of passages P , typically
obtained via retrieval. Our goal is building an AwF
method M that computes

M(q, P ) = (a, v),

where a is the generated answer, and v ∈ {0, 1} is
its predicted faithfulness indicator. The faithfulness
indicator aims to predict the true faithfulness of an
answer given the passages:

Vq,P (a) =




1 P supports the statement:

“the answer to q is a”,
0 otherwise.

Vq,P (a) can be estimated by human annotators, or
a judge LLM (Chiang and Lee, 2023; Zheng et al.,
2023; Es et al., 2024).

The predictions a and v are highly related, and
their quality should be evaluated as a whole. In
particular, the metrics measuring the performance
of M should capture the fact that when v = 0, the
quality of a is not important. Indeed, one can think
of making use of v as a gating mechanism to invoke
a different generation process when v = 0, thereby
ignoring a in this case. Similarly, when M fails
to produce a faithful answer, v should be 0 even
if a supported answer can be generated from the
passages. Moreover, note that the cost of provid-
ing a wrong answer vs. the cost of not providing
an answer when a proper answer can be inferred
from the passages, depends on the specific use case.
Thus, we want to maximize two competing objec-
tives that capture this tradeoff. To that end, we
introduce a tailored notion of precision and recall,
defined below.

Assume we are given a set of question and
passage pairs {(qi, Pi)}Ni=1, and M is used to
append to each such pair its predictions ai, vi.
We define our metrics w.r.t. to the set of tuples
{(qi, Pi, ai, vi)}Ni=1. Throughout, all sums are over
these N tuples, and we denote their corresponding
ground truth labels as Vi = Vqi,Pi(ai).

AwF Precision is similar to the standard classifi-
cation precision, the fraction of answers the gen-
erator correctly deemed faithful, out of the total
number of faithful answers. The number of cor-
rectly classified faithful answers (True Positives)
is True-Pos =

∑
i vi · Vi, and the total number of

answers that were classified as faithful (Predicted
Positive) is Pred-Pos =

∑
i vi. The answering

with faithfulness precision is therefore

AwF-Precision =
True-Pos

Pred-Pos

We note that even though the precision appears
identical to the standard classifier precision at first
glance, it also depends on the generated answers
as well, since the ground truth label Vi depends on
the answer ai.

AwF Recall is the fraction of answers correctly
deemed faithful, out of the total number of ques-
tions for which a faithful answer exists. Adopting
the terminology coined by Joren et al. (2025), these
are are exactly the questions for which we have a
sufficient context. Formally, let

V SfC
q,P =

{
1 ∃a∗ s.t. Vq,P (a

∗) = 1,
0 otherwise,

and V suff
i ≡ V suff

qi,Pi
. The number of answerable

questions is F-Answerable =
∑

i V
SfC
i , and the

recall is defined by:

AwF-Recall =
True-Pos

F-Answerable

A connection to the classical notion of classifier
recall can be obtained from a simple reformulation.
Denoting by Faithful the number of faithful gener-
ated answers, Faithful =

∑
i Vi, the recall can be

reformulated as

AwF-Recall =
True-Pos

Faithful︸ ︷︷ ︸
classifier recall

· Faithful

F-Answerable︸ ︷︷ ︸
answering recall

(1)

Thus, our notion of recall is the classifier recall
given the answers, multiplied by the ability of the
generator to produce faithful answers whenever a
faithful answer exists.

Connection to Context Sufficiency We note that
AwF is similar to post-retrieval query performance
prediction (QPP) (Arabzadeh et al., 2024) and
content sufficiency (Joren et al., 2025) (SfC for
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brevity), with the distinction that the predicted
indicator V evaluates whether P supports a cor-
rect answer a∗q , rather than the generated answer
a. To measure the quality of such a prediction,
we define SfC-Precision and SfC-Recall to be the
same as above when replacing Vi with V SfC

i in
the TRUE-POS formula. We note that recall be-
comes the standard recall metric since the Faithful
and F-Answerable sets become the same (Equa-
tion (1)). Due to the similarity of the methods,
techniques designed for AwF can be evaluated for
SfC.

4 Methods

We consider various methods that fit within the
AwF framework, demonstrating how our formu-
lation unifies approaches originally designed for
different problems, such as answer generation. In
some cases, we make slight adaptations to align
these approaches with AwF (e.g., pairing answer
generation with a simple faithfulness prediction
that always sets v = 1). Some of the methods
we consider provide a hard classification result,
i.e., v ∈ {0, 1}, whereas others provide a contin-
uous decision function that can be thresholded to
obtain v ∈ {0, 1}. We first present unified meth-
ods that simultaneously output both an answer and
its faithfulness indicator. Then, we provide com-
posed methods that combine answering modules
with faithfulness prediction ones. The exact LLM
prompts we used in the following methods are avail-
able in Appendix C.

4.1 Unified Methods

Intrinsic Abstention. A straightforward tech-
nique where we prompt an LLM to answer only if
the answer appears in the context and reply with
“DONT KNOW” when it does not. We set v = 1 if
and only if the answer is not “DONT KNOW”.

CoT few-shot Hybrid. A variant of the Intrin-
sic Abstention method using both chain-of-thought
and few-shot examples. It is inspired by the method
described in (Wei et al., 2024), where the LLM is
instructed to reason about the relevance of the pas-
sages before answering and is given two examples
comprising a question, passages, and the reason-
ing. We adapt the original method by prompting
the LLM to answer “DONT KNOW” if an answer
cannot be deduced from the passages (v = 0).

Dual Generation. A method proposed by Wu
et al. (2024). The idea is to generate an answer
both with and without P , then compare the (nor-
malized) perplexity percentiles of both answers in
order to choose one. We define a continuous deci-
sion function for v as the difference between the
perplexities.

4.2 Composed Methods
We consider methods that compose two compo-
nents for producing the AwF output (a, v): an an-
swer generation method to generate a, and a faith-
fulness prediction method to produce v. Below, we
describe concrete answer generation and faithful-
ness prediction methods we consider in this paper.

4.2.1 Answer Generation
Vanilla. The straightforward approach for an-
swering questions. Here, we instruct the LLM to
answer the question given the passages.

InstructRAG. This is a variant of the Vanilla
method using both chain-of-thought and few-shot
examples proposed by Wei et al. (2024). We
slightly modified the in-context examples and in-
structions to enable a structured response, from
which we can extract only the final answer.

4.2.2 Faithfulness Prediction
Trivial. A simple baseline that always predicts
v = 1, meaning that it believes the answer from
the generation method is always faithful.

Pre-Answering Prediction. A method originally
designed for SfC. Given q, P , we ask the LLM to
evaluate whether P contains an answer to q. We ask
for a single yes/no answer given all the passages
and obtain a continuous decision function for v by
inspecting the logits of the generated response. We
use the prompt given in (Thakur et al., 2024).

Post-Answering NLI. A faithfulness prediction
method mimicking Vq,P (a). Here, we first invoke
one of the answering methods described above to
generate the response a, then use the question, pas-
sages, and the generated answer to decide whether
the question-answer pair is faithful to the passages.
For small/medium scale LLMs (< 10B) we use a
dedicated NLI model based on DeBERTa Laurer
et al. (2024) (< 1B parameters). For the larger-
scale models, we prompt the tested LLM to pro-
vide a binary classification and use the logits for a
continuous decision function. Further details are
available in Appendix A.
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5 Empirical Comparison of AwF Methods

We conducted a series of experiments to assess
the performance of various AwF methods under
multiple settings and to examine the consistency
of their results. Specifically, we compare each
method’s precision and recall; for methods that
output a continuous decision score, we compare
the full trade-off curve obtained by varying the
decision threshold.

