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Abstract

Text and time series data offer complementary
views of financial markets: news articles pro-
vide narrative context about company events,
while stock prices reflect how markets react
to those events. However, despite their com-
plementary nature, effectively integrating these
interleaved modalities for improved forecasting
remains challenging. In this work, we propose
a unified neural architecture that models these
interleaved sequences using modality-specific
experts, allowing the model to learn unique
time series patterns, while still enabling joint
reasoning across modalities and preserving pre-
trained language understanding capabilities. To
further improve multimodal understanding, we
introduce a cross-modal alignment framework
with a salient token weighting mechanism that
learns to align representations across modali-
ties with a focus on the most informative to-
kens. We demonstrate the effectiveness of our
approach on a large-scale financial forecast-
ing task, achieving state-of-the-art performance
across a wide variety of strong unimodal and
multimodal baselines. We develop an inter-
pretability method that reveals insights into the
value of time series-context and reinforces the
design of our cross-modal alignment objective.
Finally, we demonstrate that these improve-
ments translate to meaningful economic gains
in investment simulations.

1 Introduction

Text and time series provide complementary per-
spectives on financial markets. News articles de-
scribe company events, such as earnings announce-
ments, product launches, and mergers, while stock
prices reflect how markets react to these events
over time. When these modalities are combined, it
presents a promising yet challenging opportunity
for large language models (LLMs) to enhance fi-
nancial forecasting by reasoning over temporally
aligned but semantically distinct inputs.

Figure 1: Overview of our multimodal forecasting task
and proposed model (MSE-ITT), which processes inter-
leaved sequences of tokens of news articles (Text) and
discretized stock returns (TS). MSE-ITT incorporates
modality-specific experts to capture distinct patterns
in text and time series, while enabling joint reasoning
across modalities through selective cross-modal atten-
tion.

To better understand their complementary na-
ture, consider how time series and text contribute
distinct but related signals. The time series data
offers global context into both short and long-term
price behavior, allowing the model to learn pat-
terns driven by investor biases (Jegadeesh, 1990;
Jegadeesh and Titman, 1993; Kelly et al., 2021).
Moreover, the interleaved stock prices act as im-
plicit supervision, revealing how markets have pre-
viously responded to similar news, and exposing
the model to repeated cause-and-effect dynamics.
Conversely, news articles provide both retrospec-
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tive context about historical market behavior and
forward-looking signals that may reinforce or con-
tradict current price trends. By jointly modeling
these modalities, LLMs have the potential to learn
cross-modal interactions and context-aware repre-
sentations that would not be possible from either
modality alone.

However, effectively integrating long sequences
of text and time series in a unified model remains
challenging. Simple strategies, such as converting
numerical data into strings of digits, fail to cap-
ture their distinct structures. Language is discrete,
syntax-rich, and compositional, while time series
are continuous, stochastic, and governed by tem-
poral dependencies. Furthermore, news arrives at
irregular intervals, while stock prices are observed
daily. These structural differences make it diffi-
cult for pretrained LLMs, which are optimized for
language, to extract meaningful signals from time
series inputs. Instead, we argue that modeling these
multimodal sequences requires modality-specific
components that can respect and exploit the unique
structure of each input type, while enabling joint
reasoning across modalities.

To address this, we propose a unified multimodal
architecture with modality-specific experts and de-
sign a pretraining objective to effectively learn
cross-modal interactions. In summary, we make
the following key contributions.

1. We design a multimodal architecture (MSE-
ITT) that can effectively model interleaved se-
quences of text and time series, demonstrating
state-of-the-art performance on a challenging
financial forecasting task compared to a compre-
hensive set of baselines (§4, Table 2).

2. We introduce a unified cross-modal alignment
framework (SALMON) with a dynamic, salient
token weighting mechanism (STW) to effec-
tively learn time-series-specific features that en-
hance language understanding (§4.2, Table 3).

3. We develop an interpretability method that re-
veals insights into the value of time series con-
text and demonstrate that it translates to signifi-
cant economic gains in investment applications
(§7.1, Table 5, Table 6).

Broader Impact We hope this work encourages
future research on LLMs that reason over inter-
leaved sequences of text and time series, particu-
larly in domains where structured and unstructured

data interact over time, such as finance, healthcare,
and climate. Our findings highlight the limitations
of treating time series equivalently to language
and underscore the importance of dedicated mecha-
nisms for structured time series inputs. To support
this research direction, we release the code and
data at: https://github.com/rosskoval/mlm_
text_ts.

2 Related Work

2.1 Multimodal Time Series Forecasting

LLMs have greatly improved their capabilities in
understanding multimodal inputs, such as text, im-
ages, audio, and video (Liu et al., 2023a; Li et al.,
2024; Team, 2024; Chen et al., 2023). However,
they have demonstrated challenges in understand-
ing time series data. While some work has found
benefit in using LLMs to perform time series fore-
casting with zero-shot learning (Gruver et al., 2023)
or finetuning (Jin et al., 2023), other work has
found that their pretrained weights do not provide
positive transfer (Tan et al., 2024) and struggle to
reason about them effectively (Merrill et al., 2024)
without specialized encoding (Chow et al., 2024).
Moreover, recent work on contextualized forecast-
ing has explored integrating text and time-series
data using two main strategies. One paradigm con-
verts time series into strings or embeddings, allow-
ing text to condition LLM predictions (Jin et al.,
2023; Williams et al., 2024; Kim et al., 2024b).
However, this assumes LLMs can natively interpret
time series and limits the model’s ability to learn
modality-specific patterns. Another approach uses
frozen language models to extract fixed text fea-
tures for multivariate time series models (Liu et al.,
2024; Li et al., 2025). While this allows modality-
specific patterns, it prevents deep cross-modal in-
teraction and inhibits the reasoning capabilities of
LLMs.

