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Abstract

Table understanding requires structured, multi-
step reasoning. Large Language Models
(LLMs) struggle with it due to the structural
complexity of tabular data. Recently, multi-
agent frameworks for SQL generation have
shown promise in tackling the challenges of
understanding tabular data, but existing ap-
proaches often suffer from limitations such as
the inability to comprehend table structure for
reliable SQL generation, error propagation that
results in invalid queries, and over-reliance on
execution correctness. To address these issues,
we propose CHAIN-OF-QUERY (CoQ), a novel
multi-agent framework for SQL-aided table
understanding. CoQ adopts natural-language-
style representations of table schemas to ab-
stract away structural noise and enhance un-
derstanding. It employs a clause-by-clause
SQL generation strategy to improve query qual-
ity and introduces a hybrid reasoning division
that separates SQL-based mechanical reason-
ing from LLM-based logical inference, thereby
reducing reliance on execution outcomes. Ex-
tensive experiments across four models and
five widely used benchmarks demonstrate that
CoQ achieves substantial accuracy improve-
ments and significantly lowers invalid SQL
rates compared to prior generic LLM-based,
SQL-aided, and hybrid baselines, confirming
its superior effectiveness in table understanding.
The code is available at https://github.
com/SongyuanSui/ChainofQuery.

1 Introduction

Large Language Models (LLMs) have shown re-
markable performance across a variety of natu-
ral language processing (NLP) tasks (Yang et al.,
2023). However, they still struggle with under-
standing tabular data (Sui et al., 2023a). This chal-
lenge stems from two main factors. First, the struc-
ture of tabular data differs significantly from that
of plain text. It organizes information via rows and

columns, introducing hierarchical relationships, po-
sitional dependencies, and implicit semantics that
are challenging for language models to capture.
Second, table-based tasks often involve multi-step,
structured reasoning operations, such as aggrega-
tion, comparison, and arithmetic computation (Lu
et al., 2025). They go beyond surface-level lan-
guage understanding.

To adapt LLMs for table understanding, prior
work has explored many approaches. Many studies
(Herzig et al., 2020; Zhang et al., 2023a,b; Li et al.,
2024b; He et al., 2025) fine-tuned LLMs on table-
specific datasets, but these methods treat the task
as a single-turn generation problem, which results
in shallow reasoning paths and overlooks interme-
diate data. Recent studies (Wang et al., 2024c; Ji
et al., 2024; Zhou et al., 2025c) built agent-based
pipelines with table manipulation tools to conduct
multi-step reasoning. Nevertheless, these tools rely
on human-defined programs whose functionalities
are restricted and cannot perform complex or adap-
tive operations beyond their predefined scope.

We argue that incorporating Structured Query
Language (SQL) provides a more principled ap-
proach for understanding tabular data. SQL is in-
herently designed to access, filter, and aggregate
information from relational tables, making it well-
aligned with the needs of table understanding. Al-
though existing work on LLM-based SQL genera-
tion has made some progress in table understanding
(Ye et al., 2023; Kong et al., 2024a; Huang et al.,
2024; Abhyankar et al., 2025), its performance
remains suboptimal. We identify three key chal-
lenges in SQL-aided table understanding with
LLMs. 1. Existing approaches typically feed the ta-
ble and task instructions into an LLM, assuming the
LLM can understand the table in order to produce
meaningful SQL. However, if the LLM already
struggles with table understanding, it is unlikely to
generate accurate SQL in the first place. This work-
flow thus inherits LLMs’ structural inability, as
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Figure 1: Overview of CHAIN-OF-QUERY Framework.

effective SQL generation still requires a solid grasp
of the table’s layout and semantics—something
LLMs inherently lack. 2. Supporting complex,
multi-step reasoning often requires SQL queries
with multiple clauses and nested structures. Such
queries are difficult to construct correctly in a sin-
gle pass, and even small errors can cascade into
query failure. 3. Existing methods depend heav-
ily on the correctness of SQL execution, as they
directly use SQL results as final answers. This fur-
ther leads LLMs to generate overly complicated
queries, thereby reducing overall reliability.

To tackle these challenges, we propose CHAIN-
OF-QUERY (CoQ), a novel multi-agent framework
for SQL-aided table understanding. To address
the first challenge, CoQ replaces raw table inputs
with natural-language representations of table
schemas. Our insight is that SQL generation de-
pends primarily on high-level schemas, which can
be easily and accurately expressed in natural lan-
guage, bypassing the need for LLMs to interpret
complex tabular structures. This abstraction allows
LLMs to focus on semantics without being hin-
dered by noisy or irregular layouts. To address the
second challenge, we propose a Clause-by-Clause
SQL Generation Strategy, which incrementally
constructs SQL queries one clause at a time, form-
ing a chain of progressively refined queries. To
solve the third challenge, we design a Hybrid Rea-
soning Division Strategy that separates mechan-
ical reasoning (executed via SQL) from logical
reasoning (delegated to LLMs), treating SQL out-

puts as intermediate steps rather than final answers.
In addition, our Parallel Decomposition enhances
robustness by splitting complex questions into par-
allelizable sub-questions, avoiding the inter-step
dependencies of traditional sequential reasoning.
Together, CoQ offers a novel design that directly
addresses these challenges, establishing an effec-
tive new paradigm for table understanding.

To comprehensively evaluate CoQ, we conduct
extensive experiments with both closed-source
models (GPT-3.5, GPT-4.1) and open-source mod-
els (LLaMA 2, DeepSeek-V3) on five representa-
tive benchmarks: WikiTQ, TabFact, FeTaQA, IM-
TQA, and Open-WikiTable. CoQ is compared with
strong baselines across four categories: generic
LLM-based, SQL-aided, hybrid, and general struc-
tured data reasoning. Results show that CoQ con-
sistently outperforms state-of-the-art (SOTA) meth-
ods; for example, on WikiTQ it improves accuracy
from 61.11% to 74.77% and reduces invalid-SQL
rates from 9.48% to 3.34% with GPT-3.5.

In summary, we propose CHAIN-OF-QUERY

(CoQ), a novel multi-agent collaboration frame-
work for SQL-aided table understanding with the
following contributions:

• We design natural-language-style table
schemas to abstract away structural noise and
irregularities in raw tables, enabling LLMs to
focus on high-level semantics.

• We propose a novel Clause-by-Clause SQL
Generation Strategy, which constructs queries
incrementally to reduce error propagation and
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improve reliability.
• We introduce a Hybrid Reasoning Division

Strategy that separates mechanical reasoning
(handled by SQL) and logical reasoning (han-
dled by LLMs).

• Extensive experiments show that CHAIN-OF-
QUERY consistently outperforms previous
baselines, achieving substantial improvements
across diverse settings.

2 Related Work

We review related work in three areas: LLM-based
table understanding, Text-to-SQL, and hybrid meth-
ods for table reasoning. Additional discussions on
multi-agent approaches for table understanding and
general structured data reasoning with LLMs can
be found in Appendix I.
LLM-Based Table Understanding. Since the
structure of tables (e.g., non-sequential cell order)
differs significantly from plain text typically used
in pre-training (Raffel et al., 2023), several studies
(Zhang et al., 2023a,b; Li et al., 2024b; Zhuang
et al., 2024; He et al., 2025) fine-tuned LLMs
to adapt to tabular data. While effective on spe-
cific datasets, these methods depend on manually
crafted instructions and expensive training, limiting
scalability. More recent prompt-based approaches
(Sui et al., 2023a,b; Chen et al., 2024) exploit
LLMs’ general reasoning ability, offering better
generalization across tasks. However, these meth-
ods typically adopt single-turn prompting strate-
gies, failing to support multi-hop reasoning.
Text-to-SQL. Generating SQL queries from nat-
ural language is a long-standing challenge. Early
methods primarily relied on fine-tuning LLMs on
annotated SQL datasets (Pourreza and Rafiei, 2024;
Li et al., 2024a). To reduce training cost and im-
prove compositional reasoning, Tai et al. (2023)
and Pourreza and Rafiei (2023) explored Chain-
of-Thought prompting in Text-to-SQL. OpenTab
(Kong et al., 2024a) integrates LLM-based SQL
generation into a tabular data RAG system. Re-
cently, MAC-SQL (Wang et al., 2025b) and MAG-
SQL (Xie et al., 2024b) build multi-agent frame-
works that refine generated queries to improve SQL
quality. Although these methods perform well on
benchmarks such as Spider (Yu et al., 2019) and
BIRD (Li et al., 2023), they all tend to generate
fully grounded SQL queries that directly return the
final answer, making query construction difficult.
Moreover, LLMs tend to produce overly complex

queries in an attempt to handle questions holisti-
cally (Shen et al., 2025), reducing reliability.
Hybrid Methods for Table Understanding. To
address the shortcomings of LLMs in structured
reasoning, hybrid approaches integrate SQL with
LLMs. ReAcTable (Zhang et al., 2023c) generates
multiple SQL candidates for intermediate informa-
tion retrieval but at the cost of increased computa-
tion and limited structural understanding. SynTQA
(Zhang et al., 2024) generates both Text-to-SQL
and LLM answers but only selects one result, dis-
carding complementary information. Recent stud-
ies (Nahid and Rafiei, 2024; Cao and Liu, 2025)
use SQL to select key columns and rows before
invoking LLMs. While effective for data reduction,
they apply SQL only at a basic level, overlooking
its potential for complex table manipulations. H-
STAR (Abhyankar et al., 2025) further employs
complex SQL-based symbolic reasoning, but its re-
liance on single-shot SQL generation at each stage
makes it vulnerable to execution failures.

3 CHAIN-OF-QUERY Approach

3.1 Problem Definition of Table
Understanding

Given a 2-tuple X = (Q,T ), where Q is a natu-
ral language question and T = {S,D} is a table
composed of schema S and data content D, the
goal of table understanding is to identify a relevant
subset of data Dr ⊆ D that is necessary to answer
Q, and then derive the final answer A by reasoning
over both Q and Dr. Here, the schema S describes
the structure of the table, while D contains the
individual cell-level values.

3.2 Overview of CHAIN-OF-QUERY

We propose CHAIN-OF-QUERY as a multi-agent
framework that decomposes table understanding
into modular sub-tasks, with each agent invoking
dedicated strategies for its assigned role. As shown
in Figure 1, it comprises four specialized agents:
Semantic Splitter, SQL Query Generator, Dy-
namic Planner, and Answer Generator, each re-
sponsible for a distinct stage of the pipeline. The
Semantic Splitter constructs natural-language-style
table schemas and decomposes questions into par-
allel sub-questions. The SQL Query Generator ap-
plies the Clause-by-Clause SQL Generation Strat-
egy. The Dynamic Planner incorporates the Hybrid
Reasoning Division Strategy. The Answer Genera-
tor synthesizes final answers based on SQL outputs
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and inferences from the LLM. We describe each
component and its corresponding strategies in the
following sections.