Our objective is to understand how the relative
performance of the AwF methods behaves when we
vary benchmarks, language models, and even the
task itself (between AwF and SfC). We first detail
the experimental setup and then present results that
highlight this cross-setting consistency.

5.1 Experimental Setup

For our experiments, we use question-answering
benchmarks where each entry consists of a ques-
tion, one or more retrieved passages, a reference
answer, and a binary relevance label indicating
whether the reference answer can be inferred from
the passages. We focus on single-hop factoid ques-
tions, where the answer is fully contained within
a single passage. To compute precision and recall,
as defined in Section 3, we estimate Vq,P (a) as
follows. We consider Vq,P (a) to be 1 if: (1) a is
equivalent to the reference answer, as judged by a
strong language model (Claude 3.5 Sonnet), and (2)
the reference answer is supported by the passages

Note that this setup indeed estimates V : Since
q is a factoid question, it has a single correct an-
swer. Any answer that is not equivalent to the
reference answer is therefore incorrect and cannot
be supported by the passages (i.e., Vq,P (a) = 0).
Conversely, if a is equivalent to the reference, then
it is supported by the passages (i.e., Vq,P (a) = 1) if
and only if the reference itself supported by them.

We evaluate our methods on three public bench-
marks: NQ (Kwiatkowski et al., 2019), NoMIR-
ACL (Thakur et al., 2024), and BioASQ (Krithara
et al., 2023). NQ is a widely used QA dataset
consisting of real-user queries with answers re-
trieved from Wikipedia. NoMIRACL is a bench-
mark based on real-user queries and includes anno-
tations indicating whether each context is sufficient
or insufficient, which are used to assess whether
LLMs have the ability to abstain when retrieval
fails. To increase topical and corpus diversity, we
also include BioASQ which focuses on biomedical
questions from PubMed abstracts. Table 1 provides

benchmark statistics; further details on the bench-
marks collection and pre-processing are provided
in Appendix B, and the resulting benchmark files
are available online1.

Benchmark size
(#QAs)

% of answerable
questions

avg passages
per question

NQ 5K 82% 5
NoMIRACL 3.2K 81% 10.1
BioASQ 2.9K 50% 6.5

Table 1: Benchmarks Statistics.

For each benchmark, we test the unified and
composed methods for the AwF task, as presented
in Section 4. For the composed methods, we test all
combinations of answer generation and faithfulness
prediction methods. Since AwF methods rely on
instruction-tuned generative models, we conduct
experiments using Llama 3 Instruct (3B, 8B, 70B),
Falcon 3 Instruct (3B, 10B), and Qwen 2.5 Instruct
(72B). Models are referred to by their first letter
and size, e.g., F10B.

5.2 Results
For each AwF method, LLM, and dataset, we com-
pute the AwF precision, AwF recall, and their F1
score. For the methods outputting a continuous
score (e.g., Post-Answering NLI), we evaluate their
F1 across all thresholds and report the max value.
Table 2 presents the average F1 score obtained by
each of the methods over our three benchmarks.
When using names of answer generation methods,
we implicitly refer to those methods composed with
the Trivial faithfulness prediction method. Elab-
orated tables including all benchmarks of both
F1 scores and area under the curve (AUC), to-
gether with a 95% confidence interval appear in
Appendix D.1 (Tables 6 and 7). To provide a more
meaningful view of the precision-recall tradeoff,
we present a representative plot of Falcon-3B in
Figure 1. Plots for the other LLMs are available in
Appendix D.2 (Figure 6).

One evident trend is that chain-of-thought im-
proves performance: InstructRAG consistently out-
performs Vanilla (as it is a variant of Vanilla with
CoT), and CoT few-shot Hybrid outperforms In-
trinsic Abstention. Notably, this advantage persists
with composition methods. Namely, when one an-
swering method outperforms another (InstructRAG
consistently outperforms Vanilla), this ordering re-
mains unchanged after their composition with any

1https://github.com/alexshtf/awf_datasets
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Method F3B F10B L3B L8B L70B Q72B

Intrinsic 52.9 61.3 29.3 55.1 69.8 71.8
Trivial Vanilla 56.4 63.8 37.0 58.5 65.8 67.7
CoT 60.6 66.8 54.7 63.8 69.4 72.3
Trivial InstRAG 61.8 66.2 56.7 61.9 66.4 67.7
Pre-Ans Vanilla 56.5 65.2 37.5 59.4 69.2 68.4
Pre-Ans InstRAG 61.8 67.4 56.9 62.8 70.2 68.3
NLI Vanilla 59.6 66.1 41.6 61.4 69.8 71.4
NLI InstRAG 63.7 67.6 59.0 64.5 70.8 72.5
Dual Gen 56.4 63.7 37.3 58.5 65.8 67.8

Table 2: Average F1, on the scale 0-100, defined by the
harmonic mean of the average precision and recall over
the datasets of every method and model. The results of
each dataset appear in Appendix D.1.
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Figure 1: AwF-Precision and AwF-Recall of AwF
methods using F3B on NQ benchmark.

faithfulness prediction method. We note that for
most cases (LLMs, benchmarks), the curve of one
fully dominates the other (a stronger statement than
having a better F1 score), but there are a handful of
exceptions.

Another, less obvious trend is a clear hierarchy
between faithfulness prediction methods. Across
the board, the Post-Answering NLI methods outper-
form the Pre-Answering Prediction counterparts.
Here we note that beyond a better F1 score, Fig-
ure 6 shows a full dominance of the precision-recall
curve. This reinforces the intuition that consid-
ering the generated answer improves faithfulness
prediction. Dual Generation can be viewed as an
exception as it does make use of the answer, but
its performance shows that it is less suited for the
AwF task.

A final observation relates to the behavior as
a function of the LLM size. Here, we see a dif-
ference between the small/medium (<10B) and
large (70B) scale LLMs, in that the differences
become smaller. For the large models, a simple
method such as Intrinsic Abstention performs quite
well, and achieves closer performance to the lead-
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Figure 2: SfC-Precision and SfC-Recall of AwF meth-
ods using F3B on NQ benchmark

ing method of Post-Answering NLI coupled with
InstructRAG. This being said, we note that (1) com-
posed methods still provide a superior F1 score
(∼1% gap for both Llama and Qwen), and more
importantly, (2) Intrinsic Abstention lacks a deci-
sion function, and produces fixed precision-recall
values. Thus, in scenarios requiring explicit control
over the precision or recall (e.g., medical queries
requiring high precision), alternative methods are
required.

Relation to Sufficient Context Consider
SfC-Precision and SfC-Recall as defined in Sec-
tion 3. We present the evaluation of those metrics
using a representative example of a medium-scale
LLM (F3B) in Figure 22 (a full visual description
appears in Figure 7 of Appendix D.2). Recall that
Pre-Answering Prediction is designed to predict
the SfC objective, whereas Post-Answering NLI
is designed for the AwF objective. Nevertheless,
the same trends as before remain, in particular
the superior performance of Post-Answering
NLI. This is somewhat surprising and could bring
insights into future solutions for the SfC problem.