2.2 Financial Prediction

Recent work has shown that language models can
predict stock returns from news articles (Chen et al.,
2022; Xie et al., 2023; Lopez-Lira and Tang, 2023;
Koval et al., 2025). Separately, historical price pat-
terns have been shown to be predictive (Jegadeesh,
1990; Jegadeesh and Titman, 1993; Kelly et al.,
2021). These findings have motivated recent work
exploring methods to integrate textual and time
series data to improve forecasting (Xu and Cohen,
2018; Ang and Lim, 2022; Koval et al., 2024; Wang
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et al., 2024a; Zong et al., 2024; Mou et al., 2025).
However, most of these models process each modal-
ity independently and generally rely on late-fusion
methods, limiting cross-modal interaction during
representation learning.

3 Problem Statement

3.1 Multimodal Inputs
In our main problem formulation, we consider a
multimodal sequence of time-stamped inputs, ape-
riodically arriving news articles (text), and daily
stock returns (time series), described below.

Time Series Inputs As time series inputs Xt, we
consider the daily stock return rt of the company
over the last 1-year (252 trading days).

Xt = {rt−252, ..., rt−1}

While we demonstrate that our method general-
izes to multivariate time series in §A.10, we focus
on the univariate case in our main experiments to
more precisely study the effects of the cross-modal
interaction method in a controlled setting.

Textual Inputs As textual inputs Yt, we consider
the N most recent news articles at about the com-
pany prior to time t:

Yt = {at−N , ..., at−1}

For computational efficiency, we select the N =
10 most recent articles about the same company
that occurred within the last 1-year.

3.2 Task Formulation
Following Xu and Cohen (2018); Chen et al.
(2022), we adopt the task of predicting the direc-
tion of the stock price Pt change over the course
of short-term and long-term horizons (days) h ∈
{7D, 30D} at prediction time t.

Dt = Sign(Pt+h − Pt)

We evaluate the performance on this binary clas-
sification task with AUC because the continuous
scores are more informative than discrete classes
for investment management applications.

Data Acquisition and Curation We curate fi-
nancial news articles in English from the FNSPID
Dataset (Dong et al., 2024), for US-based public
companies, which covers a variety of company
events and news sources. We perform a curation

process, following the filtering criterion in Chen
et al. (2022) for data quality, detailed in §A.4. Our
sample contains more than 3,000 public companies
in the US, encompassing a diverse range of firm
sizes and industries.

Data Statistics and Task Formulation We tem-
porally partition the data into training (2010-2017),
validation (2018-2019), and test (2020-2024) sets.
We provide summary statistics in Table 1.

Train Validation Test

Start Date Jan-2010 Jan-2018 Jan-2020

End Date Dec-2017 Dec-2019 Dec-2024

# Samples 155,146 36,931 115,611

# Companies 2,591 2,249 3,564

Table 1: Summary statistics of the characteristics of
financial news articles and stock return time series in
each sample split.

4 Proposed Method

4.1 Model Design
In this section, we introduce our proposed modality-
specific experts multimodal model for interleaved
sequences of text and time series (MSE-ITT), il-
lustrated in Figure 1. The use of mixture-of-experts
(MOE) layers (Shazeer et al., 2017; Fedus et al.,
2022; Zoph et al., 2022) in LLMs have become per-
vasive because of their improved representational
capacity and compute efficiency, allowing subnet-
works to specialize in different regions of the input.
Inspired by recent advances in multimodal MOE-
based LMs for text and images (Zhou et al., 2024;
Shi et al., 2024a; Lin et al., 2024; Liang et al.,
2025), we design a modality-specific experts archi-
tecture that builds on Llama3-8B (Grattafiori and
et al., 2024), an autoregressive LM with strong lan-
guage capabilities, and extend it with components
tailored for temporal and cross-modal understand-
ing.

Modality-Specific Experts To process both
modalities effectively, we introduce dedicated
modality-specific (TS) parameters into each layer
of the pretrained LM. These modality-specific com-
ponents are responsible for processing time series
inputs, enabling the model to capture time-series
patterns without disrupting the pretrained language
capabilities of the base LM. This separation re-
duces cross-modal interference and imposes an in-
ductive bias that respects the structural differences
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between text and time series. At the same time, it
allows for joint modeling of interleaved sequences.
We maintain causal masking in the self-attention
layers to preserve temporal causality.

These added parameters include layer normal-
ization (LN), multi-headed attention projections
(QKV), and feedforward MLPs (MLP):

hq
text, h

k
text, h

v
text = QKVtext

(
LNtext(htext)

)

hq
ts, h

k
ts, h

v
ts = QKVts

(
LNts(hts)

)

htext = MLPtext
(
LNtext(htext)

)

hts = MLPts
(
LNts(hts)

)

In this design, the text (htext) and time series (hts)
hidden states are routed to separate modules, before
performing joint self-attention over the multimodal
sequence:

h = softmax
(
[hq

text;h
q
ts][h

k
text;h

k
ts]
⊤
)
[hv

text;h
v
ts]

We initialize these dedicated TS-parameters
from the pretrained values in the corresponding
LM layer. We omit the residual connections and
scaling for brevity.

Selective Cross-Modal Attention Prior work
has shown that early layers of pretrained LMs cap-
ture low-level, syntactic patterns (Clark et al., 2019;
Nagrani et al., 2021; Zhang et al., 2025), while
deeper layers encode higher-level, global seman-
tics. In addition, attention weights have been found
to exhibit noise due to positional biases (Liu et al.,
2023b; Xiao et al., 2023; Ye et al., 2024; Golovneva
et al., 2025). Based on these findings, our hypothe-
sis is that deeper layers are more likely to benefit
from time-series context and that introducing cross-
modality attention at early layers may be harmful,
as it risks disrupting low-level, modality-specific
representations with noisy time-series signals. To
address this, we restrict cross-modality attention to
the top half of the network layers (16-32), allowing
the lower layers (1-16) to focus on learning more
localized, modality-specific features. This design
choice results in efficiency gains, and, as shown in
our ablation studies (Table 4), improves language
understanding and task performance.