3.3 Semantic Splitter: Schema Abstraction
and Query Decomposition

The Semantic Splitter serves as the entry point of
the entire agentic workflow. This module is de-
signed to optimize the input for SQL generation by
addressing two key challenges: (1) LLMs’ limited
ability to interpret complex table structures, which
often leads to inaccurate SQL generation; and (2)
interference between sub-questions within a single
complex query, where independent sub-questions
could be handled separately to avoid entanglement.
To address these challenges, we introduce a natural-
language-style representation of table schemas for
query generation, and incorporate a parallel decom-
position mechanism to identify and isolate separa-
ble sub-queries for clean execution. The following
subsections detail this process. An illustrative ex-
ample is provided in Appendix B.1.

Table Schema:
Table Name, Table Headers,

Value Examples

Invalid SQL Query 2:
SELECT "Male", "Female", "Total" 
FROM "Nurpur_Jattan_Village"
WHERE "Particulars" = 'Populations';

Sub-question: 
What is the population breakdown

of Nurpur Jattan by gender?

SQL Query
Generation

Fixed SQL Query 2:
SELECT "Male", "Female", "Total" 
FROM "Nurpur_Jattan_Village"
WHERE "Particulars" = 'Population';

Execution Error Info:
OperationalError: no such

column: Populations

SQL Query
Fixing

SQL Query
Executor Valid SQL Query 2:

SELECT "Male", "Female", "Total" 
FROM "Nurpur_Jattan_Village"
WHERE "Particulars" = 'Population';

Generation Plan: 
Add a WHERE clause to the current

SQL query

SQL Query 1:
SELECT "Male", "Female", "Total" 
FROM "Nurpur_Jattan_Village";

SQL Query 1:
SELECT "Male", "Female", "Total" FROM "Nurpur_Jattan_Village";

SQL Query 2:
SELECT "Male", "Female", "Total" FROM "Nurpur_Jattan_Village" 

WHERE "Particulars" = 'Population';

Figure 2: Illustration of the SQL Query Generator and
the Clause-by-Clause Generation Strategy.

3.3.1 Natural-Language-Style Table Schema
LLMs’ limited understanding of tabular data hin-
ders their ability to generate accurate SQL based
on raw tables. To address this, we ask: Is a natural-
language-style schema sufficient for SQL gener-
ation? Our key insight is that SQL generation
primarily depends on high-level schema informa-
tion—not the detailed table contents—and that ex-
pressing the schema in natural language aligns bet-
ter with LLMs’ strengths as language models.

To address these limitations in handling raw and
irregular table structures, we construct a concise

natural-language-style schema as a surrogate for
full-table input. It consists of three components: ta-
ble name, headers, and value examples. The table
name employs concise keywords to summarize the
main content and purpose of the table, providing es-
sential context for the LLM to understand the table.
The table headers comprise multiple (column name,
column value type) pairs. These pairs not only
provide a natural-language abstraction of the table
structure, but also serve as a reference for value
formatting in downstream SQL generation. The
value examples are a few sampled rows of the table
paired with their corresponding column names. We
adopt "PIPE" format (i.e., a pipe-delimited string
with "|" separators) to encode the value examples,
as studies found it to improve LLM performance on
table tasks (Sui et al., 2023a; Wang et al., 2024c).

By replacing the full table with our designed
schema, LLMs can generate accurate SQL without
being distracted by complex layouts or unnecessary
content. This approach also improves scalability by
avoiding full-table imports, thereby reducing input
length and simplifying reasoning.

3.3.2 Parallel Decomposition
The second component of the Semantic Splitter is
a Parallel Decomposer, which focuses on separat-
ing input questions into independent sub-questions.
Unlike traditional sequential decomposition strate-
gies, where each sub-question depends on the pre-
vious answer and becomes fragile due to error prop-
agation, our approach focuses on questions with-
out interdependencies. We defer the handling of
sequential dependencies to our Clause-by-Clause
Generator in Section 3.4.2.

Many complex tabular questions involve com-
paring or aggregating information from semanti-
cally disjoint table regions, which do not require
sequential reasoning. To address this, the Parallel
Decomposer splits such questions into independent
sub-questions, each targeting a localized region of
the table. This removes inter-step dependencies
and enables concurrent processing. Each sub-query
then operates over a narrow, self-contained scope
without interference from others, simplifying SQL
generation.

3.4 Clause-wise SQL Generation for Precision
and Robustness

After outlining our input transformation and prepro-
cessing steps, we now focus on the next key compo-
nent—generating accurate SQL with LLMs to sup-
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port effective table understanding. The SQL Query
Generator constructs executable SQL queries to re-
trieve intermediate information relevant to the task
and support mechanical reasoning. As shown in
Figure 2, an initial query is generated by an LLM,
then validated before being passed to the Dynamic
Planner, which determines whether further clauses
should be appended to improve precision. The fol-
lowing subsection details the generation process.

3.4.1 SQL Query Generation with Validation
Given the schema and sub-question, an SQL query
is first generated by an LLM to retrieve relevant
information. The query is validated by directly
executing it via an SQL executor; if it fails, the
error message is passed to a secondary LLM for
correction. The revised query is re-executed and, if
successful, forwarded to the Dynamic Planner. To
enhance query quality, we introduce a clause-by-
clause generation strategy described below.

3.4.2 Clause-by-Clause SQL Generation
Table understanding tasks often require complex,
multi-step reasoning, such as aggregation and
mathematical operations that in turn demand SQL
queries with multiple clauses or even nested struc-
tures. This makes single-shot SQL generation par-
ticularly challenging, as even minor errors can prop-
agate and cascade through the query, ultimately
leading to execution failures.

To improve the reliability and controllability of
SQL generation, we propose a Clause-by-Clause
Strategy that incrementally builds queries by isolat-
ing the construction of each clause. The generator
first produces a basic SELECT-FROM query select-
ing columns relevant to the sub-question. Without
condition filtering, however, this query may return
a large number of rows, posing scalability chal-
lenges. To mitigate this, we sample a few represen-
tative rows (similar to the natural-language-style ta-
ble schema construction) as the Planner only needs
to observe data patterns rather than precise values.

Subsequent clauses (e.g., WHERE, GROUP BY)
are appended one at a time, under the guidance of
the Dynamic Planner. By decomposing SQL con-
struction into discrete clauses, each step focuses
solely on its own logic and syntax, independent
of the full query context. Each intermediate query
is validated before proceeding. If execution fails,
the error can be traced to the most recently added
clause, allowing for more targeted correction. If
correction fails, the agent reverts to the last val-

idated query, ensuring robustness. As shown in
Figure 2, if a newly generated clause introduces
an error to the query (SQL2) and cannot be re-
solved, the agent uses the last valid query (SQL1)
to ensure executable SQL. This incremental pro-
cess forms a chain of increasingly precise queries,
where each step builds on a validated state, prevent-
ing error propagation and ensuring stability. The
list of clauses is provided in Appendix C.

3.5 Balancing SQL and LLM Reasoning
through Dynamic Planning

The Dynamic Planner incrementally checks each
newly generated query and its execution result to
decide whether the current sub-table is sufficient
for LLM reasoning. If the sub-table still contains
irrelevant or indirect information, the Planner se-
lects another SQL clause and asks the SQL Gener-
ator to append it to the current query. The Planner
is guided by a Sufficiency-based Early Stopping
Mechanism. Together with the Answer Generator,
it jointly implements the Hybrid Reasoning Divi-
sion Strategy: SQL handles mechanical reasoning,
while LLMs perform logical reasoning over inter-
mediate results to produce the final answer.

3.5.1 Hybrid Reasoning Division Strategy
Existing SQL-aided approaches treat the SQL out-
put as the final answer, requiring highly precise
queries. This often leads to long, fragile SQL pro-
grams, especially when reasoning is complex or
question intent is ambiguous. However, table un-
derstanding is inherently open-ended: the goal is
to derive a natural language answer, not merely to
retrieve an exact value. Based on these insights,
we introduce a Hybrid Reasoning Division Strat-
egy that decomposes table understanding into two
stages: mechanical reasoning (e.g., filtering, arith-
metic) is offloaded to SQL, whereas logical rea-
soning (e.g., comparison, inference) is handled
by LLMs. Crucially, SQL execution results are
treated as intermediate data rather than final an-
swers, enabling LLMs to apply their stronger infer-
ence capabilities over SQL outputs to arrive at the
final answer. This division leverages the respective
strengths of SQL and LLMs. Our case study (Ap-
pendix A) and examples (Appendix B.2) further
explain this design.

3.5.2 Sufficiency-based Early Stopping
To support this hybrid reasoning strategy, we intro-
duce the Sufficiency-based Early Stopping Mech-
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Table 1: Main results on WikiTQ and TabFact. Acc. = accuracy (%), Inv. = invalid SQL rate (%, lower is better).
Underline = second-best, bold = best. Improvements are over second-best. CoQ achieves the highest accuracy with
a large margin, driven by schema abstraction, clause-by-clause SQL generation, and hybrid reasoning.

Method
WikiTQ TabFact

GPT-3.5 LLaMA 2 GPT-3.5 LLaMA 2
Acc. Inv. Acc. Inv. Acc. Inv. Acc. Inv.

Generic LLM-based Table Understanding
End-to-End QA 43.39 N/A 35.48 N/A 67.45 N/A 53.46 N/A
Table-to-Text 16.07 N/A 14.21 N/A 49.72 N/A 48.06 N/A
Few-Shot QA 52.56 N/A 35.52 N/A 71.54 N/A 62.01 N/A
Chain-of-Thought 53.48 N/A 36.05 N/A 65.37 N/A 60.52 N/A
Binder 56.74 N/A 30.92 N/A 79.17 N/A 62.76 N/A
Dater 52.81 N/A 41.44 N/A 78.01 N/A 65.12 N/A
Chain-of-Table 59.94 N/A 42.61 N/A 80.20 N/A 67.24 N/A
Tree-of-Table 61.11 N/A 44.01 N/A 81.92 N/A 69.33 N/A

SQL-aided Table Understanding
Basic Text-to-SQL 47.40 14.07 32.18 18.81 64.93 19.66 63.27 33.02
OpenTab 55.39 10.24 37.41 15.16 78.57 12.73 56.84 27.83
MAC-SQL 52.92 10.34 36.88 17.65 76.06 18.13 56.68 31.54
MAG-SQL 55.87 9.48 38.25 16.13 78.84 13.28 59.91 29.49

CHAIN-OF-QUERY (Ours) 74.77
(+13.66)

3.34
(-6.14)

58.91
(+14.90)

13.18
(-1.98)

92.31
(+10.39)

2.74
(-9.99)

78.80
(+9.47)

23.88
(-3.95)

anism. It enables the Planner to halt clause gener-
ation once the retrieved data are sufficient. This
prevents unnecessary SQL complexity and ensures
that reasoning responsibilities are dynamically and
appropriately balanced between SQL and LLMs.
The detailed algorithm is provided in Appendix D.