6 Applications

We consider downstream applications of AwF,
each using different corrective actions to handle
cases where the generated answer is predicted to
be unfaithful (v = 0). We will provide a for-
mal analysis of this setting providing theoretical

2Since SfC-Precision and SfC-Recall are independent of
the generated answer, all methods that estimate faithfulness
without considering the answer produce identical results. In
particular, this applies to all methods based on Trivial (which
always predicts v = 1) and on Pre-Answering Prediction
(where faithfulness prediction is performed before answer
generation). The respective composed methods are referred
shortly as Trivial and Pre-Answering Prediction in Figure 2.
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justification for why improvements in AwF lead
to enhanced performance in downstream applica-
tions (Theorem 1). We then provide empirical
evidence that employing AwF methods with bet-
ter AwF-Precision/AwF-Recall trade-offs leads
to improved system performance.

6.1 Formal analysis

Due to space restrictions, we provide a short in-
formal analysis here and defer the full rigorous
analysis to Appendix F. To model the different fall-
back methods, we denote by M the AwF method
that provides both an answer and a faithfulness
score. We denote by F a fallback mechanism that
given a query provides an alternative response to
M . This can be a constant "Don’t know" , a no-
RAG response, the output of an expensive LLM or
something else. For each query both the answers
of M and of F have an associated utility.

The key assumption in our analysis is that the
utility of F is independent of v, the faithfulness
score of M ; namely, that its distribution (over
queries) given v = 0 and v = 1 are the same.
While this is not always the case, the empirical
study shows that the dependence is weak enough
for the end conclusion to hold.

Theorem 1 (Informal). Let M1 and M2 be two
AwF methods and F a fallback mechanism indepen-
dent of both. Assume that M1 outperforms M2 with
respect to both Precision and Recall. Then the util-
ity of the combination of F with M1 is greater than
that of F and M2.

6.2 Experiments

6.2.1 No-RAG Fallback
In this application, we couple a RAG system with a
fallback mechanism that, whenever v = 0, replaces
the answer with one generated by prompting the
LLM to respond based on its parametric memory,
that is, without access to retrieved content. This
fallback mechanism is utilized among other places,
in (Asai et al., 2023), motivated by LLMs’ tendency
to get distracted from irrelevant passages (Amiraz
et al., 2025).

Figure 3 illustrates the No-RAG strategy for
Llama3B on BioASQ questions, when using the
composition of InstructRAG and Post-Answering
NLI. The figure presents overall answer accuracy
(i.e., the percentage of generated answers that
match the reference) as a function of the fallback
rate, which can be controlled via different thresh-
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55

A
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u
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InstRAG|v = 0

No-RAG|v = 0

Figure 3: No-RAG fallback. Accuracies of different
types of answers as a function of the fallback rate. Or-
ange: InstructRAG accuracy with No-RAG fallback
when NLI predicts v = 0. Green: Avg. accuracy of
InstructRAG answers predicted as unfaithful. Red: Avg.
accuracy of No-RAG answers for unfaithful Instruc-
tRAG cases.

olding of the soft score Post-Answering NLI gener-
ates for v. Incorporating No-RAG fallback im-
proves accuracy over InstructRAG for fallback
rates up to 70%, peaking around 50% rate before
declining. These results are not surprising, since
50% of BioASQ questions are not answerable from
the passages (i.e., having insufficient context); this
is a demonstration of AwF ability to detect those
cases. This can be further explained by comparing
InstructRAG and No-RAG answers when v = 0
(w.r.t. InstructRAG answer): in low fallback rates,
No-RAG outperforms InstructRAG, so replacing
the answers enhances overall accuracy. However,
as fallback increases, the accuracy gap between
the two narrows, and beyond 70%, InstructRAG
surpasses No-RAG, making further fallback detri-
mental.

In Table 3, we compare Pre-Answering Predic-
tion and Post-Answering NLI (both composed with
InstructRAG) for this application3. We present
here results only for BioASQ, since for NQ and
NoMIRACL, we observe little to no improvement
in overall system accuracy for most LLMs, likely
due to them having mostly (∼82%) questions with
relevant passages (See Table 8 for results across
all benchmarks). In BioASQ, however, only 50%
of the questions contain relevant context, and the
overall improvement is significant for most LLMs.

We see that the Post-Answering NLI techniques
clearly outperform the Pre-Answering Prediction

3For each evaluated benchmark and model, we use 5-fold
cross-validation, optimizing the threshold on four folds and
evaluating performance on the fifth.
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LLM Pre-Ans NLI

Q72B 4.26±0.69% 8.07±1.40%
L70B 7.39±1.99% 10.36±0.65%
L8B 1.33±0.86% 3.13±1.66%
L3B −0.10±0.12% 2.32±0.88%
F10B 0.51±0.63% 0.20±0.80%
F3B 0.03±0.06% 0.07±0.12%

Table 3: Accuracy improvement with No-RAG fallback
over InstructRAG answers, using Pre-Answering Predic-
tion or Post-Answering NLI for faithfulness prediction
on BioASQ. Values in subscript represent 95% confi-
dence intervals.

technique when evaluated on the downstream task,
fully matching their advantage when tested with
AwF-Precision/AwF-Recall. In Appendix E.1
we show that this same trend persists across the
other AwF methods.

6.2.2 Switching to a Larger Model
This strategy matches a scenario where the RAG
system primarily uses a small and cheap LLM, but
when v = 0, it switches to a larger, more expen-
sive model. The system balances two competing
objectives: (i) quality, measured by accuracy, and
(ii) cost, measured by switch rate, i.e., the pro-
portion of answers replaced by the larger model.
Figure 4 illustrates the trade-off between accuracy
and switch rate for Falcon3B and Llama70B on
the NQ benchmark. The ranking of the faithful-
ness methods from Section 5.2 remains consistent,
showing that better AwF-Precision/AwF-Recall
curves lead to a more favorable trade-off. Note that
the set of input-independent baselines that switch
the answer randomly according to some fixed prob-
ability form a linear curve, similar to the behavior
exhibited by Dual Generation.

This same trend persists across the other bench-
marks and LLM choices (full results can be found
in Appendix E.2).

6.2.3 Selective Accuracy
Joren et al. (2025) present another example of im-
plicitly using AwF. They study the problem of an-
swering with abstention using two objectives: cov-
erage — the fraction of answered questions, and
selective accuracy — the answer accuracy on ques-
tions for which the model did not abstain. They
examine continuous decision functions, resulting
in a tradeoff curve between the two objectives.

The paper provides a baseline method called
P[True] (Kadavath et al., 2022), defined as the

0% 20% 40% 60% 80% 100%
Switch Rate

50%

55%

60%

65%

70%

Ac
cu

ra
cy Larger Model

Intrinsic
Trivial Vanilla
CoT
Trivial InstRAG
Pre-Ans Vanilla
Pre-Ans InstRAG
NLI Vanilla
NLI InstRAG
Dual Generation

Figure 4: Switching to a larger model. Accuracy vs
Switch Rate, when using InstructRAG and replacing
F3B answers with L70B for cases where v = 0 on NQ.

probability of the LLM to answer "True" when
asked whether the answer is correct. They show
that combining P[True] with a SfC score, indicat-
ing whether the context is sufficient to answer the
question, yields a better tradeoff between cover-
age and selective accuracy. This combination is
motivated by cases in which the LLM is confident
in its answer despite lacking support from the re-
trieved context. In such cases, the LLM should
be allowed to answer using its parametric mem-
ory. In the paper, they train a logistic regression
model that maps the two predictions to a single
score. To estimate SfC, they use a prompt similar
to our Pre-Answering Prediction.