Interleaved Multimodal Sequence We design
the input as a temporally ordered sequence of mul-
timodal tokens, where at is a sequence of tokens

for news article a and rt is the stock return with
timestamp t.

x1:L = {rt−252, ..., at−N , ..., rt−1, ..., at−1}

Since the news articles arrive at irregular intervals,
we employ pointwise embedding tokenization (Shi
et al., 2024b) to accommodate a variable number of
time steps between news articles, rather than using
fixed-length patches. This allows flexible modeling
of sequences with variable temporal resolution and
supports application to other domains with irregular
event streams.

Because financial data is known to be statisti-
cally noisy, we discretize the continuous time se-
ries values into a fixed number of bins B, enabling
more robust representations and reducing sensitiv-
ity to outliers. We learn embeddings (TSEmb) for
each bin (Rabanser et al., 2020; Ansari et al., 2024)
with quantile binning to ensure a well-calibrated
distribution. We tune B over the validation set
and ablate this design choice in §A.8. This choice
allows us to transform the inputs into a unified
sequence of embeddings zi:

zi =





TextEmb
(
xi
)
, if mod(xi) = text,

TSEmb
(
xi
)
, if mod(xi) = ts,

We pass them through MSE-ITT to obtain contex-
tualized hidden states h:

h1:L = MSE-ITT
(
z1:L

)
= [h1, . . . ,hL ]

This interleaved input design enables the model to
leverage the pretrained LLM’s relative positional
encodings (Su et al., 2024), to reflect the natural
temporal order of events, rather than relying on
learnable time embeddings (Woo et al., 2024) only
at the input layer. Because rotary encodings im-
pose a strong locality bias throughout the network,
preserving temporal order in the input allows the
model to better exploit this inductive bias in its
attention patterns. It also ensures that the relative
distance between article tokens reflects their actual
separation in time, spaced by time series embed-
dings corresponding to the number of days between
events.

4.2 SALMON
To further improve multimodal understanding, we
introduce Salience-Aware Language Modeling over
Interleaved Modalities (SALMON), a unified pre-
training objective, that jointly predicts the next
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text token and the next time series token in an in-
terleaved multimodal sequence, with a dynamic
salience-based weighting mechanism. Since we
discretize the time series into discrete tokens, both
objectives can be trained using cross-entropy loss,
with separate projection heads for text tokens (Utext)
and time series tokens (Uts):

Pθ(xi) =

{
softmax(Utexthi−1), if mod(xi) = text,
softmax(Utshi−1), if mod(xi) = ts,

L(x; θ) = −
∑

i∈Itext

logPθ(xi,text) −
∑

i∈Its

logPθ(xi,ts)

To enable cross-modal learning without disrupt-
ing pretrained language capabilities, we freeze the
pretrained text-branch parameters and train only
the newly introduced TS-specific parameters. This
joint objective encourages the model to learn to
identify features in the time series that are predic-
tive of future news text, and learn aligned represen-
tations that capture how text and time series data
co-evolve together.

Salient Token Weighting (STW) While
SALMON enables joint language modeling
across modalities, standard cross-entropy loss
places equal weight on all next token predictions.
However, we hypothesize that not all textual
tokens should theoretically or equally benefit
from time-series context. In typical news text,
many tokens, such as function or filler words, are
easily predicted using neighboring tokens. While
these tokens may not benefit from TS-context, we
suspect that specific salient tokens, such as those
sentiment-charged or related to market behavior,
could benefit substantially. For example, consider
the news headline in Figure 2.

We hypothesize that the easily predicted words
dominate the loss function and that a selective
weighting mechanism can help focus the training
signal on tokens where TS-context provides signif-
icant mutual information, thereby improving the
alignment process by reducing weight on noisy,
irrelevant tokens.

To systematically identify such salient tokens
without relying on external sentiment dictionaries,
we design a contrastive estimation approach in-
spired by recent advances in contrastive decoding
(Li et al., 2023; Yuan et al., 2024) and long-context
training (Ye et al., 2024; Fang et al., 2024). To this
end, we leverage the LM with text-only inputs as

Figure 2: Illustration of our cross-modal alignment
framework, SALMON, which learns to align histori-
cal stock price behavior and news articles with a unified
objective. The Salient Token Weighting (STW) mecha-
nism dynamically assigns higher weight to tokens that
benefit most from time-series context, improving cross-
modal alignment.

a contrastive baseline. Specifically, we compute
two versions of token-level predicted probabilities:
one using text-only inputs and another using the
full multimodal input. Since we freeze the text-
only parameters of the model, we can compute the
baseline forward pass efficiently with no gradients
attached. The ratio of these probabilities (i.e. the
likelihood ratio) reflects how much the TS context
improves the prediction of each token, and serves
as a proxy for token salience.