3.6 Answer Generator

The Answer Generator produces the final answer by
aggregating sub-answers from each sub-question.
It first generates a sub-answer based on the cor-
responding SQL result, then combines all sub-
answers into a complete natural language response
to the original question. As the final stage of the
pipeline, this component ensures that localized rea-
soning results are coherently integrated into a uni-
fied natural language response.

4 Experiments

In this section, we empirically evaluate the effec-
tiveness of CoQ and aim to answer the following
questions: RQ1. How does CoQ compare with
popular table understanding methods (e.g., generic,
SQL-based, and hybrid)? RQ2. How well does
CoQ generalize to real-world, structurally complex
tabular workloads? RQ3. How does CoQ perform
relative to existing methods in terms of cost?

4.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluate
our CoQ framework on five widely used table un-
derstanding benchmarks: WikiTQ (Pasupat and
Liang, 2015), FeTaQA (Nan et al., 2022), Tab-
Fact (Chen et al., 2020), IM-TQA (Zheng et al.,
2023), and Open-WikiTable (Kweon et al., 2023).
WikiTQ and FeTaQA are table QA datasets requir-
ing short-span and free-form answers, respectively.
TabFact is a fact verification task based on tables.
IM-TQA features complex real-world table styles,
while Open-WikiTable involves multi-table scenar-
ios. Collectively, these datasets cover diverse rea-
soning types, table structures, and domains, form-
ing a robust testbed for evaluating generalization.
Dataset details are provided in Appendix F.

We use official accuracy metrics for WikiTQ,
IM-TQA, and Open-WikiTable, and standard bi-
nary accuracy for TabFact. For FeTaQA, we report
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) scores to align with prior work. We also
track the invalid SQL generation rate.
Baselines. We first compare our method against
two categories of baseline approaches: (a) Generic
LLM-based table understanding, including End-to-
End QA, Few-Shot QA, Table-to-Text (Min et al.,
2024), Chain-of-Thought (Wei et al., 2022), Binder
(Cheng et al., 2023), Dater (Ye et al., 2023), Chain-
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of-Table (Wang et al., 2024c), and Tree-of-Table (Ji
et al., 2024); (b) SQL-aided table understanding, in-
cluding Basic Text-to-SQL (Rajkumar et al., 2022),
OpenTab (Kong et al., 2024a), MAC-SQL (Wang
et al., 2025b), and MAG-SQL (Xie et al., 2024b).
We further compare our CoQ with two more cate-
gories of baselines: (c) Hybrid table understand-
ing, including TabSQLify (Nahid and Rafiei, 2024),
SynTQA (Zhang et al., 2024), TableMaster (Cao
and Liu, 2025), and H-STAR (Abhyankar et al.,
2025); (d) General structured data reasoning, in-
cluding StructGPT (Jiang et al., 2023), QueryAgent
(Huang et al., 2024), Readi (Cheng et al., 2024),
and Chain-of-Knowledge (Li et al., 2024c). Re-
sults and analysis for category (d) are provided in
Appendix J.2 due to page limitations.
Implementation Details. To align with baselines,
we adopt GPT-3.5 and LLaMA 2 as the backbone
LLMs, and additionally evaluate with the recent
stronger models LLaMA 3.1, DeepSeek-V3, and
GPT-4.1. Model configurations are detailed in Ap-
pendix H. Prompts include few-shot examples sam-
pled from the training set, with illustrative cases
shown in Appendix K.

Table 2: FeTaQA results with GPT-3.5. BLEU and
ROUGE (R-1/2/L) evaluate answer quality. CoQ
achieves the best results across BLEU, ROUGE, and
error rate, enabled by its schema abstraction, clause-by-
clause SQL generation, and hybrid reasoning.

Method BLEU R-1 R-2 R-L Inv.

E2E QA 16.94 0.60 0.38 0.50 N/A
Tab2Text 9.43 0.40 0.22 0.33 N/A
CoTab 20.45 0.62 0.40 0.52 N/A
BT2SQL 16.92 0.60 0.37 0.49 14.23
OpenTab 18.19 0.60 0.37 0.49 10.71
MAC-SQL 17.56 0.58 0.35 0.47 13.98
MAG-SQL 18.81 0.60 0.37 0.48 11.13

CoQ (Ours) 22.19
(+1.74)

0.65
(+0.03)

0.42
(+0.02)

0.54
(+0.02)

7.74
(-2.97)

4.2 Main Results

4.2.1 Overall Performance
Here, we compare CoQ with both generic and
SQL-aided table understanding methods on three
datasets involving multi-hop reasoning. As shown
in Tables 1 and 2, CoQ consistently achieves both
higher answer accuracy and lower SQL error rates.
On WikiTQ, it reaches 74.77% with GPT-3.5, a
+13.66% gain over the second-best. On TabFact,

it attains 92.31%, exceeding the best baseline by
+10.39%. On FeTaQA, CoQ reports the highest
BLEU (22.19) and ROUGE scores (R-1: 0.65, R-2:
0.42, R-L: 0.54), and the lowest error rate (7.74%).
We also assess how CoQ scales with stronger mod-
els in Appendix J.1 and further analyze a challeng-
ing subset of WikiTQ in Appendix J.3. These re-
sults highlight the effectiveness of CoQ, which is
analyzed below.

Table 3: Results of CoQ and hybrid baselines on Wik-
iTQ and TabFact datasets (GPT-3.5). CoQ achieves the
highest accuracy, attributed to its schema abstraction
and fine-grained SQL generation control.

Method WikiTQ TabFact

TabSQLify 64.7 79.5
TableMaster 68.2 83.7
H-STAR 69.6 85.0
SynTQA 70.4 N/A

Chain-of-Query (Ours) 74.8
(+4.4)

92.3
(+7.3)

4.2.2 Comparison Against Generic Methods
We now provide a detailed comparison with generic
LLM-based table understanding methods, which
rely solely on LLMs’ natural language capabilities
without explicit SQL assistance. Their improve-
ments are modest (e.g., Tree-of-Table improves
accuracy by just 1.17% over Chain-of-Table on
WikiTQ). This indicates a performance plateau for
current methods. On the other hand, Table-to-Text
methods linearize entire tables into textual descrip-
tions to eliminate structured content. However, the
generated text often exhaustively covers all table
content, making it difficult for LLMs to locate key
information. This leads to low accuracy and poor
scalability on large tables. Empirically, the table-to-
text baseline performs the worst among all methods
(e.g., 16.07% on WikiTQ).

In contrast, CoQ consistently achieves substan-
tial improvements across all datasets and LLM
backbones. For example, it outperforms Tree-of-
Table on WikiTQ by +13.66% with GPT-3.5 and
+14.90% with LLaMA 2. Similar trends hold for
TabFact and FeTaQA. These results confirm the
effectiveness of CoQ’s SQL-aided design in en-
hancing the accuracy and robustness of structured
reasoning. Additionally, its natural-language-style
table schemas abstract away structural noise to
avoid forcing LLMs to interpret tabular structures
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Table 4: Results on IM-TQA and Open-WikiTable. Top-K = accuracy at top-K candidates. Note that Top-K accuracy
is reported as a decimal rather than a percentage. CoQ maintains SOTA performance on structurally complex and
multi-table datasets, enabled by its natural-language-style schema abstraction.

Method IM-TQA Open-WikiTable

Acc. Inv. Top-1 Top-2 Top-5 Top-10

Few-Shot QA 52.47 N/A 0.336 0.357 0.383 0.388
Chain-of-Table 48.80 N/A 0.404 0.430 0.463 0.467
Basic Text-to-SQL 63.16 7.86 0.429 0.458 0.490 0.496
OpenTab 67.28 6.94 0.491 0.523 0.556 0.565
MAG-SQL 68.90 6.06 0.457 0.476 0.516 0.524

CHAIN-OF-QUERY (Ours)
74.96
(+6.06)

2.80
(-3.26)

0.527
(+0.036)

0.552
(+0.029)

0.592
(+0.076)

0.608
(+0.083)

or irrelevant content.

4.2.3 Comparison Against SQL Methods
We also compare CoQ with SQL-aided baselines
and find that it consistently achieves higher accu-
racy and lower SQL error rates across all datasets
and model backbones. A key limitation of existing
SQL-aided methods lies in their rigid, one-shot for-
mulation: they attempt to generate a single SQL
query that directly yields the final answer. This ap-
proach works reasonably well for traditional Text-
to-SQL tasks, where answers typically correspond
to certain cell values. However, in table under-
standing, answers often require multi-step reason-
ing, abstraction, or comparisons across multiple
rows or columns. Forcing all logic into one com-
plex SQL query in such settings leads to bloated
and error-prone programs. For example, while
MAG-SQL performs well on standard Text-to-SQL
benchmarks (Xie et al., 2024b), it underperforms
on reasoning-intensive table understanding tasks.
MAG-SQL only achieves 55.87% accuracy and a
9.48% invalid SQL rate on WikiTQ with GPT-3.5,
compared to 74.77% accuracy and just 3.34% in-
valid SQL with CoQ. Similar trends are observed
on TabFact and FeTaQA.

In contrast, CoQ benefits from our Clause-by-
Clause SQL Generation, which ensures that gen-
erated queries remain concise and valid. Our
Hybrid Reasoning Division further ensures that
queries are simplified but aligned with the reason-
ing scope by offloading higher-level inference to
the LLM. Moreover, our natural-language-style ta-
ble schemas abstract away structural noise, reduc-
ing the LLM’s burden in interpreting complex lay-
outs for SQL generation. As a result, CoQ achieves
improved reliability without compromising reason-

ing depth.