Building on our finding that SfC can be framed
as AwF, and that AwF can be more effectively
solved using NLI, we propose replacing their SfC
score based on Pre-Answering Prediction with a
AwF method based on Post-Answering NLI. In Ta-
ble 4, we compare their original baseline (P[True])
and method (Suff+P[True]) with our proposed ap-
proach (AwF+P[True]). We evaluated the methods
on the NQ and BioASQ datasets4, using answers
generated by the Vanilla method (§4.2) across mul-
tiple LLMs. We report the area under the curve
between coverage (x-axis) and selective accuracy
(y-axis). Figure 5 shows the full curve for a repre-
sentative case using Llama-3-8B on the NQ dataset.
Full implementation details and additional results,
including those for NQ and the InstructRAG an-
swering method, are provided in Appendix E.3.

Our experiments replicate the findings of Joren
et al. (2025), showing that combining SfC with
P[True] consistently matches or outperforms

4The NoMIRACL benchmark lacks ground-truth answers
for questions without sufficient context, making it invalid for
this experiment.
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Figure 5: Selective accuracy vs. Coverage using L8B
on NQ benchmark.

Dataset Decision Function F3B F10B L3B L8B L70B

NQ P[True] 69.7 76.7 68.3 67.3 74.8
Suff+P[True] 69.4 76.5 67.3 70.1 78.9
AwF+P[True] (ours) 74.3 77.5 72.9 74.3 79.6

BioAsq P[True] 63.6 73.2 25.5 58.8 71.5
Suff+P[True] 63.1 70.9 22.7 60.7 74.9
AwF+P[True] (ours) 67.6 74.0 31.3 66.4 76.5

Table 4: Area under the curve for different answering
methods, over the NQ and BioAsq dataset

P[True] alone. We also draw a new conclusion:
by formulating SfC as AwF and selecting a better
AwF method, the results can be further and signifi-
cantly improved. This is reflected in the superior
performance of the AwF+P(True) method across
all evaluations (Tables 4, 11).

7 Discussion

Our work introduces the Answering with Faith-
fulness problem along with tailored precision and
recall metrics, providing a unified framework for
evaluation. By making faithfulness prediction an
explicit output, we generalize diverse prior ap-
proaches that implicitly address answer faithful-
ness, enabling direct comparisons across methods.

Comparing different AwF methods across di-
verse settings shows that the same trends and con-
clusions hold across benchmarks, language mod-
els, and even between tasks (AwF and SfC). The
consistency of AwF enables us to draw broad con-
clusions—for example, solutions based on Post-
Answering NLI consistently outperform those us-
ing Pre-Answering Prediction. In addition, we
show both theoretically and empirically, that our
AwF formulation is useful: improving AwF metrics
leads to better performance of downstream tasks.

Finally, we demonstrate that applying these in-
sights to tasks that implicitly rely on AwF (such

as selective accuracy) by improving their existing
AwF methods, result in superior performance some-
times surpassing the current state of the art. A
promising direction for future work is to explore
more sophisticated AwF methods, which could fur-
ther enhance downstream performance.

8 Limitations

The AwF problem applies to any benchmark where
RAG provides a suitable solution. In this study, we
focused on question-answering benchmarks, specif-
ically those with factoid questions. We focused our
attention on these benchmarks since other types
would admit additional technical challenges that
are outside the scope of our study, making it diffi-
cult to understand the core problem and the anal-
ysis of our results. For example, with long-form
answers, faithfulness ceases to become a binary
score since an answer can be partially supported
by the documents. An additional limitation to our
study is the language: we restricted our focus to En-
glish benchmarks and corpora and left the analysis
of additional languages to future work.

Finally, our focus was on methods that do not
require fine-tuning an LLM. This choice is due to
two reasons. (1) The popularity of such choices
in real settings, as it is much more convenient to
use an off-the-shelf LLM as opposed to fine-tuning
one. (2) The added technical challenges related
to such methods, such as searching for the right
hyperparameters for training, the cost of training,
and the complexity related to in-distribution vs out-
of-distribution performance.
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A NLI Model

A.1 Implementation details
For using the NLI model to predict whether the
answer question-answer pair is faithful to the pas-
sages, we created the hypothesis using this tem-
plate: The answer to the question "{q}" is:
"{a}", while each passage serves as an indepen-
dent premise (in preliminary experiments, we ex-
plored rephrasing the question-answer pair into its
declarative form using an LLM, but it did not yield
an additional advantage). In case the passage and
the hypothesis together exceed the context window
of the NLI model, we split the passage into chunks
with an overlap of 20 words. We then use the max-
imum score of the NLI model over all premises as
the decision function for v.

A.2 Dedicated model selection
We used a subset of 700 questions from NQ with
answers generated by Falcon-10B, to compare dif-
ferent NLI models and different ways to format

the input (passage, question, answer) to feed the
model. Table 5 contains the max F1 scores across
all possible thresholds (the same as in Table 2) for
each combination of (nli-model, input-format).

The hypothesis formulations we considered are:

Formatted Concatenation
Premise: <passage>

Hypothesis: Question: <question>
Answer: <answer>

Natural Sentence
Premise: <passage>

Hypothesis: The answer to the question: <question> is:
<answer>

Zero-Shot Classification
Premise: ### Context
<passage>

### Question
<question>

### Answer
<answer>

Hypothesis: The answer is supported by the context

For NLI model, we considered four bert-based
models, each with fewer than 1 billion parameters:

• MoritzLaurer/DeBERTa-v3-large-mnli-fever-
anli-ling-wanli

• MoritzLaurer/deberta-v3-large-zeroshot-
v2.0

• MoritzLaurer/ModernBERT-large-zeroshot-
v2.0

• MoritzLaurer/bge-m3-zeroshot-v2.0

Additionally, we tested TRUE (Honovich et al.,
2022), a T5-XXL-based model with 7 billion pa-
rameters.

As shown in the table, the top two models are
MoritzLaurer/deberta-v3-large-zeroshot-v2.0 (with
the Natural Sentence format) and TRUE (with the
Natural Sentence and Formatted Concatenation for-
mats). Since their results are comparable, we chose
to use the DeBERTa-based model in our experi-
ments because of its smaller size (fewer than 1B
parameters vs. 7B parameters for TRUE), and to
formulate the hypothesis as Natural Sentence, due
to its optimal fit with our chosen model. We also
conducted preliminary experiments with RAGAS
faithfulness (Es et al., 2024), using Claude 3.5 Son-
net. However, the observed improvements over the
DeBERTa-based model were negligible, and we de-
termined that the additional computational cost of a
larger model was not justified. For the 70B LLMs,
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NLI Model Formatted Concatenation Natural Sentence Zero-shot Classification
DeBERTa-NLI 0.468 0.451 0.423
DeBERTa-zero-shot-classification 0.459 0.471 0.431
ModernBERT-zero-shot-classification 0.453 0.444 0.438
bge-m3-zero-shot-classification 0.441 0.434 0.428
TRUE 0.472 0.471 0.421

Table 5: Performance of different NLI models under various input formulations.

we used the same LLM with a prompt as the NLI
model, since it performs better than DeBERTa.