Mathematically, assume that Pθ(xi,text |
xj<i,text) is the probability of the i-th text to-
ken given preceding text tokens, and Pθ(xi,text |
xj<i,text, xj<i,ts) is the probability when preceding
time series context is also provided. We define the
token-level weight as:

W (xi,text) =
Pθ(xi,text | xj<i,text, xj<i,ts)

Pθ(xi,text | xj<i,text)

such that W directly measures how much the pre-
diction of each token improves when time series
context is available. Values greater than 1 indicate
tokens that benefit from time series context, while
values less than 1 indicate tokens where time series
context is less helpful or potentially distracting. Fi-
nally, the weights are normalized to have mean one
per sequence W̃ and then applied to each textual
token in the cross-entropy loss. Mathematically, let
xi,text and xi,ts denote the i-th text and time series
tokens, respectively, and cj<i = (xj<i,text, xj<i,ts)
denote the previous context, then the STW loss is
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Model Class Model Base LM Input 7D 30D

Zero-Shot LLM

GPT-4o, Direct (Lopez-Lira and Tang, 2023) GPT-4o text 52.45 53.31
GPT-4o, CoT GPT-4o text 53.15 54.33
GPT-4o, Direct GPT-4o ts 50.92 49.77
GPT-4o, CoT GPT-4o ts 48.70 47.90
GPT-4o, Direct (Williams et al., 2024) GPT-4o text, ts 52.09 52.71
GPT-4o, CoT (Tan et al., 2025) GPT-4o text, ts 50.56 53.05

Unimodal TS-Only (Nie et al., 2022) None ts 52.93 53.88
Text-Only (Chen et al., 2022) Llama3-8B text 53.76 54.13

MMTSF

TimeLLM (Jin et al., 2023) Llama2-7B text, ts 53.79 55.10
TaTs (Li et al., 2025) Llama2-7B text, ts 54.48 54.81
TTSR (Chow et al., 2024) Mistral-7B text, ts 55.93 56.17**
TimeMDD (Liu et al., 2024) Llama3-8B text, ts 55.15 55.25
Hybrid-MMF (Kim et al., 2024b) Llama3-8B text, ts 55.96* 55.84

SFF

FinMA (Xie et al., 2023) Llama2-7B text, ts 51.11 52.15
MTFE-MICM (Koval et al., 2024) BigBird-125M text, ts 55.44 54.49
FININ (Wang et al., 2024a) RoBERTa-125M text, ts 52.47 53.13
StockTime (Wang et al., 2024b) Llama3-8B text, ts 55.36 55.85
MAT (Emami Gohari et al., 2024) FinBERT-110M text, ts 54.43 53.81
MM-iTransformer (Mou et al., 2025) FinBERT-110M text, ts 54.16 53.57

Proposed MSE-ITT Llama3-8B text, ts 57.94* [0.08] 58.48** [0.07]

Table 2: Main Results (higher is better): Model performance on the test set of our multimodal prediction task
at different forecasting horizons. All results indicate the AUC of the model’s predicted probabilities reported in
percentage units. "[]" indicate the sample standard deviation of the results over 3 training runs with different random
seeds. *, ** indicate that the performance of our proposed model is statistically better (p < 0.01) than the next best
performing model according to DeLong’s test. The last row indicates our proposed method MSE-ITT.

formed on textual inputs xtext by:

LSTW (xtext; θ) = −
∑

i∈Itext

W̃ (xi,text)·

logPθ(xi,text | cj<i)

This weighting mechanism amplifies the learning
signal for textual tokens that benefit most from time
series context. Since, at the beginning of training,
the estimated token-level weights are not meaning-
ful as the model has not yet learned to effectively
leverage the time series context, we warm-start
W = 1 for the first 20% of training steps, and
then relax this constraint to W ∈ [0.1, 10.0] as the
models learn to better utilize this information. We
perform this cross-modal pretraining step on the
input training data, and ablate the value of it and
the token weighting mechanism in Table 3.

Implementation Details Our method is param-
eter and compute efficient as we freeze the pre-
trained text-branch parameters, and only finetune
the newly added TS-branch parameters efficiently
with LoRA (Hu et al., 2021), during both cross-
modal alignment and task finetuning.

5 Baselines

We provide a comprehensive set of strong base-
lines to evaluate the benefits of our approach,

spanning commercial LLMs, state-of-the-art multi-
modal time series forecasting models, and special-
ized financial models for stock movement predic-
tion.

Unimodal First, we provide simple unimodal
baselines that indicate the independent forecast-
ing ability of each input modality. Text-Only in-
dicates training a classifier on frozen Llama3-8B
embeddings of the text-only inputs (Ke et al., 2019).
TS-Only indicates training PatchTST (Nie et al.,
2022) on only the time series inputs.

Zero-Shot LLMs We include the zero-shot per-
formance of GPT-4o (OpenAI, 2024) with a variety
of different prompting configurations, following
(Williams et al., 2024), establishing state-of-the-
art commercial LLM baselines and highlighting
the difficulty of the task. We provide different
prompting methods, including direct prediction
(Direct) and Chain-of-Thought (CoT) (Kim et al.,
2024a; Tan et al., 2025). The time series inputs
are converted to text strings and we tune their for-
matting with validation set performance (Gruver
et al., 2023; Williams et al., 2024). We also provide
text-only and time-series only baselines to indicate
the relative ability of LLMs to reason over each
modality, detailed in §A.5.
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Multimodal Time Series Baselines We imple-
ment a variety of baselines specialized for multi-
modal time series forecasting (MMTSF). These
include TaTs (Li et al., 2025), TimeMDD (Liu et al.,
2024), TimeLLM (Jin et al., 2023), Hybrid-MMF
(Kim et al., 2024b), and TTSR (Chow et al., 2024).
All of these models are finetuned on the training
data according to their original implementations,
described further in §A.2.

Financial Forecasting Baselines We include a
variety of baselines specialized for multimodal
stock movement prediction (SFF). These include
FinMA (Xie et al., 2023), MTFE-MICM (Koval
et al., 2024), FININ (Wang et al., 2024a), Stock-
Time (Wang et al., 2024b), MAT (Emami Gohari
et al., 2024), and MM-iTransformer (Mou et al.,
2025). All of these models are finetuned on the
training data, detailed in §A.2.