4.3 Comparison Against Hybrid Methods

Here, we compare the performance of CoQ with hy-
brid methods on the WikiTQ and TabFact datasets
using GPT-3.5. As shown in Table 3, CoQ consis-
tently achieves the best performance across both
datasets.

Notably, although our work shares the same hy-
brid philosophy, it differs significantly in granular-
ity and robustness. Unlike these approaches, which
rely on simple SQL operations and one-shot SQL
generation without invalid-query correction, CoQ
employs a clause-by-clause validated SQL genera-
tion process with sufficiency checks and rollback
mechanisms. This ensures that the generated SQL
is both valid and adaptively complex for deeper
mechanical reasoning. Logical inference is then
handled by the LLM over the intermediate SQL out-
puts. This design achieves a more fine-grained sep-
aration between mechanical and logical reasoning
while ensuring robustness. The key to this robust,
fine-grained separation lies in dynamic planning,
where the Planner adaptively adjusts the SQL gen-
eration depth depending on the input complexity.

4.4 Generalization to Real-World Tables

The previously explored datasets primarily feature
clean, well-structured tables. However, real-world
scenarios often involve messy, irregular tables. To
evaluate CoQ’s performance in such settings, we
conduct additional experiments on the IM-TQA
and Open-WikiTable datasets. IM-TQA contains
structurally diverse (transposed, nested, and irregu-
lar formats) tables, while Open-WikiTable reflects
multi-table databases in practical applications.
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As shown in Table 4, CoQ maintains strong per-
formance across both structurally complex and
multi-table settings, consistent with our earlier
results. A key contributor to this robustness is
our natural-language-style schema, which abstracts
away structural noise and allows LLMs to focus on
semantic content rather than layout-specific details.

Table 5: Ablation results on WikiTQ (GPT-3.5), eval-
uating each CoQ component. CoQ achieves optimal
performance through its modular design, with each com-
ponent contributing significantly to accuracy and SQL
validity.

Method Acc. Inv.

CHAIN-OF-QUERY 74.77 3.34
w/o Natural-Language-
Schema

64.65
(-10.12)

4.47
(+1.13)

w/o Parallel Task
Decomposition

72.95
(-1.82)

3.86
(+0.52)

w/o Clause-by-Clause
SQL Generation

57.73
(-17.04)

8.82
(+5.48)

w/o Hybrid Reasoning
Division

55.96
(-18.81)

5.27
(+1.93)

4.5 Ablation Study: Deep Dive into CoQ’s
Key Components and Mechanisms

We conduct an ablation study on WikiTQ us-
ing GPT-3.5, disabling one CoQ component at a
time. A more detailed analysis is provided in Ap-
pendix J.4.

As shown in Table 5, removing natural-language-
style schemas leads to a clear performance drop
(–10.12%) and more invalid SQL (+1.13%). This
highlights the benefit of abstracting away struc-
tural noise. Removing the Parallel Task Decom-
position causes a minor accuracy drop (–1.82%),
suggesting its limited impact on simple cases but
usefulness in complex ones. Disabling the Clause-
by-Clause SQL Generation causes a substantial
drop in accuracy (–17.04%) and a sharp rise in
invalid SQL (+5.48%), as clause-level generation
supports incremental validation and accurate clause
selection. This reduces the risk of incorrect queries
and ensures appropriate SQL operations are ap-
plied. The largest drop (–18.81%) occurs without
the Hybrid Reasoning Division, which prevents
over-generation and delegates logical reasoning to
the LLM. Without this control, the system tends to
over-generate, increasing query complexity with-
out improving answer quality.

Overall, the ablation results confirm that each

Table 6: Comparison of the theoretical number of LLM
calls per question across methods on WikiTQ dataset.

Method # Calls

Binder 50
Dater 100
Chain-of-Table ≤ 25
Tree-of-Table ≤ 29
MAC-SQL ≤ 19
MAG-SQL ≤ 25
CHAIN-OF-QUERY ≤ 22

CoQ component contributes meaningfully to per-
formance, highlighting the effectiveness of its mod-
ular design in balancing precision and adaptability.

4.6 Analysis of LLM Usage

In addition to accuracy, we examine CoQ’s LLM
usage by analyzing the theoretical upper bound
of calls required per question (Table 6). Among
all methods, CoQ offers a favorable trade-off be-
tween reasoning depth and LLM usage, requiring
at most 22 calls. In contrast, other strong base-
lines require up to 25–100 calls due to extensive
branching and fixed steps. While MAC-SQL is
slightly more efficient (within 19 calls), it under-
performs on complex tasks. Notably, we report
upper bounds here; in practice, CoQ averages just
7.63 LLM calls per instance (Appendix E). This
low average stems from our Hybrid Reasoning Di-
vision: by delegating logical reasoning to the LLM,
CoQ avoids generating overly complex SQL and
reduces error correction. It issues only the essential
clauses needed to retrieve sufficient information,
minimizing execution overhead. A detailed step-
wise breakdown of LLM calls and an analysis of
token-level cost are provided in Appendix J.5.

5 Conclusion

We introduce CHAIN-OF-QUERY, a multi-agent
framework for SQL-aided table understanding,
built upon three key insights: natural-language-
style schema, clause-by-clause generation and hy-
brid reasoning division. They enable robust, inter-
pretable, and precise reasoning over tables. CoQ
achieves SOTA performance across five bench-
marks, demonstrating strong generalization with
low error rates and few LLM calls. It offers insights
into effective integration of reasoning with struc-
tured query assistance in complex tabular tasks.
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Limitations

While our experiments span five benchmarks across
diverse domains in both English and Chinese, and
CHAIN-OF-QUERY demonstrates strong general-
ization across datasets within these two languages,
its effectiveness in other languages remains unex-
plored. Future work could extend the framework to
multilingual settings and evaluate its adaptability
to a wider range of linguistic phenomena.

Ethics Statement

This work uses five publicly available datasets:
WikiTQ, TabFact, FeTaQA, IM-TQA, and Open-
WikiTable, all of which are widely used in prior
research and contain no personally identifiable in-
formation. No additional data collection or human
annotation was performed. Our experiments use
GPT-3.5, GPT-4.1, LLaMA 2, LLaMA 3.1, and
DeepSeek-V3 in standard inference-only settings.
While we are not aware of specific ethical concerns
related to our datasets or methods, we acknowledge
potential risks: the reliance on pretrained LLMs
may propagate social or cultural biases, and large-
scale model deployment could raise environmental
concerns.
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Hailey Schoelkopf, Riley Kong, Xiangru Tang,
Mutethia Mutuma, Ben Rosand, Isabel Trindade,
Renusree Bandaru, Jacob Cunningham, Caiming
Xiong, and Dragomir Radev. 2022. Fetaqa: Free-
form table question answering. Transactions of the
Association for Computational Linguistics, 10:35–49.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305.

967

https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://arxiv.org/abs/2403.11886
https://arxiv.org/abs/2403.11886
https://arxiv.org/abs/2403.11886
https://arxiv.org/abs/2305.09645
https://arxiv.org/abs/2305.09645
https://arxiv.org/abs/2305.09645
https://github.com/amazon-science/llm-open-domain-table-reasoner
https://arxiv.org/abs/2305.07288
https://arxiv.org/abs/2305.07288
https://arxiv.org/abs/2305.07288
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.13269
https://arxiv.org/abs/2305.13269
https://arxiv.org/abs/2305.13269
https://doi.org/10.1145/3626772.3657807
https://doi.org/10.1145/3626772.3657807
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2312.16702
https://arxiv.org/abs/2402.12869
https://arxiv.org/abs/2402.12869
https://arxiv.org/abs/2402.12869
https://arxiv.org/abs/2404.10150
https://arxiv.org/abs/2404.10150
https://arxiv.org/abs/2303.08774


Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Preprint, arXiv:2304.11015.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Dts-sql: Decomposed text-to-sql with small large
language models. Preprint, arXiv:2402.01117.

Haohao Qu, Wenqi Fan, Zihuai Zhao, and Qing Li. 2025.
Tokenrec: Learning to tokenize id for llm-based gen-
erative recommendations. IEEE Transactions on
Knowledge and Data Engineering.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. 2022. Evaluating the text-to-sql capabil-
ities of large language models. arXiv preprint
arXiv:2204.00498.

Jiawei Shen, Chengcheng Wan, Ruoyi Qiao, Jiazhen
Zou, Hang Xu, Yuchen Shao, Yueling Zhang, Weikai
Miao, and Geguang Pu. 2025. A study of in-
context-learning-based text-to-sql errors. Preprint,
arXiv:2501.09310.

Songyuan Sui, Zihang Xu, Yu-Neng Chuang, Kwei-
Herng Lai, and Xia Hu. 2025. Training-free time
series classification via in-context reasoning with llm
agents. Preprint, arXiv:2510.05950.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2023a. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. Web Search and
Data Mining.

Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du,
Shi Han, and Dongmei Zhang. 2023b. Tap4llm: Ta-
ble provider on sampling, augmenting, and packing
semi-structured data for large language model reason-
ing. Conference on Empirical Methods in Natural
Language Processing.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang
Deng, and Huan Sun. 2023. Exploring chain-of-
thought style prompting for text-to-sql. Preprint,
arXiv:2305.14215.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2025a. Mac-
sql: Github repository. GitHub Repository, accessed
2024-05-16.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and 1 others. 2025b. Mac-sql: A
multi-agent collaborative framework for text-to-sql.
In Proceedings of the 31st International Conference
on Computational Linguistics, pages 540–557.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024a. A survey on large language
model based autonomous agents. Frontiers of Com-
puter Science, 18(6).

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Mar-
tin Eisenschlos, Vincent Perot, Zifeng Wang, Lesly
Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu
Lee, and Tomas Pfister. 2024b. Chain-of-table: Code
repository. GitHub Repository, accessed 2024-05-
16.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024c. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
ICLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran
Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, and 1 others.
2023. Autogen: Enabling next-gen llm applica-
tions via multi-agent conversation. arXiv preprint
arXiv:2308.08155.

Wenxuan Xie, Gaochen Wu, and Bowen Zhou. 2024a.
Mag-sql: Github repository. GitHub Repository, ac-
cessed 2024-05-16.

Wenxuan Xie, Gaochen Wu, and Bowen Zhou. 2024b.
Mag-sql: Multi-agent generative approach with soft
schema linking and iterative sub-sql refinement for
text-to-sql. arXiv preprint arXiv:2408.07930.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. 2023. Harnessing the power of llms in prac-
tice: A survey on chatgpt and beyond. Preprint,
arXiv:2304.13712.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language
models are versatile decomposers: Decompose evi-
dence and questions for table-based reasoning. arXiv
preprint arXiv:2301.13808.