A.3 Prompt-based NLI
When the answers are generated by large sized
models, we use the generating model for the NLI
task. The prompt has the following structure:

NLI prompt
system: You are an expert in Natural Language Inference. Given
a premise and a hypothesis, determine if the premise entails
the hypothesis. Output 1 if entailed, and 0 if not entailed.

user: Determine if the premise entails the hypothesis. Output
1 for entailment and 0 for non-entailment.
Premise: <Premise>
Hypothesis: <Hypothesis>
Output:

Instead of asking the model to generate, we use
the log-probability of the answer "1" as the score
for the NLI task.

B Benchmarks

• NQ (Kwiatkowski et al., 2019) is a general
knowledge question answering benchmark
based on queries of real users. The dataset
consists of questions and ground truth an-
swers. Specifically, we sampled, uniformly
at random, 5K question-answer pairs. For
each question, we retrieved 5 passages from
Wikipedia, using E5-base-v2 (Wang et al.,
2022) dense retrieval. Each passage was then
labeled as relevant if it contains the answer as
a (normalized) substring, or according to the
TRUE NLI(Honovich et al., 2022) 5.

• NoMIRACL (Thakur et al., 2024) is a public
benchmark testing whether LLMs have the
ability to abstain. Each entry contains a ques-
tion, passages, and relevance labels for the
passages. The original dataset does not have
a ground truth answer. To obtain one, we
prompted Claude 3.5 Sonnet based only on
the passages that were annotated as contain-
ing the answers. In addition, in the original

5A manual inspection showed this strategy to be near per-
fect in the setting of NQ where the answers are very short and
contain only a single fact.

dataset, the relevant passages are separated
from the non-relevant ones. We shuffle rele-
vant and non-relevant passages together in a
random order. We consider only the English
part of this dataset, as all language and NLI
models we employed, support this language.

• BioASQ (Krithara et al., 2023) is a manu-
ally generated question-answer dataset based
on abstracts of biological academic papers
available in the Pubmed corpus (we used the
snapshot published by (Xiong et al., 2024)).
We used the BioASQ12 training set, out of
which we collected the questions labeled as
factoid questions, resulting in a collection of
1.48K entries. Each entry contains a question,
a ground truth answer, and a list of relevant
passages. To obtain irrelevant passages we
used BM-25 to extract the top-10 related pas-
sages from PubMed and discard those con-
taining the ground truth answer. Finally, we
considered each question twice, using two dif-
ferent passage lists: once with only irrelevant
passages and once with the same set, but with
one randomly selected irrelevant passage re-
placed by a randomly chosen relevant one.

The benchmarks above were uploaded

C Method prompts

Below are the prompts to the Vanilla, Intrinsic Ab-
stention, and No Context methods.

Vanilla
system: You are a helpful assistant that answers a question
based on the context provided. Please be as concise as possible,
do not add any additional information, and do not refer to the
context in anyway.

user: Read the following context carefully and answer the
question below.
Question:
<Question>
Context:
<Passage 1>

<Passage 2>

.

.

.

<Passage n>
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Intrinsic Abstention
system: You are a helpful assistant that answers a question
based on the context provided. Please be as concise as possible,
do not add any additional information, and do not refer to the
context in anyway. If the answer does not exist in the context,
you should output the special string __DONT_KNOW__ .

user: Read the following context carefully and answer the
question below only if the answer is supported by the context.
Question:
<Question>
Context:
<Passage 1>

<Passage 2>

.

.

.

<Passage n>

No context
system: You are a helpful assistant that answers a question
based on your knowledge. Please be concise as possible.

user: <Question>

Below are the prompts of the InstructRAG and
CoT few-shot Hybrid methods. We note that each
dataset has its own set of example questions and
“rationales” for analyzing them. Below is the struc-
ture of the prompts.

InstructRAG
user: Your task is to analyze the provided documents and
answer the given question. Please generate a brief explanation
of how the contents of these documents lead to your answer.
If the provided information is not helpful in answering
the question, you only need to respond based on your own
knowledge, without referring to the documents. After your
analysis, give the final answer in a self-contained manner
after a "Response: " prefix.

Below are some examples of how to answer the question:

###

Example 1

Question: <Example question 1>?

Answer: <Rationale 1>

###

Example 2

Question: <Example question 2>?

Answer: <Rationale 2>

###

Now it is your turn to analyze the following documents and
answer the given question.

Document 1: <Passage 1>

Document 2: <Passage 2>

.

.

.

Document 4: <Passage n>

Based on your knowledge and the provided information,
answer the question:
<Question>?

CoT few-shot Hybrid
user: Your task is to analyze the provided documents and
answer the given question. Please generate a brief explanation
of how the contents of these documents lead to your answer.
If the provided information is not helpful in answering the
question, you need to respond __DONT_KNOW__. After your
analysis, give the final answer in a self-contained manner
after a "Response: " prefix.

Below are some examples of how to answer the question:

###

Example 1

Question: <Example question 1>?

Answer: <Rationale 1 with instruction to abstain>

###

Example 2

Question: <Example question 2>?

Answer: <Rationale 1 with instruction to abstain>

###

Now it is your turn to analyze the following documents and
answer the given question.

Document 1: <Passage 1>

Document 2: <Passage 2>

.

.

.

Document 4: <Passage n>

Either answer the following question based on the
provided information, or reply __DONT_KNOW__:
<Question>?

Here is an example of a question and the
corresponding rationale for NQ:

Question: who won season 13 so you think you can dance?

Rationale: After analyzing the provided documents, I found
that none of them directly mention the winner of Season 13
of "So You Think You Can Dance". However, I can use my own
knowledge to answer the question.

According to various online sources, including Wikipedia
and other reputable dance websites, the winner of Season
13 of "So You Think You Can Dance" is indeed Leon "Kida" Burns.

To deduce this answer, I used my knowledge of the
show’s history and its format. The show typically features
a new season every year, and each season has a different
winner. By analyzing the provided documents, I noticed that
they only mention winners from previous seasons (Seasons 8,
1, and no mention of Season 13). This led me to conclude that
the documents are not relevant to the question.

Therefore, I relied on my own knowledge to answer the
question, which is that Leon "Kida" Burns won Season 13 of
"So You Think You Can Dance".
Response: Leon "Kida" Burns won Season 13 of "So You Think
You Can Dance".

Rationale with instruction to abstain: After analyzing
the provided documents, I found that none of them directly
mention the winner of Season 13 of "So You Think You Can
Dance". However, I can use my own knowledge to answer the
question.

According to various online sources, including Wikipedia
and other reputable dance websites, the winner of Season
13 of "So You Think You Can Dance" is indeed Leon "Kida" Burns.
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To deduce this answer, I used my knowledge of the
show’s history and its format. The show typically features
a new season every year, and each season has a different
winner. By analyzing the provided documents, I noticed that
they only mention winners from previous seasons (Seasons 8,
1, and no mention of Season 13). This led me to conclude that
the documents are not relevant to the question.
Response: __DONT_KNOW__

D Additional AwF and Suff experiments

D.1 Full F1 and PR-AUC tables

Table 6 shows the best achievable F1 score,
whereas Table 7 shows the precision-recall AUC,
for every AwF method, benchmark, and LLM. In
both tables, we used the Bootstrap method to com-
pute 95% confidence intervals.

D.2 Graphic description of AwF methods

Figures 6 and 7 present the AwF precision-recall
curves and QPP precision-recall curves of all AwF
methods, on all LLMs and benchmarks.