6 Experimental Results and Analysis

6.1 Main Results

Overall, we find that our proposed model deliv-
ers meaningful gains in forecasting performance
across time horizons compared to a strong set of
diverse baselines, and that these gains translate
to significant improvements in investment simula-
tions (Table 6). As we further demonstrate with
ablation experiments (Table 3, Table 4), these im-
provements stem from key architectural design
choices grounded in inductive biases. First, the
model captures modality-specific structure by in-
troducing dedicated parameters for time series data,
while maintaining a unified architecture that en-
ables joint reasoning across modalities. Second,
our SALMON objective aligns time series features
in the latent space of the LLM for enhanced cross-
modal understanding, while our dynamic salient
weighting mechanism enhances cross-modal align-
ment by focusing on key tokens that benefit most
from time series context.

Time Series Context The main results in Table 2
highlight the challenging nature of the task and that
the value of multimodal context highly depends
upon the method of integration. While some meth-
ods benefit significantly from multimodal context,
others underperform unimodal baselines.

We highlight that across both general and spe-
cialized baselines, there is a clear trend that meth-
ods that initially encode the time series with sepa-
rate parameters from the LLM perform better than

those that exclusively rely on LLM’s native abil-
ity to extract meaningful time series features in
either the text or latent space. Similarly, we find
that models that simply treat text features as ad-
ditional channels within a multivariate time series
model underperform those that harness the power-
ful reasoning capabilities of LMs. These findings
reinforce our design decision for modality-specific
experts within a unified architecture.

Zero-Shot LLMs We highlight two interesting
findings for GPT-4o. Firstly, GPT-4o performs bet-
ter with text-only inputs than multimodal inputs,
failing to benefit from the time series context. Sec-
ondly, prompting with chain-of-thought improves
the ability of GPT-4o to analyze the textual inputs
while failing to improve its ability to reason about
the time series inputs. Overall, these results clearly
highlight the challenges that LLMs exhibit in rea-
soning over time series inputs (Merrill et al., 2024),
particularly in the financial domain, which are of-
ten noisy and lack consistent patterns.

Method 7D 30D

MSE-ITT w/o SALMON 56.93 57.14
+SALMON w/o STW 57.56* 57.89*
+SALMON w/ STW 57.94** 58.48**

Table 3: Results demonstrate the value of our pro-
posed Cross-Modal alignment objective (SALMON)
with Salient-Token Weighting (STW) compared to the
baseline MSE-ITT model finetuned without any pre-
training. *, ** indicate that the performance of the
model is statistically better (p < 0.05) than the previous
model according to DeLong’s test.

6.2 Ablation Studies

We conduct extensive ablations of our multimodal
architecture and cross-modal alignment process,
highlighting the contribution of each design choice
to overall model performance.

Cross-Modal Alignment In Table 3, we find
that SALMON pretraining significantly improves
both language understanding capabilities and task
performance by aligning representations across
modalities. Additionally, our STW mechanism
provides additional benefits over standard equal
token weighting by selectively identifying and em-
phasizing tokens that benefit most from TS context,
leading to more effective cross-modal representa-
tion learning.
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Model LM Loss 30D

Text-Only 2.20 54.13

Shared Parameters 2.00 55.80
Separate QKV 1.85 56.78
Separate MLP 1.91 56.31

Cross-Modal Attention, Layers 1-16 1.96 56.00
Cross-Modal Attention, Layers 1-32 1.81 56.51

MSE-ITT 1.78 57.14

Table 4: Results demonstrate the value of our proposed
MSE-ITT architecture in both language understanding
(LM Loss) and financial forecasting (30D) performance,
compared to two sets of baselines that (1) share param-
eters across text and TS inputs and (2) perform cross-
modal attention in different layers of the network. Note
that the LM Loss results include cross-modal alignment
training (SALMON) but the 30D results do NOT.

Modality-Specific Experts In Table 4, we pro-
vide a direct comparison of our method against
baseline models that share weights between the text
and time-series inputs. These results demonstrate
that our multimodal model effectively leverages
time series context to improve its language under-
standing capabilities with unified pretraining (20%
reduction in LM loss). Compared to sharing pa-
rameters, our modality-specific experts architecture
improves both language and time series understand-
ing capability, mitigating cross-modal interference
and allowing unique modality patterns.

Selective Cross-Modal Attention We include
baselines in which cross-modal attention is per-
formed in early layers of the network, rather than
just the second half. As shown in Table 4, cross-
modal attention in the early layers is detrimental to
performance, supporting our hypothesis that early
LM layers focus on low-level features that can be
disrupted by premature cross-modal interactions.
We believe these findings could generalize to other
multimodal contexts (e.g. healthcare, climate, etc.)
in which modalities possess different properties but
shared temporal alignment.

7 Model Analysis and Interpretability

In this section, we explore the behavior of the
model and reveal insights into the value of time
series context and its potential impact on invest-
ment applications.

7.1 Value of Time Series Context

To further investigate where and when time-series
context is most beneficial, we use the LM Finan-

Word Category Likelihood Ratio

Stop Words 0.71
Non-Sentiment 1.45
All-Sentiment 1.83
Positive 2.17
Negative 1.74
Litigious 1.76
Uncertainty 1.63
Constraining 1.23
Weak Modal 2.95
Strong Modal 1.28

Table 5: Median likelihood ratios across word cate-
gories from the LM Financial Dictionary (Loughran
and McDonald, 2011), computed on the test set. These
ratios quantify the marginal benefit of time series con-
text for predicting words in each category, revealing the
strongest gains for sentiment-charged words.

cial Dictionary (Loughran and McDonald, 2011)
to classify the financial sentiment of words. Fol-
lowing §4.2, we compute the benefit of TS-context
(likelihood ratio) for each group of words across the
test set with our MSE-ITT model after SALMON
pretraining.