Leisheng Yu, Yanxiao Cai, Lucas Chen, Minxing Zhang,
Wei-Yen Day, Li Li, Rui Chen, Soo-Hyun Choi,
and Xia Hu. 2024. Addressing delayed feedback

968

https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2501.09310
https://arxiv.org/abs/2501.09310
https://arxiv.org/abs/2510.05950
https://arxiv.org/abs/2510.05950
https://arxiv.org/abs/2510.05950
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.1145/3616855.3635752
https://doi.org/10.48550/arXiv.2312.09039
https://doi.org/10.48550/arXiv.2312.09039
https://doi.org/10.48550/arXiv.2312.09039
https://doi.org/10.48550/arXiv.2312.09039
https://arxiv.org/abs/2305.14215
https://arxiv.org/abs/2305.14215
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://github.com/wbbeyourself/MAC-SQL
https://github.com/wbbeyourself/MAC-SQL
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://github.com/google-research/chain-of-table
https://github.com/google-research/chain-of-table
https://github.com/LancelotXWX/MAG-SQL
https://arxiv.org/abs/2304.13712
https://arxiv.org/abs/2304.13712
https://doi.org/10.1109/ICDM59182.2024.00115


in conversion rate prediction: A domain adaptation
approach. In 2024 IEEE International Conference
on Data Mining (ICDM), pages 917–922.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task. Preprint, arXiv:1809.08887.

Haochen Zhang, Tianyi Zhang, Junze Yin, Oren Gal,
Anshumali Shrivastava, and Vladimir Braverman.
2025. CoVE: Compressed vocabulary expansion
makes better LLM-based recommender systems. In
Findings of the Association for Computational Lin-
guistics: ACL 2025, pages 12575–12591, Vienna,
Austria. Association for Computational Linguistics.

Siyue Zhang, Anh Tuan Luu, and Chen Zhao. 2024.
Syntqa: Synergistic table-based question answering
via mixture of text-to-sql and e2e tqa. Preprint,
arXiv:2409.16682.

Tianping Zhang, Shaowen Wang, Shuicheng Yan, Jian
Li, and Qian Liu. 2023a. Generative table pre-
training empowers models for tabular prediction.
arXiv preprint arXiv:2305.09696.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2023b. Tablellama: Towards open large generalist
models for tables. arXiv preprint arXiv:2311.09206.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2023c.
Reactable: Enhancing react for table question answer-
ing. Preprint, arXiv:2310.00815.

Mingyu Zheng, Yang Hao, Wenbin Jiang, Zheng Lin,
Yajuan Lyu, QiaoQiao She, and Weiping Wang. 2023.
IM-TQA: A Chinese table question answering dataset
with implicit and multi-type table structures. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 5074–5094, Toronto, Canada. Associ-
ation for Computational Linguistics.

Jiahui Zhou, Dan Li, Lin Li, Zhuomin Chen, Shunyu
Wu, Haozheng Ye, Jian Lou, and Costas J. Spanos.
2025a. Enhancing llm reasoning for time series clas-
sification by tailored thinking and fused decision.
Preprint, arXiv:2506.00807.

Shu Zhou, Yunyang Xuan, Yuxuan Ao, Xin Wang, Tao
Fan, and Hao Wang. 2025b. MERIT: Multi-agent col-
laboration for unsupervised time series representation
learning. In Findings of the Association for Compu-
tational Linguistics: ACL 2025, pages 24011–24028,
Vienna, Austria. Association for Computational Lin-
guistics.

Wei Zhou, Mohsen Mesgar, Annemarie Friedrich, and
Heike Adel. 2025c. Efficient multi-agent collabora-
tion with tool use for online planning in complex ta-
ble question answering. Preprint, arXiv:2412.20145.

Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du,
Junjie Wang, Weiming Ren, Stephen W. Huang, Jie
Fu, Xiang Yue, and Wenhu Chen. 2024. Structlm:
Towards building generalist models for structured
knowledge grounding. Preprint, arXiv:2402.16671.

969

https://doi.org/10.1109/ICDM59182.2024.00115
https://doi.org/10.1109/ICDM59182.2024.00115
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://doi.org/10.18653/v1/2025.findings-acl.651
https://doi.org/10.18653/v1/2025.findings-acl.651
https://arxiv.org/abs/2409.16682
https://arxiv.org/abs/2409.16682
https://arxiv.org/abs/2310.00815
https://arxiv.org/abs/2310.00815
https://doi.org/10.18653/v1/2023.acl-long.278
https://doi.org/10.18653/v1/2023.acl-long.278
https://arxiv.org/abs/2506.00807
https://arxiv.org/abs/2506.00807
https://doi.org/10.18653/v1/2025.findings-acl.1231
https://doi.org/10.18653/v1/2025.findings-acl.1231
https://doi.org/10.18653/v1/2025.findings-acl.1231
https://arxiv.org/abs/2412.20145
https://arxiv.org/abs/2412.20145
https://arxiv.org/abs/2412.20145
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671


A Case Study

A.1 Hybrid Reasoning

Table 7: Case study: Fabrice Santoro’s Grand Slam
results and win–loss record.

Name 2001 2002 n_win_loss

Australian Open 2R 3R 22–18
French Open 2R 2R 17–20
Wimbledon 2R 1R 11–14

Question: Did Fabrice Santoro win more at the
Australian Open or Wimbledon?

Figure 3: Comparison of MAG-SQL vs. CHAIN-OF-
QUERY.

This example highlights the fundamental differ-
ence between MAG-SQL and CHAIN-OF-QUERY

in handling structured reasoning.
As shown in Figure 3, MAG-SQL attempts to an-

swer the question entirely within SQL. It constructs
a nested query that parses the n_win_loss field
(e.g., 22-18) to extract the number of wins using
string manipulation functions like SUBSTR and
INSTR. It then casts the result to integer and se-
lects the entry with the highest number of wins.
While functional, this query is long, brittle, and
tightly coupled to a specific string format. Any
minor format mismatching would cause execution
failure or incorrect results. This reflects a common
issue with traditional SQL-aided approaches: in
pursuit of returning the final answer in one shot,

they overcomplicate query logic and increase error
risk.

CoQ, in contrast, adopts a different strategy. It
first generates a simple SQL query that merely re-
trieves the relevant rows and raw n_win_loss
records. Then, the LLM compares the values
("22–18" vs. "11–14") and reasons that the Aus-
tralian Open had more wins. This hybrid di-
vision—SQL for extraction, LLM for compari-
son—reduces SQL complexity and improves ro-
bustness, as the LLM is better suited to handle
slight variations or contextual interpretations in
text-formatted values.

In short, MAG-SQL complicates SQL to achieve
end-to-end reasoning, whereas CoQ simplifies SQL
and leverages the LLM where it excels, demonstrat-
ing the strength of our Hybrid Reasoning Division
Strategy.

A.2 Handling String Variations
For noisy entries such as "New York" vs. "new
york*" or "Dallas Cowboys" vs. "Dallas Cow-
boys*", our framework addresses the issue through
fuzzy matching in SQL generation and refinement.

For example, in questions such as "How many
games did the cowboys play?", the LLM generates
SQL queries like SELECT ... WHERE team
LIKE "%Dallas Cowboys%".

Appendix K.11 shows our prompt for correct-
ing invalid WHERE clauses, and its "Constraints"
section encourages the LLM to relax filtering con-
ditions, including using fuzzy matching "IN" and
"LIKE".

This mechanism ensures that variations with mi-
nor inconsistencies are still matched. While fuzzy
matching cannot cover all possible noise patterns,
in practice it significantly reduces such errors and
allows CoQ to remain robust to imperfect table
entries.

A.3 Handling Special Rows
The key challenge of handling such rows lies in
their special values. In our framework, these rows
are addressed through the integration of the Natural-
Language-Style Table Schema and Hybrid Reason-
ing.

The schema provides representative value exam-
ples for each column, which are typically normal
values randomly sampled from the table. Our SQL-
based mechanical reasoning does not directly yield
the final answer but instead produces an intermedi-
ate sub-table. This allows the LLM to compare the
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Figure 4: An example of a table containing a special
row, where the last row includes "Total".

schema examples with the SQL results and detect
anomalies such as special values from the aggre-
gate rows.

For instance, Figure 4 shows a table with special
rows studied by Liu et al. (2023).In their frame-
work, the Python-based method attempts to directly
return the exact number, counting the aggregate
row by mistake. However, our method provides the
LLM with intermediate information as illustrated
in Figure 5.

Figure 5: Illustration of CoQ’s intermediate information
in this case.

In this example, the LLM can distinguish the nor-
mal entry "2004" from the special entry "total" and
correctly infer that the result contains an aggregate
row, thus avoiding misinterpretation.

B Examples of CHAIN-OF-QUERY

B.1 SQL Generation Example Using Parallel
Decomposition

Figure 6 illustrates the difference between tradi-
tional SQL generation and our CHAIN-OF-QUERY

framework using parallel sub-question decompo-
sition. In the traditional approach, the LLM is
required to answer the entire question using a sin-
gle SQL query, which leads to structurally complex
queries. Due to limited understanding of both the
table structure and SQL semantics, the model may

Question: 
What is the population breakdown of

Nurpur Jattan by gender, and how many
houses does it have?

Table: Nurpur_Jattan_Village

Particulars Total Male Female

Population 763 401 362

Child (0-6) 55 32 23

Total Workers 226 191 35

Total No. of
Houses 157 N/A N/A

Chain-of-Query's
SQL Generation

Sub-SQL 1:
SELECT "Male", "Female", "Total" 
FROM "Nurpur_Jattan_Village"
WHERE "Particulars" = 'Population';

Sub-question 2:
How many houses does Nurpur Jattan have?

Traditional SQL
Generation

SQL:
SELECT "Total", "Male", "Female"
FROM "Nurpur_Jattan_Village"
WHERE "Particulars" = 'Population' AND "Particulars"

= 'Total No. of Houses';

Sub-SQL 2:
SELECT "Total" FROM "Nurpur_Jattan_Village"
WHERE "Particulars" = 'Total No. of Houses';

Sub-question 1: 
What is the population breakdown of Nurpur Jattan by

gender?

1. The row for "Total No. of Houses" contains empty values for the
Male and Female fields, leading to inconsistent data structures.