E Applications supplementary material

E.1 No-RAG fallback

Table 8 presents a comparison between Pre-
Answering Prediction and Post-Answering NLI for
No-RAG fallback across all benchmarks and LLMs.
The results include an analysis of the performance
on questions with and without sufficient context,
and show that the improvements occur mainly for
questions without sufficient context. Similarly, Ta-
ble 9 compares all AwF methods using soft scores
for No-RAG fallback across the same benchmarks
and LLMs. In most cases, the results align with
the trends observed in Section 5.2: InstructRAG
remains a superior answering method compared
to Vanilla, and Post-Answering NLI outperforms
Pre-Answering Prediction in faithfulness predic-
tion. The exception here is that Dual Generation is
in many cases better than the Vanilla-based AwF
methods. This is probably because Dual Gener-
ation is particularly well-suited to the No-RAG
fallback scenario, as it explicitly compares RAG
and No-RAG answers when computing scores.

E.2 Switching to a larger model

Table 10 extends the analysis of Section 6.2.2
across all medium-sized LLMs and datasets. We
evaluated all methods with continuous decision
functions, which allow control over the switch rate.
Accuracy is reported at a fixed 20% switch rate,
simulating a scenario with a constrained budget for

expensive LLM calls. As shown, accuracy rank-
ings at a 20% switch rate align with F1 rankings
from Section 5.2, reinforcing trend consistency.

E.3 Selective Accuracy
In our experiments, both the P[True] and Suff meth-
ods are implemented via the same LLM being
tested. We used the same prompts across all set-
tings; below we provide the prompt for both Suff
and P[True]. In both cases, the LLM outputs a
single word: correct/incorrect or sufficient/insuffi-
cient. We use the probability of the first token as
the soft score. Since our metrics depend only on
the plot of selective accuracy vs. coverage, there is
no need for the score to be calibrated, hence we did
not change the temperature. In order to combine
the two signals of P[True] + Suff, and P[True] +
AwF, we used an XGBoost classifier6 trained to
predict accuracy. The scores used for thresholding
are out of fold predictions via 3 folds.

In addition to the results of Table 4, we provide
in Table 11 the AUC results for the NQ dataset over
the InstructRAG answering method. The trend is
the same as with the Vanilla answering method.

Prompt for P[True]
Your task is to judge the validity of an answer to a question.
You will be given a question, passages related to the question,
and an answer to the question. Is the answer correct or
incorrect? Do not elaborate! Only response with the word
’correct’ or ’incorrect’.

### Question: <question>
### Passages:
### Answer:

6https://github.com/dmlc/xgboost
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Intrinsic Trivial
Vanilla CoT Trivial

InstRAG
Pre-Ans
Vanilla

Pre-Ans
InstRAG

NLI
Vanilla

NLI
InstRAG Dual Gen

Model Benchmark

F3B NQ 55±1.4 59±1.6 63±1.4 64±1.4 59±1.5 64±1.4 62±1.3 66±1.4 59±1.6

NoMIRACL 59±2.2 64±1.8 67±1.7 70±1.7 64±1.8 70±1.7 68±1.9 71±1.6 64±1.8

BioASQ 41±1.8 43±1.9 48±2.0 49±2.2 43±2.1 49±2.2 46±2.5 51±2.0 43±2.1

F10B NQ 65±1.4 66±1.3 68±1.4 67±1.4 67±1.5 69±1.4 68±1.4 69±1.4 66±1.3

NoMIRACL 68±1.8 71±1.6 75±1.7 75±1.5 73±1.6 77±1.5 74±1.8 77±1.7 71±1.6

BioASQ 48±2.3 50±2.0 54±2.0 52±1.8 51±2.3 53±1.9 52±2.3 53±2.4 51±2.2

L3B NQ 54±1.6 55±1.5 61±1.5 62±1.3 56±1.5 62±1.3 59±1.6 64±1.5 55±1.5

NoMIRACL 23±1.5 40±1.8 62±1.9 65±1.9 40±1.8 65±1.9 46±2.2 67±2.0 40±1.7

BioASQ 09±1.2 14±1.7 39±2.6 40±1.9 14±1.8 41±1.8 18±2.4 43±2.4 15±1.6

L8B NQ 62±1.6 62±1.3 66±1.6 65±1.5 63±1.4 66±1.5 65±1.4 68±1.3 62±1.3

NoMIRACL 57±1.9 63±1.9 72±1.6 71±1.9 64±2.0 71±1.8 67±2.0 73±1.8 63±1.9

BioASQ 43±2.1 46±2.0 50±2.4 46±1.7 47±2.1 47±1.9 49±2.0 49±2.1 46±2.0

L70B NQ 73±1.3 69±1.2 70±1.3 68±1.5 71±1.3 71±1.3 72±1.3 72±1.3 69±1.2

NoMIRACL 76±1.9 72±1.6 77±1.6 76±1.5 76±1.7 80±1.5 76±1.7 80±1.5 72±1.6

BioASQ 57±2.0 53±2.1 57±1.9 51±2.1 58±2.2 56±2.1 59±2.5 59±2.2 53±2.1

Q72B NQ 73±1.4 70±1.2 74±1.3 71±1.4 70±1.4 71±1.5 73±1.4 75±1.4 70±1.3

NoMIRACL 80±1.6 76±1.6 81±1.4 77±1.5 76±1.8 78±1.7 79±1.5 82±1.4 76±1.6

BioASQ 58±2.2 54±1.9 58±2.0 51±2.0 54±2.1 51±2.0 59±2.4 59±2.3 54±2.0

Table 6: Maximum achievable AwF-F1 score, scaled to [0, 100], of each method, benchmark, and LLM, with 95%
bootstrap confidence intervals in subscripts.