In Table 5, we report median statistics on the
likelihood ratio for sentiment words, as defined
by the LM Financial Dictionary (Loughran and
McDonald, 2011), which indicates the marginal
benefit that time series context provides for pre-
dicting the identity of the tokens. These results
demonstrate that sentiment-charged words bene-
fit from the time series context significantly more
than non-sentiment words, and dramatically more
than stop words. These findings highlight the com-
plementary nature of time series and textual data
and reinforce the design of our STW loss function
§4.2. The time series context provides valuable
information for improving language understanding
and interpreting the impact of news events.

7.2 Portfolio Simulations

In Table 6, we demonstrate the economic value of
our methodology with portfolio simulations. We
form monthly long-short (market-neutral) portfo-
lios (Fama and French, 2015) by sorting stocks
based on the 30D model predictions from the past
month, detailed in §A.3. For comparison, we sim-
ulate unimodal baselines and the best performing
multimodal baselines, described further in §A.3.
Following Cong et al. (2021), we include net per-
formance that includes conservative estimates of
the impact of transaction costs on portfolio imple-
mentation.

The test period spans 5-years of highly diverse
market regimes, including the COVID-19 crash
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and recovery, stimulus-driven expansion, and in-
flation and rate hikes, ensuring robustness across
economic conditions. The resulting performance of
our unified multimodal model generates investment
performance that is economically and statistically
better than the best performing multimodal base-
lines. These results demonstrate that our model
provides significant predictive value in a real-world
trading setting.

Method Net Return Volatility Net Sharpe Ratio

TS-Only (Nie et al., 2022) 5.99 13.11 0.46
Text-Only (Chen et al., 2022) 8.60 10.47 0.82

TTSR (Chow et al., 2024) 12.37 11.28 1.10
Hybrid-MMF (Kim et al., 2024b) 11.60 10.19 1.13
MTFE-MICM (Koval et al., 2024) 10.23 10.39 0.99
StockTime (Wang et al., 2024b) 13.91 12.65 1.10

Proposed, MSE-ITT 17.01 11.26 1.51

Table 6: Annualized portfolio statistics of simulated
investment performance, expressed in percentage units.
“Net” performance includes an estimate of the impact of
transaction costs, detailed in §A.3.

8 Conclusion

We propose a unified multimodal architecture for
modeling interleaved sequences of text and time
series data, and introduce a cross-modal alignment
framework with a salient token weighting mech-
anism that learns to align representations across
modalities with a focus on the most informative
tokens. Our approach demonstrates state-of-the-art
performance on a challenging financial forecasting
task, and our ablation experiments confirm the con-
tribution of our design decisions. These forecast-
ing improvements translate to economically mean-
ingful gains in portfolio simulations, underscoring
the real-world value of our approach. These find-
ings highlight the need for modality-specific struc-
tures and joint reasoning in multimodal LMs, with
broader implications for domains in which text and
time series co-evolve.

Limitations Our findings demonstrate that large
language models can benefit significantly from
structured time series context when modeling inter-
leaved sequences of text and numerical data, but
only with the appropriate inductive biases. The
proposed architecture improves both forecasting
accuracy and simulated investment performance
through modality-specific routing and specialized
cross-modal pretraining. However, our experi-
ments focus on financial forecasting within En-
glish financial news and US-based stocks, but we
believe the methodology is applicable to other do-

mains involving interleaved text and time series
(e.g. healthcare, climate), which we leave to future
work. While we incorporate conservative estimates
of transaction costs in our investment simulations,
real-world trading requires more detailed consid-
eration of trade execution and risk management,
which we leave to future work. Please note that
our financial prediction system is intended for re-
search use and that portfolio results are presented
for illustration purposes only, not as investment
advice.
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A Appendix

A.1 Pretrained Language Models
We implement all models in PyTorch and source
all pretrained checkpoints from HuggingFace.

A.2 Baseline Models

For our proposed model (MSE-ITT), for supervised
classification, we train a classification head on top
of the end-of-sequence token’s last hidden repre-
sentations to make binary predictions.

For some baseline models in which additional
inputs or modalities are incorporated, such as pro-
prietary sentiment scores (Wang et al., 2024a), we
do not include these additional inputs (and we do
not have access to them) in the model in order
to present a fair comparison of model types and
isolate the effects of multimodal fusion between
sequences of text and time series. Some baseline
models (Wang et al., 2024a; Liu et al., 2024; Li
et al., 2025) explore the use of various LLMs for
textual encoding. In such cases, we select the LM
with the best reported performance for evaluation.
For models that patch the time series input into
non-overlapping consecutive chunks (Chow et al.,
2024; Wang et al., 2024b), if the patch length used
is not provided in the implementation details, then
we tune the value over {1, 5, 10} based on vali-
dation set performance. Further, for some mul-
tivariate time series baseline models that require
a one-to-one mapping between text and time se-
ries inputs across time steps (Koval et al., 2024;
Li et al., 2025), if there are no news articles on a
given time step, then we simply carry forward the
previous news article (embeddings) until the next
news article (embeddings) are available. Addition-
ally, in the MAT baseline (Emami Gohari et al.,
2024), the authors do not report the number of top-
ics or the base pretrained LM used in BERTTopic
(Grootendorst, 2022), so we resort to using the hid-
den representations produced from their sentiment
model FinBERT (Araci, 2019) as text features. Fur-
ther, for the FinMA (Xie et al., 2023) baseline, we
provide the text and time series sequences in the
same format as for GPT-4o §A.5, such that the
time series is converted to raw text and interleaved
between news articles in temporal order.

For our proposed model, we use learnable spe-
cial tokens to denote the beginning and end of each
news article and modality (Caciularu et al., 2021),
and include the article timestamp in the article text.

A.3 Portfolio Simulations

In Table 6, we demonstrate the economic value of
our model predictions using portfolio simulations.