2. Using AND to combine mutually exclusive conditions results in a
logical contradiction, causing the empty return.

Figure 6: Comparison of traditional vs. CHAIN-OF-
QUERY SQL generation via parallel sub-question de-
composition.

incorrectly use conjunctions like AND to combine
incompatible conditions. This often results in log-
ical inconsistencies or empty outputs, especially
when the involved rows contain mismatched struc-
tures or missing values.

In contrast, CHAIN-OF-QUERY decomposes
the original question into two independent sub-
questions, each focusing on a distinct aspect of
the table. These sub-questions are processed in
parallel and translated into simpler, more focused
SQL queries. This strategy improves robustness,
avoids conflicting constraints, and simplifies table
access by localizing reasoning to narrower regions.

B.2 SQL Generation Example with Early
Stopping

Question: 
Did Fabrice Santoro win more at the Australian

Open or Wimbledon?

Table: Fabrice_Santoro

Name _2001 _2002 n_win_loss

Australian Open 2R 3R 22-18

 French Open 2R 2R 17-20

Wimbledon 2R 1R 11-14

US Open 3R 1R 16-13

Chain-of-Query's
SQL Generation

Traditional SQL
Generation

WITH Wins AS (
SELECT name,
CAST(SUBSTR(n_win_loss, 1, 

INSTR(n_win_loss, ' ') - 1) AS INT) AS wins,
CAST(SUBSTR(n_win_loss, 

INSTR(n_win_loss, ' ') + 1) AS INT) AS losses
FROM Fabrice_Santoro
WHERE name LIKE "%Australian Open%" 

OR name LIKE "%Wimbledon%"
)
SELECT name, SUM(wins) as total_wins, SUM(losses) as

total_losses FROM Wins GROUP BY name;

SELECT name, n_win_loss FROM Fabrice_Santoro
WHERE name LIKE "%Australian Open%" 

OR name LIKE "%Wimbledon%";

Name total_wins total_losses

Australian Open 22 18

Wimbledon 11 14

Name n_win_loss

Australian Open 22-18

Wimbledon 11-14

Figure 7: Example of Sufficiency-based Early Stopping
in SQL generation.

Figure 7 illustrates the difference between tradi-
tional SQL generation and our CHAIN-OF-QUERY

framework with the Sufficiency-based Early Stop-
ping Mechanism. While the traditional approach
constructs a complex query involving nested opera-
tions (e.g., WITH, CAST, SUBSTR) to compute ex-
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plicit win/loss counts, our method halts early once
sufficient information has been retrieved. Specif-
ically, our method issues a simpler SQL query
that directly extracts raw win–loss strings (e.g.,
"22–18", "11–14") from the relevant rows. The
LLM then completes the comparison based on
these outputs. This early stopping mechanism re-
duces unnecessary query complexity and enhances
robustness by delegating the final reasoning step to
the language model. Notably, despite its increased
complexity, the traditional query yields essentially
the same informational content as the simpler query
used in our approach. Moreover, such complexity
introduces more opportunities for execution fail-
ures and semantic mismatches.

C Clause Option List of Clause-by-Clause
SQL Generation Strategy

Based on common patterns of information retrieval
and reasoning operations in table understanding
tasks, we define five types of SQL clauses used in
our clause-by-clause generation strategy:

• SELECT-FROM clause: Serves as the foun-
dational component of an SQL query, used to
select task-relevant columns from the table.

• WHERE clause: Filters table rows based on
specific conditions relevant to the question.

• WITH AS clause: Defines a Common Table
Expression (CTE), enabling the creation of
temporary virtual tables for intermediate trans-
formations. This includes generating new
columns or modifying existing ones without
altering the original table. Such operations
help organize and extract new information to
support downstream reasoning.

• Aggregate function clause: Applies aggre-
gation functions such as COUNT, SUM, AVG,
MAX, and MIN to summarize or compute over
table content. These operations are often es-
sential for high-level reasoning and abstrac-
tion.

• ORDER BY clause: Sorts the table based on
specified columns, facilitating reasoning that
depends on ranking or positional relationships
in the data.

D Algorithm of Sufficiency-based Early
Stopping Mechanism

We present the pseudocode for the Sufficiency-
Based Early Stopping Mechanism, which allows
the Dynamic Planner to terminate clause generation
once sufficient information has been retrieved.

Algorithm 1: SUFFICIENCY-BASED EARLY

STOPPING

Data: (Q,T ), where Q is a natural language question;
T = (S,D) is a table consisting of schema S and
data content D.

Result: D̂ is the extracted subset of table’s data content
used to answer the question.

1 Function Sufficiency-Early-Stop
(Q,T):

2 chain← [Generator(Q, T)]
3 repeat
4 sql← chain[−1]
5 D′ ← ExecuteSQL(T, sql)
6 plan← Planner(Q, S, sql, D’)
7 if plan ̸= STOP then
8 next_sql←

Generator(Q, T, chain, plan)

9 chain.append(next_sql)

10 until plan = STOP
11 D̂ ← D′

12 return D̂

E Empirical Statistics on LLM Calls per
Instance
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Figure 8: Empirical LLM Calls per Instance (WikiTQ).
CoQ completes most instances within very few LLM
calls, enabled by hybrid reasoning, early stopping, and
clause-by-clause generation.

For WikiTQ, as shown in Figure 8, CoQ requires
on average only 7.63 LLM calls per instance,
with a median of just 5. Notably, 57% of the in-
stances complete within 5 calls, and only 0.16%
exceed 30 calls, with the maximum observed at
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39. These statistics highlight the low cost of our
approach, especially when compared to other multi-
agent baselines that incur significantly higher LLM
usage.

This low usage arises from two key factors. First,
our Hybrid Reasoning Division and Early Stopping
prevent the construction of overly long SQL queries
by stopping clause generation once sufficient infor-
mation has been retrieved, avoiding unnecessary or
overly complex SQL clauses. Second, our Clause-
by-Clause Generation allows the LLM to focus on
one clause at a time rather than constructing an
entire SQL query at once. This not only simpli-
fies generation at each step but also substantially
reduces the chance of syntax or logic errors, min-
imizing the need for repeated LLM corrections.
Together, these strategies ensure that our method
maintains high SQL generation quality and mini-
mizes redundant LLM usage.

F Dataset Details

We use five publicly available datasets in our exper-
iments: WikiTQ, TabFact, FeTaQA, IM-TQA,
and Open-WikiTable. Below we summarize their
features, sources, formats, licensing, and usage de-
tails.

F.1 WikiTQ

WikiTQ (Pasupat and Liang, 2015) is a question an-
swering dataset derived from Wikipedia, a resource
with broad topical coverage. It contains 2,108 ta-
bles and 22,033 natural language questions, each
paired with an answer derivable from a single table.
Answers typically correspond to one or more table
cells.
License: CC BY-SA.
Language: English.
Split Used: Standard test set (2,273 examples)
following prior work.
Content: No personally identifiable or offensive
content observed.

F.2 TabFact

TabFact (Chen et al., 2020) is a table-based fact
verification dataset over Wikipedia tables covering
over 16 domains. Each example includes a table
and a natural language statement, labeled as either
entailed or refuted. It comprises 117,854 examples
with binary labels.
License: CC BY-SA.
Language: English.

Split Used: Standard test set (12,779 examples)
following prior work.
Content: No personally identifiable or offensive
content observed.

F.3 FeTaQA

FeTaQA (Nan et al., 2022) is a complex table QA
dataset focused on multi-hop reasoning. Each entry
includes a Wikipedia table, a natural language ques-
tion, and a free-form textual answer. It focuses on
free-form, multi-step reasoning beyond cell-level
lookup.
License: CC BY-SA.
Language: English.
Split Used: Standard test set (2,003 examples)
following prior work.
Content: No personally identifiable or offensive
content observed.

F.4 IM-TQA

IM-TQA (Zheng et al., 2023) is a table QA dataset
that is built by collecting tables from open web-
sites of more than 10 domains. It features com-
plex table styles, including hierarchical, nested,
and messy real-world structures. Each entry in-
cludes a structurally complex table, several natural
language questions, and answers relevant to certain
cells.
License: CC BY-SA.
Language: Chinese.
Split Used: Standard test set (464 examples) fol-
lowing prior work.
Content: No personally identifiable or offensive
content observed.

F.5 Open-WikiTable

Open-WikiTable (Kweon et al., 2023) is a dataset
for open domain question answering with complex
reasoning over multi-table settings. Each entry
includes a natural language question, a table related
to the question, and the answer.
License: CC BY-SA.
Language: English.
Split Used: Standard test set (6,602 examples)
following prior work.
Content: No personally identifiable or offensive
content observed.

F.6 Usage and Compliance

We use all datasets strictly for academic research in
inference-only mode, without additional annotation
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or redistribution. Usage is fully aligned with the
datasets’ intended purposes and license terms.

G Reproducibility Statement

G.1 CHAIN-OF-QUERY

We conduct all experiments using the following
models as the backbone LLMs: GPT-3.5-turbo
(Brown et al., 2020), GPT-4.1 (OpenAI et al.,
2024), LLaMA-2-13B (Touvron et al., 2023),
LLaMA-3.1-8B (Grattafiori et al., 2024), and
DeepSeek-V3 (DeepSeek-AI et al., 2025). Model
configurations are provided in Appendix H. Prompt
examples for each agent in the CHAIN-OF-QUERY

framework are provided in Appendix K.
We also employ a lightweight memory mecha-

nism for the SQL Query Generator. Specifically,
we maintain a list of validated SQL queries during
clause-by-clause generation. Each newly generated
clause is executed; if valid, it is appended to the
list. If it fails and cannot be corrected, the system
automatically falls back to the last validated query
stored in memory. This ensures robustness and pre-
vents error propagation without requiring a heavy
memory module.

G.2 Baselines

Our implementation is based on the same envi-
ronment as Chain-of-Table (Wang et al., 2024b).
To ensure fair comparison, we directly reuse the
GPT-3.5 and LLaMA 2 results for the following
baselines as reported in their paper: Few-Shot QA,
Chain-of-Thought, Binder, and Dater.

We re-run OpenTab, MAC-SQL, and MAG-
SQL using their official open-source implemen-
tations (Kong et al., 2024b; Wang et al., 2025a; Xie
et al., 2024a), following the same inference settings
described in their respective repositories.

We used the Table-to-Text prompt provided by
(Min et al., 2024) to obtain text format tables as
one baseline.

Prompt examples for Basic Text-to-SQL
(BT2SQL) and End-to-End QA (E2E QA) are in-
cluded in Appendices L and M, respectively.

G.3 Tooling and Package Settings

All experiments are conducted in a Python 3.10
environment using standard open-source libraries.
We make no modifications to any third-party pack-
ages beyond parameter configuration.