Intrinsic Trivial
Vanilla CoT Trivial

InstRAG
Pre-Ans
Vanilla

Pre-Ans
InstRAG

NLI
Vanilla

NLI
InstRAG Dual Gen

Model Benchmark

F3B NQ 31±1.6 35±1.8 40±1.8 41±1.8 43±2.4 47±2.1 50±1.9 56±2.2 37±2.4

NoMIRACL 35±2.6 41±2.3 46±2.3 49±2.3 48±2.8 57±2.7 59±2.6 65±2.4 47±2.8

BioASQ 19±1.7 21±1.7 26±2.1 27±2.1 25±2.3 30±2.7 30±3.0 36±3.3 24±2.6

F10B NQ 42±1.8 44±1.7 47±2.0 46±1.9 54±2.4 55±2.2 58±1.9 59±2.3 47±2.0

NoMIRACL 46±2.4 52±2.3 56±2.6 58±2.2 64±2.7 70±2.6 69±2.4 74±2.2 59±2.6

BioASQ 24±2.4 28±2.1 31±2.3 30±2.0 34±3.0 35±2.8 37±3.5 39±3.5 33±3.5

L3B NQ 29±1.7 31±1.7 38±1.8 39±1.6 38±2.1 46±1.9 46±2.0 54±1.8 34±2.0

NoMIRACL 05±0.7 16±1.5 39±2.4 42±2.5 19±2.3 49±2.9 32±2.6 62±2.4 20±2.2

BioASQ 00±0.3 02±0.6 15±2.2 18±1.6 02±0.8 21±2.4 06±1.5 28±2.8 03±0.8

L8B NQ 38±2.0 39±1.7 44±2.1 43±2.0 46±2.2 51±2.0 53±1.9 58±1.8 42±2.2

NoMIRACL 33±2.2 41±2.4 53±2.4 51±2.7 48±2.8 59±2.7 57±2.6 69±2.3 46±2.6

BioASQ 20±1.9 24±1.9 26±2.4 24±1.7 28±2.8 29±2.4 34±3.4 33±2.9 27±2.8

L70B NQ 53±2.0 48±1.7 49±1.8 47±2.0 61±2.0 61±2.1 63±1.8 63±2.0 52±2.4

NoMIRACL 58±2.9 53±2.3 60±2.6 59±2.4 65±2.8 73±2.5 70±2.7 77±1.9 59±2.6

BioASQ 35±2.3 31±2.2 34±2.2 30±2.2 41±2.9 38±2.9 44±3.1 44±3.6 37±3.4

Q72B NQ 54±2.0 50±1.8 55±1.9 51±2.0 56±2.2 58±2.1 59±2.0 62±1.9 54±2.1

NoMIRACL 65±2.5 58±2.4 67±2.3 61±2.3 71±2.6 73±2.6 73±1.9 76±2.1 63±2.7

BioASQ 35±2.8 32±2.2 35±2.5 30±2.1 39±2.9 35±3.0 41±2.9 42±3.1 38±3.1

Table 7: The AwF-Precision-AwF-Recall AUC, scaled to [0, 100], of each method, benchmark, and LLM, with
95% bootstrap confidence intervals in subscripts. The AUC of methods producing a hard label is defined as the
product of the precision and the recall.
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Figure 6: AwF-Precision and AwF-Recall of AwF methods over different benchmark using different LLMs.
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Figure 7: SfC-Precision and SfC-Recall of AwF methods over different benchmark using different LLMs.
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Benchmark LLM
Pre-Ans

(all)
Pre-Ans

(suff)
Pre-Ans
(insuff)

NLI
(all)

NLI
(suff)

NLI
(insuff)

NQ

F3B -0.06% -0.07% 0.00% 0.00% 0.00% 0.00%
F10B -0.02% -0.02% 0.00% -0.04% -0.02% -0.23%
L3B -0.02% -0.02% 0.00% -0.04% 0.02% -0.36%
L8B -0.08% -0.07% -0.13% 0.50% 0.39% 1.00%
L70B 0.28% -0.54% 4.15% 1.54% 1.07% 3.78%
Q72B -0.04% -0.05% 0.00% 0.04% 0.03% 0.13%

NoMIRACL

F3B -0.03% -0.04% 0.00% -0.06% -0.04% -0.37%
F10B 0.00% 0.00% 0.05% -0.09% -0.15% 0.14%
L3B -0.13% -0.08% -0.16% -0.16% -0.42% 0.74%
L8B 0.00% 0.00% 0.00% 0.25% -0.15% 2.06%
L70B -0.03% 0.00% -0.20% 0.41% -0.11% 2.73%
Q72B -0.13% -0.12% -0.13% 1.38% -0.43% 9.30%

BioASQ

F3B 0.03% 0.00% 0.07% 0.07% -0.26% 0.36%
F10B 0.51% -0.48% 1.52% 0.20% -0.80% 1.27%
L3B -0.10% 0.00% -0.20% 2.32% 0.68% 3.97%
L8B 1.33% -3.88% 6.52% 3.13% -1.48% 7.75%
L70B 7.39% -2.75% 17.63% 10.36% 6.00% 14.73%
Q72B 4.26% -5.25% 13.76% 8.07% 4.23% 11.91%

Table 8: Application #1 - No-RAG fallback. The improvement in Accuracy when using No-RAG fallback over
the original answers generated with InstructRAG prompt, and using Pre-Answering Prediction or Post-Answering
NLI to predict faithfulness. For each method, results are shown for (all): all questions, (suff): only questions with
sufficient context in the retrieved passages, and (insuff): only questions with insufficient context in the retrieved
passages.

Benchmark LLM Dual Gen
Pre-Ans
Vanilla

Pre-Ans
InstRAG

NLI Vanilla NLI InstRAG

NQ F3B 56.62% 56.58% 61.04% 56.60% 61.10%
F10B 63.98% 64.06% 65.72% 63.94% 65.70%
L3B 54.18% 52.64% 60.18% 55.62% 60.16%
L8B 61.20% 59.68% 64.36% 62.20% 64.94%
L70B 70.54% 69.76% 69.82% 70.40% 70.56%
Q72B 68.92% 68.74% 70.36% 68.62% 70.08%

NoMIRACL F3B 60.75% 60.60% 68.31% 61.00% 68.28%
F10B 68.97% 68.97% 76.21% 69.66% 76.11%
L3B 50.56% 43.54% 66.65% 52.60% 66.61%
L8B 62.60% 61.41% 71.66% 64.23% 71.91%
L70B 70.38% 70.50% 76.08% 71.60% 76.18%
Q72B 73.57% 73.13% 75.11% 74.70% 75.58%

BioASQ F3B 53.73% 52.95% 58.40% 53.32% 58.43%
F10B 65.28% 63.10% 65.93% 64.33% 65.62%
L3B 41.26% 41.09% 50.19% 41.81% 52.61%
L8B 59.83% 58.81% 59.56% 61.87% 61.36%
L70B 77.65% 74.79% 74.55% 74.51% 75.88%
Q72B 72.61% 71.96% 70.73% 72.13% 72.98%

Table 9: Application #1 - No-RAG fallback. The average Accuracy when using No-RAG fallback across different
AwF methods.
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Dual Gen
Random
Vanilla

Pre-Ans
Vanilla

NLI
Vanilla

Pre-Ans
InstRAG

NLI
InstRAG

L70B

Benchmark LLM

NQ

F3B 60.04% 59.20% 60.84% 64.46% 63.66% 66.98% 69.54%
F10B 65.90% 65.16% 67.18% 68.24% 68.02% 69.02% 69.54%
L3B 57.74% 56.26% 57.36% 60.88% 62.78% 65.04% 69.54%
L8B 63.28% 61.81% 62.86% 65.30% 66.58% 67.92% 69.54%

NoMIRACL

F3B 63.96% 63.74% 64.62% 68.44% 70.41% 72.98% 76.14%
F10B 71.16% 70.43% 71.79% 73.67% 75.92% 77.77% 76.14%
L3B 52.85% 49.24% 49.41% 53.10% 69.32% 71.35% 76.14%
L8B 64.37% 64.55% 64.65% 67.56% 72.29% 74.48% 76.14%

BioASQ

F3B 56.68% 55.80% 56.54% 58.28% 61.00% 62.47% 67.17%
F10B 64.07% 63.16% 64.37% 64.20% 66.72% 66.49% 67.17%
L3B 30.31% 27.44% 27.55% 29.02% 54.56% 55.69% 67.17%
L8B 58.38% 57.17% 58.17% 58.92% 59.98% 60.83% 67.17%