To perform these simulations in a realistic set-
ting, we first filter the investment universe of stocks
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according to sufficient liquidity requirements to en-
sure feasibility of portfolio implementation, includ-
ing a minimum market capitalization of $250M and
daily average value of shares traded of $1M.

Then, we form monthly long-short (market-
neutral) quintile portfolios according to Fama and
French (2015). To this end, we sort stocks based
on the average 30D model predictions from news
articles about companies in the past 1 month. Then
our portfolios are formed by buying those in the top
20% of average scores and shorting those in the bot-
tom 20% of average scores on a monthly basis in
equal proportions. Please note that these portfolios
are market-neutral and therefore have essentially
no correlation with broad market indices.

In Table 6, we include conservative estimates of
the impact of transactions costs on portfolio imple-
mentation. We follow the turnover-based method
used in Cong et al. (2021), which conservatively
estimates the annual transaction cost as 0.01 times
the annual 1-way portfolio turnover. Therefore, the
net return of the portfolio is the gross return minus
the estimated transaction costs.

A.4 Data Curation
The FNSPID dataset spans multiple news sources,
including Nasdaq, Reuters, CNBC, Benzinga, and
cover a variety of company events, including prod-
uct launches, earnings reports, and mergers. We
truncate each article after the first 128 words during
all experiments for computational efficiency. We
only include articles originally written in English
according to the following criteria (Chen et al.,
2022): they are tagged relevant for only one com-
pany; they are longer than 100 characters or shorter
than 10,000 characters; they contain less than 10%
of numerical characters; they have less than 90%
Jaccard similarity to a previous article (to remove
potential duplicate articles). We require that each
company possess at least 5 news articles within
the past year as well as available stock returns to
be in our sample. In addition, we apply further
quality filtering to ensure that the dataset contains
high-quality, event-driven news articles that are
specific to individual stocks. We systematically
remove broad market summaries, sector-level re-
ports, and generic financial commentary by filter-
ing out headlines containing specific keywords and
patterns. This process allows us to isolate stock-
specific events. There is a slight class imbalance
so we randomly downsample the majority class to
ensure balanced class ratios.

A.5 Zero-Shot LLMs
For the zero-shot GPT-4o baselines, we have ex-
plored a variety of prompting strategies, listed be-
low. For this set of baselines, the time series inputs
are converted to text strings and we tune their form
{decimal, percentage}, digits of precision {2, 3,
4}, and whether to include a space in between dig-
its, with validation set performance (Gruver et al.,
2023; Williams et al., 2024). We do not find much
variation in the performance of each, but tune them
according to the validation set and report those
results in Table 2.

To this end, we construct a natural language
prompt that interleaves company-specific financial
news with daily stock return sequences in chrono-
logical order. The model is tasked with predicting
future price movement on a bounded scale.

Each prompt follows the format:

Given the company’s daily stock
return over the last year
interleaved in temporal order
with recent news about the
company, sorted chronologically:
{interleaved_input}
Predict the company’s future
stock price movement over the
next {horizon} days, on a
scale from 0 to 100, where
100 indicates strong positive
movement and 0 indicates
strong negative movement.
{prompt_style}
Prediction:

The field {interleaved_input} contains alter-
nating sequences of news articles and their cor-
responding stock returns (e.g., News Article:
... Stock Returns: ...). The field
{prompt_style} controls the reasoning strategy
used by the model and takes one of two forms:

• Direct: The model immediately outputs a pre-
diction.

• Chain-of-Thought (CoT): The model is in-
structed to “think step-by-step” before pro-
ducing a prediction, following recent findings
that CoT improves LLM reasoning over time
series data (Tan et al., 2025).

This design enables a uniform comparison of
reasoning strategies across interleaved multimodal
inputs, without any task-specific fine-tuning.
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A.6 Statistical Significance

In Table 2, we report the sample standard deviation
of results for our proposed method across 3 differ-
ent training runs with different random seeds. The
variability of results across random seeds stems
from the randomness in the training process caused
by random initialization of the classification layer
weights and the random batch order of training sam-
ples during stochastic gradient descent optimiza-
tion. We also report the results from DeLong’s pair-
wise test of statistical significance between model
AUC scores (DeLong et al., 1988).

A.7 Real-World Case Study

To further illustrate how our model benefits from
multimodal reasoning, we examine a real-world
event sequence involving the proposed Pfizer, Aller-
gan merger, shown in Figure 3. This event unfolded
over several months in 2015 and 2016, with head-
lines describing early merger rumors, confirmation
of deal terms, political opposition, and ultimately,
the termination of the transaction.

While a headline such as “Merger terminated by
mutual consent” may appear negative in isolation,
it follows a series of prior developments in which
investors reacted negatively to news suggesting the
deal would proceed. The accompanying stock re-
turn history reveals this clearly: mild declines on
initial merger rumors, followed by a significant sell-
off once the deal was announced, and a strong re-
bound when the US Treasury issued rules to block
the deal. On April 6, 2016, when Pfizer and Al-
lergan officially terminated the merger, the stock
surged. This price behavior indicates that investors
viewed the termination as favorable, even though
the text of the headline appears quite negative.