For preprocessing and database operations, we
use pandas for basic table parsing and manip-

ulation with no manual adjustments, and access
SQLite databases via the sqlite3 module along
with the lightweight records wrapper.

We further evaluated CoQ on a temporal multi-
table setting based on the Open-WikiTable dataset,
following the setup of the baseline (Kong et al.,
2024b). This setup involves table retrieval from a
large corpus using BM25 to select the top-k tables.

To evaluate natural language outputs, we report
BLEU and ROUGE scores. BLEU is computed us-
ing the nltk library, while ROUGE is calculated
using the rouge-score package, both with de-
fault settings. Accuracy is computed using the
official evaluation scripts provided by the dataset
authors.

Additionally, we use a custom script to compute
the invalid SQL rate, defined as the proportion of
model-generated SQL queries that fail to execute
due to syntax or runtime errors.

H LLMs’ Inference Configurations

To ensure the reproducibility and stability of LLM
outputs across all agents in our framework, we
carefully configure the decoding parameters for
each model.

For GPT-3.5-turbo model, GPT-4.1
model, and DeepSeek-V3 model, we adopt a
deterministic configuration: temperature is set to
0.0 and top_p to 1.0. This disables sampling
and enforces greedy decoding, ensuring consistent
outputs across repeated runs. All responses are
generated using official APIs from OpenAI and
DeepSeek. Results are reported from a single run,
without sampling variability.

For LLaMA 2 and LLaMA 3.1, we deploy the
13B-chat and the 8B-instruct models respectively
using Hugging Face Inference Endpoints, hosted
on 8 A100 GPUs. Due to platform constraints, ex-
act settings of temperature = 0.0 and top_p
= 1.0 are not available. As a practical approxima-
tion, we set temperature = 0.01 and top_p =
0.9 for all agents, which yields nearly determinis-
tic outputs while maintaining compatibility with
the deployment platform. All LLaMA results are
likewise reported from a single inference run.

I More Related Work

I.1 Multi-Agent Table Understanding.
Recent work has explored LLM-powered agents
(Wu et al., 2023; Wang et al., 2024a) that perform
multi-step reasoning and invoke table operation
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Table 8: Results on WikiTQ with LLaMA 3.1, DeepSeek-V3, and GPT-4.1. CoQ delivers greater gains than
upgrading to stronger LLMs, enabled by hybrid reasoning and robust SQL generation.

Method LLaMA 3.1 DeepSeek-V3 GPT-4.1

Acc. Inv. Acc. Inv. Acc. Inv.

Table-to-Text 16.41 N/A 48.39 N/A 50.05 N/A
Few-Shot QA 39.94 N/A 66.07 N/A 70.97 N/A
Chain-of-Table 54.17 N/A 71.64 N/A 75.78 N/A
Basic Text-to-SQL 44.13 16.71 64.75 12.10 70.79 7.50
MAG-SQL 45.49 11.44 65.79 9.14 71.71 5.82

CHAIN-OF-QUERY (Ours)
62.18
(+8.01)

5.62
(-5.82)

81.85
(+10.21)

2.30
(-6.84)

84.92
(+9.14)

1.54
(-4.28)

tools. Dater (Ye et al., 2023) reformulates ques-
tions into cloze-style prompts and retrieves values
via LLM-generated SQL. Chain-of-Table (Wang
et al., 2024c) and Tree-of-Table (Ji et al., 2024) con-
struct dynamic reasoning paths using pre-defined
Python functions. Although effective, these ap-
proaches rely on coding-based steps. This makes
them fragile, as code errors can cause the entire
reasoning chain to fail. For example, Zhou et al.
(2025c) reports that about half of the failures come
from invalid code generation. Moreover, most of
these methods are limited by fixed function sets,
restricting their reasoning flexibility.

I.2 General Structured Data Reasoning with
LLMs

Recent studies have extended LLM reasoning from
plain text to structured data such as tables, knowl-
edge graphs, and knowledge bases. Several general
frameworks can also be adapted for table under-
standing. Pangu (Gu et al., 2023) generates multi-
ple symbolic sub-expression candidates and lets an
LLM select among them, but its semantic (rather
than executable) evaluation causes error propaga-
tion once an incorrect candidate is retained. Chain-
of-Knowledge (Li et al., 2024c) trains an adap-
tive query generator to produce symbolic queries
that LLMs later validate, but its one-shot genera-
tion yields long and fragile expressions. Struct-
GPT (Jiang et al., 2023) reformulates prompts
for column- and row-level filtering, avoiding in-
valid queries but treating tables as plain text, while
Readi (Cheng et al., 2024) generates shallow rea-
soning paths over key headers and entities, limiting
support for complex manipulations. QueryAgent
(Huang et al., 2024) supports SQL generation from
the perspective of knowledge bases, yet lacks suffi-
cient logical reasoning over tables.

While some high-level principles have been suc-
cessfully applied in general structured data rea-
soning, especially in knowledge base question an-
swering (KB-QA), our contribution lies in adapt-
ing and extending them into a modular, table-
specific, multi-agent SQL framework, where these
approaches have not been systematically investi-
gated.

Our framework differs from KB-QA counter-
parts in fundamental ways: 1. Question decom-
position. KB-QA methods typically decompose
via relation/path traversal (hop-by-hop). Our work
casts decomposition as semantic sub-questions and
SQL sub-query evolution driven by LLM agents. 2.
Natural-language-style schema. KB-QA methods
often replace numerical KB IDs with surface names.
In contrast, we construct a natural-language-style
schema (table name, header–type pairs, and sam-
pled example values) to represent tabular structures
in natural language, eliminating interference from
messy table layouts during LLM reasoning. 3. Step-
by-step correction. KB-QA methods often apply
post-hoc fixes to relation bindings. Our framework
integrates clause-by-clause SQL generation with
execution validation and targeted correction, en-
suring robustness during query construction rather
than patching afterward.

I.3 Broader Applications of Large Language
Models

The application of deep learning and large language
models beyond pure text data is not limited to table
understanding. Broader domains such as recom-
mendation systems (Yu et al., 2024; Lin et al., 2024;
Qu et al., 2025; Zhang et al., 2025) and time series
analysis (Chuang et al., 2025; Zhou et al., 2025b,a;
Sui et al., 2025) are also important in practice. Ex-
tending and further validating our multi-agent hy-
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brid reasoning strategy in these broader settings
represents a promising direction for future work.

Table 9: Performance comparison of CoQ and general
structured data reasoning baselines on WikiTQ and Tab-
Fact datasets (GPT-3.5). CoQ achieves the highest accu-
racy, attributed to its hybrid reasoning and clause-wise
SQL generation.

Method WikiTQ TabFact

QueryAgent 52.8 59.1
StructGPT 52.2 87.6
Readi 61.7 N/A
Chain-of-Knowledge 70.4 N/A

Chain-of-Query (Ours) 74.8
(+4.4)

92.3
(+4.7)

Table 10: Performance comparison of CoQ with base-
lines on the 57 challenging samples from WikiTQ identi-
fied by TabSQLify (GPT-3.5). CoQ achieves the highest
accuracy, enabled by its schema abstraction, clause-by-
clause SQL generation, and hybrid reasoning.

Method Acc.

MAG-SQL 15.79
Chain-of-Table 29.82
StructGPT 29.82
Readi 42.11
H-STAR 47.37

Chain-of-Query (Ours) 57.89
(+10.52)

J More Experimental Results

J.1 Scalability to Stronger LLMs
Our initial experiments used GPT-3.5 and LLaMA
2 to ensure fair comparisons with baselines. To as-
sess how CoQ scales with stronger models, we fur-
ther evaluate it on LLaMA 3.1, DeepSeek-V3, and
GPT-4.1 using the WikiTQ dataset. As shown in
Table 8, CoQ consistently outperforms other meth-
ods regardless of model strength. Notably, even
with GPT-3.5, CoQ achieves 74.77% accuracy (Ta-
ble 1), surpassing the performance of Few-Shot QA
with GPT-4.1 (70.97%). This demonstrates that
our framework contributes more to overall perfor-
mance than simply upgrading to a more powerful
language model. When paired with GPT-4.1, CoQ
further boosts accuracy to 84.92% and reduces the
invalid SQL rate to just 1.54%, confirming that its
combination of hybrid reasoning and robust SQL
generation remains effective with stronger LLMs.

Table 11: Error type distribution of CoQ on the challeng-
ing WikiTQ subset (GPT-3.5). Most remaining errors
stem from incorrect reasoning or annotation noise.

Error Type Count Rate

Missing Columns 0 0%
Missing Rows 6 25%
Incorrect Reasoning 11 46%
Incorrect Annotation 7 29%

J.2 Comparison Against General Structured
Data Reasoning Methods

We further compare CoQ with four strong general
structured-data reasoning baselines on the WikiTQ
and TabFact datasets. The results are presented in
Table 9. CoQ achieves substantial accuracy gains
on both datasets. These baselines usually either
rely on LLMs to filter tables as text, or restrict rea-
soning to shallow paths without supporting deeper
operations. These approaches ultimately require
the LLM to reason directly over tabular structures,
where LLMs perform poorly. In contrast, CoQ
explicitly controls query construction with clause-
by-clause SQL validation and delegates mechanical
operations (filtering, aggregation) to SQL, reducing
reasoning burden on the LLM.

In summary, the experiments demonstrate that
while there are strong representatives of the gen-
eral structured data QA family, their limitations
in table-specific reasoning lead to a consistent per-
formance gap relative to CoQ. Interestingly, Readi
and Chain-of-Knowledge cannot even directly sup-
port the TabFact benchmark. CoQ’s table-tailored
design, which combines fine-grained SQL construc-
tion with hybrid reasoning, yields clear and stable
performance advantages, particularly on more chal-
lenging questions.

J.3 Performance on Challenging Subset and
Error Analysis

J.3.1 Results on Challenging WikiTQ Subset
We evaluated our CoQ on the 57 error samples
from WikiTQ provided by the GitHub repository1

of TabSQLify (Nahid and Rafiei, 2024) and con-
ducted a detailed error analysis. Table 10 displays
the results. CoQ correctly answers 33 out of 57
questions (57.89%). In contrast, according to Tab-
SQLify, both TabSQLify and BINDER fail to cor-
rectly answer any of these samples. In addition,

1https://github.com/mahadi-nahid/
TabSQLify/blob/main/analysis/wtq_err_
analysis_tabsqlify_binder_common.csv
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CoQ achieves significantly larger margins on the
challenging subset over other baselines. This con-
firms that our framework is not only competitive
on the overall benchmark but also more robust on
hard cases where existing methods struggle.