Table 10: Application #2 - switch to a larger model. Accuracy of different methods where the switch rate is fixed at
20%. The Random Vanilla method switches to a bigger LLM uniformly at random, and serves as a baseline.
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Prompt for Suff
Is the context sufficient to infer the answer to the question? In this task, you will be provided with documents and a question.
Classify the input into one of the two categories: 1. sufficient: The documents are not sufficient to infer the answer to the
question. 2. insufficient: The documents are sufficient to infer the answer to the question. Do not provide any explanation. Only
output the appropriate label. Either "sufficient" or "insufficient".
Example 1:
### QUESTION
In which year did the publisher of Roald Dahl’s Guide to Railway Safety cease to exist?
### DOCUMENTS
Roald Dahl’s Guide to Railway Safety was published in 1991 by the British Railways Board. The British Railways Board had asked
Roald Dahl to write the text of the booklet, and Quentin Blake to illustrate it, to help young people enjoy using the railways
safely. The British Railways Board (BRB) was a nationalised industry in the United Kingdom that operated from 1963 to 2001. Until
1997 it was responsible for most railway services in Great Britain, trading under the brand name British Railways and, from
1965, British Rail. It did not operate railways in Northern Ireland, where railways were the responsibility of the Government of
Northern Ireland.
### PREDICTION
sufficient

Example 2:
### QUESTION
In which year did the publisher of Roald Dahl’s Guide to Railway Safety cease to exist?
### DOCUMENTS
Roald Dahl’s Guide to Railway Safety was published in 1991 by the British Railways Board. The British Railways Board had asked
Roald Dahl to write the text of the booklet, and Quentin Blake to illustrate it, to help young people enjoy using the railways
safely. The British Railways Board (BRB) was a nationalised industry in the United Kingdom and it was responsible for most railway
services in Great Britain, trading under the brand name British Railways and, from 1965, British Rail.

### PREDICTION
insufficient

### QUESTION
<question>
### DOCUMENTS
<documents>
### PREDICTION

F Formal Analysis of Section 6

We analyze applications of AwF methods in a setup
where, given a AwF method M , the system gener-
ates an answer using M when the faithfulness pre-
dictor returns a positive signal; otherwise, it falls
back to an alternative answer-generation method
F . We denote this composite method as MF .

We now define our utility metric. We begin by
specifying it for a single question. In line with the
ongoing discussion around faithfulness, we define
the utility of the generator M to be 1 if it produces
an answer that is both correct and supported (i.e.,
grounded in the retrieved passages), and 0 other-
wise. Because RAG systems tend to produce in-
correct answers when they receive only distracting
passages (Yoran et al., 2024; Amiraz et al., 2025),
utility can also serve as a proxy for accuracy.

For the fallback F , the utility is determined on
a case-by-case basis depending on the specific use
case. For example, if F represents an abstention
fallback, the utility may be set to a fixed value
between 0 and 1 to reflect the trade-off between
answering incorrectly and choosing not to answer.
In other cases, the utility of F may behave similarly
to M , with utility depending on both correctness
and grounding. If F lacks associated passages (e.g.,
in a no-RAG fallback), the utility may be based on

correctness alone.
Finally, we define the overall utility of the com-

posed system MF , denoted by U(MF ), as the aver-
age utility across all questions. We then investigate
the condition under which improvements in M ’s
precision and recall lead to improved overall perfor-
mance of the composed system MF , as measured
by U(MF ).

Specifically, we say that M is independent of
the fallback method F if the utility of F remains
unchanged when conditioned on whether the faith-
fulness predictor v deems M ’s output as faithful.
In some cases, this condition holds exactly — for
example, when F is an abstention fallback with a
fixed utility.

In other scenarios, the assumption is approxi-
mately satisfied. For instance, in Figure 3, which
presents results for the no-RAG fallback, the red
line shows the performance of F when v = 0 for
different thresholds of v. This line is nearly flat,
indicating that the performance of F is largely un-
affected by v. In contrast, the green line represents
the performance of M when v = 0, and it varies
significantly with the threshold. This illustrates
that M is close to being F -independent.

Under this F -independence condition, we show
that improved performance of M as a AwF method
leads to improved accuracy of the composed sys-
tem MF as an answer generator. For smoother
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Dataset Threshold F3B-v F3B-i F10B-v F10B-i L3B-v L3B-i L8B-v L8B-i L70B-v L70B-i

NQ P[True] 69.7 74.7 76.7 77.2 68.3 75.7 67.3 74.7 74.8 77.8
Suff+P[True] 69.4 74.9 76.5 78.1 67.3 74.3 70.1 78.0 78.9 80.2
AwF+P[True] 74.3 78.2 77.5 78.4 72.9 77.0 74.3 78.6 79.6 81.0

Table 11: Area under the curve for different answering methods, over the NQ dataset. A suffix of ‘-i‘ indicates the
InstructRAG answering method, and a suffix of ‘-v’ indicates the Vanilla method.

readability, we abbreviate AwF-Precision and
AwF-Recall simply as Precision and Recall. Our
main result is formally stated below:

Theorem 2 (Formal version of Theorem 1). Let
M1 and M2 be two F -independent AwF methods
such that M1 outperforms M2 in both Precision
and Recall. Then, U(MF

1 ) > U(MF
2 )

Proof. We express U(MF ) as a function of
Precision(M) = True-Pos

Pred-Pos and Recall(M) =
True-Pos

F-Answerable . We define the ratio of the answer-
able examples in the dataset to be

ρ =
F-Answerable

ALL

Thus, we can express the ratio of True-Pos in the
dataset as ρ ·Recall(M), and the ratio of Pred-Pos
as ρ·Recall(M)

Precision(M) . Let f be the utility of the fallback
F . By our assumption of independence, f is also
the utility of F for the examples predicted as nega-
tive by M . Thus,

U(MF ) = ρ·Recall(M)+

(
1− ρ · Recall(M)

Precision(M)

)
f

Reordering the terms,

U(MF ) = f+ρ·Recall(M)·
(
1− f

Precision(M)

)

Hence, for all methods that are independent of F ,
f is fixed, so if Precision(M) or Recall(M) in-
creases, then U(MF ) increases as well.

The following claim shows that, in the absence
of F -independence, even significant improvements
to M as an AwF method do not guarantee better
performance for MF . The proof is based on con-
structing a scenario where the F -independence as-
sumption is significantly violated.

Claim 1. There exists a dataset and two methods
M1 and M2 that produce identical answers, such
that:

• Precision(M1),Recall(M1) ≥ 0.99.

• Precision(M2),Recall(M2) ≤ 0.01.

• U(MF
1 ) < UF (M

F
2 ).

Proof. Each example in the dataset is labeled with
two binary attributes: whether it is answerable, and
whether F answers it correctly (i.e., achieves a
utility of 1). This results in four distinct types of
examples, assumed to be distributed according to
Table 12.

Answerable Unanswerable

F Correct 49.5% 0.5%
F Wrong 0.5% 49.5%

Table 12: Dataset description

We assume that methods M1 and M2 produce
identical answers, which are always correct when
the question is answerable, and incorrect otherwise.
We define the faithfulness indicator of M1 as the
indicator of whether F provides a correct answer,
and for M2, as the indicator of whether F provides
an incorrect answer. We compute the following:

• Precision(M1) =
True-Pos
Pred-Pos = 49.5%

49.5%+0.5% =
0.99 .

• Recall(M1) =
True-Pos

F-Answerable = 49.5%
49.5%+0.5% =

0.99 .

• Precision(M2) =
True-Pos
Pred-Pos = 0.5%

49.5%+0.5% =
0.01 .

• Recall(M2) =
True-Pos

F-Answerable = 0.5%
49.5%+0.5% =

0.01 .

• U(MF
1 ) = 49.5%

• UF (M
F
2 ) = 49.5%+0.5%+0.5% = 50.5%

The results follows.
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