To assess model behavior in this widely publi-
cized and high impact event setting, we specifically
train the text-only and ts-only baselines, and the
proposed multimodal model (MSE-ITT) on point-
in-time data and evaluate them on this example in-
put. A text-only model, seeing the phrase “merger
terminated”, predicts a low probability (0.32) of a
positive return. The time series-only model, re-
acting only to the long-term price trend of the
stock price, driven negative by the merger rumors,
predicts a score of (0.21). In contrast, our multi-
modal model (MSE-ITT), which jointly reasons
over the headline, prior news, and accompanying
stock price movements, assigns a high probability
(0.79) to a positive return following the announce-

Date News Headline Stock Return Interpretation

29 Oct 2015 Pfizer approaches Allergan
about record merger

-1.9%, ... , -0.00% Rumor; investors
mildly optimistic

23 Nov 2015 $160 B deal announced;
Pfizer to relocate to Ireland

–2.6%, ... , +2.3% Fear of dilution
and tax-inversion
risk

5 Apr 2016 U.S. Treasury issues rules
likely to scuttle tax inversion

+2.1% Hope deal will be
abandoned

6 Apr 2016 Merger terminated by mu-
tual consent

+5.0% Relief rally

Figure 3: Example sequence of news events and mar-
ket reactions about the potential Pfizer-Allergan merger.
The news articles contain persuasive language, yet the
accompanying stock returns reveal the market’s true
perception: optimism on early rumors, a sharp sell-off
once the deal terms are set, and a relief rally when the
takeover is cancelled. Jointly modeling these inputs can
more effectively interpret the outcome of such events.

ment. This prediction reflects the model’s ability
to perform a form of counterfactual reasoning: al-
though the headline (“merger terminated”) appears
negative in isolation, the model recognizes that it
cancels a deal investors had previously responded
to unfavorably. By conditioning on prior market
reactions to similar events, MSE-ITT infers that the
termination is likely to be viewed positively. This
deep integration of modalities enables the model
to capture temporally grounded event semantics,
where the sentiment of a headline depends critically
on historical context.

Furthermore, this case study illustrates how uni-
modal models, lacking either narrative or market
information, misinterpret semantically ambiguous
events. In contrast, MSE-ITT aligns text and time
series through token-level weighting that links fi-
nancial language to observed outcomes, allowing
it to resolve sentiment ambiguity and deliver more
accurate, context-aware forecasts.

A.8 Time Series Discretization

For time-series discretization, we tune the
number of discrete time-series bins B ∈
{4, 8, 16, 32, 64} and their embedding dimension
dts ∈ {32, 64, 128, 256, 512}. To map the time-
series embeddings into the token embedding space
of the LM, we learn a simple linear map to increase
dimensionality from dts to dtext.

In Table 7, we compare our discretization ap-
proach to alternative continuous embedding meth-
ods. While the benefits of discretization are indeed
modest and clearly not the primary source of our
performance gains, they dramatically simplify and
unify the interleaved multimodal (SALMON) pre-
training objective. By converting all tokens, regard-
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less of modality, to a common discrete space, we
can apply a consistent cross-entropy loss to all dis-
crete tokens, without inducing a complex multitask
setup that requires careful calibration of continuous
and discrete loss terms. In the continuous setting,
we tune the weight on the TS (Mean Squared Er-
ror) loss over wts ∈ {0, 10, 100, 1000} according
to validation set performance.

Method LM Loss 7D 30D

Discrete 1.78 57.94 58.48
Linear 1.83 57.54 58.10
MLP 1.83 57.62 58.13

Table 7: Results demonstrate the value of time series
discretization in our multimodal architecture in both
language understanding (LM Loss) and financial fore-
casting (7D, 30D) performance, compared to baselines
that use continuous embeddings via linear and nonlin-
ear transformations. These results include SALMON
pretraining.

A.9 Training Details and Hyperparameter
Tuning

We perform all experiments on a single NVIDIA
H100 GPU with 80G in memory. We use AdamW
to optimize all parameters. For all finetuned mod-
els, we use an effective batch size of 64 with gradi-
ent accumulation. We train all models for up to 5
epochs based on validation set performance for test
evaluation. All supervised models are optimized
using Binary Cross-Entropy as the loss function.

We tune the learning rate over {1e-6, 3e-6, 5e-6,
7e-6, 1e-5} and LoRA (Hu et al., 2021) rank param-
eter over r ∈ {16, 32, 64} according to validation
set performance. We apply LoRA adapters to all
linear layers. We use a simple 2-layer MLP classi-
fication layer to project the token hidden states to
make a binary prediction for all language models
used.

For computational constraints, we train all mod-
els using mixed precision training and gradient
checkpointing to satisfy GPU memory constraints,
and clip gradient norms. For Llama-based models,
we finetune in BF16 precision. For LoRA-based
finetuning, we always set the value of the alpha
parameter to be equal to double the value of rank
parameter.

A.10 Multivariate Time Series
In this section, we demonstrate that our MSE-ITT
model architecture can support numerical time se-
ries with multiple channels.

To this end, we select 15 commonly used mar-
ket price and accounting-based financial variables
available at the time of the report date from the def-
initions and cluster classifications in Swade et al.
(2023). This set includes dividend yield (Value),
earnings-to-price (Value), sales-to-price (Value),
book value-to-price (Value), sales growth (Growth),
earnings growth (Growth), gross profit to assets
(Profitability), net income to equity (Profitability),
net income to assets (Profitability), medium-term
price momentum (Momentum), short-term price re-
versal (Reversal), price volatility (Low Risk), mar-
ket leverage (Debt Issuance), share turnover (Low
Risk), and market capitalization (Size).

Since some variables have different frequencies,
ranging from daily to quarterly, we up-sample them
all to daily frequency by forward-filling previous
values.

We fit different discretized embeddings for each
channel following our approach in §4. After this,
we simply concatenate their embeddings together
vertically at a daily frequency and similarly inter-
leave with the news articles according to timestamp.
To extend our SALMON pretraining objective to
the multivariate setting, we learn a separate output
projection head for each channel and compute the
discretized token for each channel independently
and average the loss across channels.

Method LM Loss 30D

Univariate – 57.14
Univariate w/ SALMON 1.78 58.48

Multivariate – 58.45
Multivariate w/ SALMON 1.74 59.89

Table 8: Results indicate the performance of our MSE-
ITT multimodal architecture when extended to the mul-
tivariate setting in both language understanding (LM
Loss) and financial forecasting (30D) performance.
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