J.3.2 Error Analysis of CoQ
We further analyze the 24 samples in which CoQ
produces incorrect answers. The error type in-
formation is shown in Table 11. We adopt the
error type definitions used in TabSQLify (Nahid
and Rafiei, 2024) and H-STAR (Abhyankar et al.,
2025). In detail, "Missing Columns" and "Miss-
ing Rows" refer to missing necessary columns and
rows, respectively. "Incorrect Reasoning" occurs
when CoQ extracts the correct information, but
LLM fails to produce the correct answer. "Incor-
rect Annotations" include semantically identical
answers in different formats, ambiguous questions,
and incorrect gold answers. Although the chosen
subset is more challenging, CoQ still reduces er-
rors in both sub-table retrieval and reasoning. And
errors caused by "Incorrect Annotation" remain a
notable fraction, which is analyzed below.

J.3.3 Examples of "Incorrect Annotation"
Following the definitions in TabSQLify and H-
STAR, "Incorrect Annotation" covers semantically
identical answers in different formats, ambiguous
questions, and incorrect gold answers. We chose
examples from the error cases above to explain the
error type "Incorrect Annotation" in detail.
1. Different Formats

• Sample ID: nu-91
• Question: which country has the larger num-

ber of circuits?
• Answer by CoQ: united states
• Gold Answer: usa
• Explanation: Semantically identical answers

in different formats.
2. Ambiguous Questions

• Sample ID: nu-114
• Question: how many distributions support the

x86 architecture?
• Answer by CoQ: united states
• Gold Answer: usa
• Explanation: There are 29 rows in total having

"Yes" in the column "x86", while the gold an-
swer doesn’t consider "Yes (>=i686)" shown
in Figure 9 as the distribution supporting x86.
There is no constraint or clarification in the
question.

Figure 9: Partial Table of Sample nu-114.

3. Incorrect Gold Answers
• Sample ID: nu-0
• Question: which country had the most cyclists

finish within the top 10?
• Answer by CoQ: spain, italy
• Gold Answer: italy
• Explanation: Both Spain and Italy have 3 cy-

clists in the top 10, but the gold answer only
lists Italy.

J.4 Ablation Analysis by Question Type

We conducted fine-grained ablations on the chal-
lenging 57-question subset of WikiTQ reported in
Appendix J.3. We labeled each question as Lookup,
Aggregation, Comparison, Bridge, or Arithmetic,
and compared the performance of CoQ and its ab-
lated variants. The results are shown in Table 12.

According to the result, Clause-by-clause SQL is
particularly critical for aggregation and arithmetic
questions (from 40.0% to 6.7% and from 80.0%
to 50.0%), confirming its role in preventing error
propagation across multi-step symbolic reasoning.
Hybrid reasoning significantly benefits compari-
son and bridge questions (from 56.3% to 25.0%
and from 57.1% to 14.3%), as SQL handles me-
chanical filtering/aggregation while LLMs focus
on logical inference. Parallel decomposition pro-
vides the largest gains for comparison questions
(from 56.3% to 43.8%), where independent sub-
questions can be solved more efficiently in parallel.
Natural-language schema improves robustness on
lookup and aggregation questions by mitigating
schema noise, though on some bridge questions
noisy sampled values may occasionally mislead
the model.

In short, this fine-grained analysis confirms that
each module contributes in complementary ways:
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clause-by-clause SQL mitigates error propagation
in multi-step symbolic reasoning, hybrid reasoning
improves logical generalization, parallel decompo-
sition accelerates comparison-type queries, and the
natural-language schema stabilizes performance
under irregular table structures. These results fur-
ther demonstrate the necessity of integrating all
four modules in CoQ to achieve robust table under-
standing.

J.5 Step-wise LLM Call Breakdown and
Empirical Token-level Cost

First, we present a comparison of the theoretical
number of LLM calls per question on WikiTQ, with
a detailed step-wise breakdown shown in Table 13.

Given the variety and complexity of baseline
frameworks, we argue that a token-level analysis,
in addition to the theoretical number of LLM calls,
provides a more comprehensive assessment of ef-
ficiency. Token-level processing volume offers a
more accurate measure of computational cost and
better reflects the overall efficiency of CoQ.

Therefore, we conducted both token- and API-
level cost analyses on the challenging WikiTQ sub-
set described in Appendix J.3. As this subset fo-
cuses on the most difficult questions, the measured
cost represents a higher-than-average workload and
thus provides an upper-bound estimate of token
and resource consumption. The detailed results are
presented in Table 14. CoQ achieves significantly
higher accuracy with only moderate additional ex-
pense, confirming that its fine-grained SQL gen-
eration and natural-language-style schema repre-
sentation provide a scalable and effective balance
between performance and efficiency.
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Table 12: Ablation results on the subset of 57 questions from WikiTQ (GPT-3.5), with breakdown by question type.
CoQ achieves the highest accuracy through its modular design, with each component contributing significantly to
overall performance.

Method Lookup Aggregation Comparison Bridge Arithmetic Overall

CHAIN-OF-QUERY 100.0 40.0 56.3 57.1 80.0 57.9
w/o Natural-Language-Schema 50.0 26.7 50.0 64.3 60.0 49.1
w/o Parallel Decomposition 50.0 26.7 43.8 57.1 70.0 47.4
w/o Clause-by-Clause Generation 100.0 6.7 12.5 42.9 50.0 28.1
w/o Hybrid Reasoning Division 100.0 20.0 25.0 14.3 50.0 28.1

Table 13: Comparison of the theoretical LLM call counts per question (step-wise breakdown) across methods on the
WikiTQ dataset (GPT-3.5).

Method # samples / step Total # samples
BINDER Neural SQL: 50 50
DATER Decompose Table: 40, Generate Cloze: 20, Generate SQL: 20,

Answer: 20
100

Chain-of-Table Dynamic Plan ≤ 5, Generate Args ≤ 19, Answer: 1 ≤ 25
Tree-of-Table Dynamic Plan ≤ 7, Generate Args ≤ 21, Answer: 1 ≤ 29
MAC-SQL Manager ≤ 3, Selector ≤ 3, SQL Generation ≤ 3, SQL Correction

≤ 9, Answer: 1
≤ 19

MAG-SQL Manager ≤ 3, Summarization ≤ 3, Selector ≤ 3, SQL Generation
≤ 6, SQL Correction ≤ 9, Answer: 1

≤ 25

TabSQLify Table Decompose: 1–3, Answer: 1 2–4
H-STAR Column Extraction: 2–4, Row Extraction: 2–4, Answer: 2 6–10
CoQ (Ours) Semantic Splitter: 1–2, Dynamic Plan: 1–4, SELECT Clause: 1,

WITH AS Clause with Correction: 0–3, WHERE Clause with Cor-
rection: 0–3, Aggregation Clause with Correction: 0–3, ORDER
BY Clause with Correction: 0–3, Answer: 1–3

4–22

Table 14: Performance comparison of CoQ and strong baselines on the challenging WikiTQ subset (GPT-3.5),
with detailed token-level cost statistics. "Acc." denotes accuracy (%), "Avg Input/Output Token" is measured in
thousands of tokens (k), and "Cost" represents the average USD ($) per query. CoQ achieves the highest accuracy
while maintaining competitive cost.

Method Acc. Avg Input
Token

Avg Output
Token

Avg Input
Cost

Avg Output
Cost

MAG-SQL 15.79 6.72 0.35 0.00336 0.00053
QueryAgent 17.54 13.84 0.58 0.00692 0.00087

Chain-of-Table 29.82 17.94 1.21 0.00897 0.00182
StructGPT 29.82 10.75 0.74 0.00538 0.00111

Readi 42.11 7.82 0.50 0.00391 0.00075
H-STAR 47.37 9.10 1.18 0.00455 0.00177

Chain-of-Query (Ours) 57.89 10.62 0.91 0.00531 0.00137
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K Prompts Examples of Chain-of-Query

Our prompts are uniform across datasets and not
domain-specific.

K.1 Prompt of Parallel Decomposition
(WikiTQ)

[Instruction]
Your task is to decompose a question into
subquestions. The decomposition should be
based on the presence of interrogative words
(e.g., what, which, who, where, how, when,
why) in the original question. You should
write the subquestions in the format of a
python list. Solve the task step by step if
needed.

[Constraints]
Subquestions should be independent and
self-contained. Avoid using pronouns like
"he," "she," "it," or "they" if they refer to
an entity introduced in another subquestion.
Restate the entity or essential context in
each subquestion so that it makes complete
sense on its own. Ensure each subquestion is
a complete, grammatically correct sentence.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** Subques-
tions: “‘python subquestions = [ "first sub-
question", "second subquestion", ... ] “‘

K.2 Prompt of Sub-answer Generation
(WikiTQ)

[Instruction]
Your task is to answer a question related
to a given table based on the execution re-
sult attained by running SQLite. Solve the
task step by step if you need to. The ta-
ble schema, a few example rows, a SQLite
query and the execution result will be pro-
vided. Assume that you can always find the
answer, so you must give an answer that
makes sense to the question based on the
given table. Your answer should be as short
as possible. Do not use sentences if one or
two words will do.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** Answer:
[Your answer]
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K.3 Prompt of Final Answer Generation
(WikiTQ)

[Instruction]
Your task is to generate a final, coherent an-
swer by combining the provided subanswers.
The final answer should fully and naturally
address the original question, using infor-
mation from all the subanswers. Integrate
the information fluently into a single, cohe-
sive sentence, without explicitly listing or
numbering the subanswers. Write the final
answer in clear, natural, and grammatically
correct English. Solve the task step by step
if needed. The original question, subques-
tions and subanswers will be provided.

[Constraints]
Use all the subanswers when forming the
final answer. Do not simply list the sub-
answers separately; integrate them fluently
into a single, cohesive sentence. If an en-
tity is introduced clearly in one subanswer,
you may refer back to it later using appro-
priate pronouns such as "he," "she," "it," or
"they." Avoid repeating the full name or full
description unnecessarily when a pronoun
would maintain clarity and improve fluency.
Ensure that the final answer sounds fluent
and directly addresses the original question.
If any subanswers overlap or feel redundant,
merge and rephrase them appropriately. If
relevant, you may keep specific numbers or
data in your final answer to make it more
informative, even if the numbers are not ex-
plicitly asked for in the question. Avoid
run-on or grammatically incorrect structures
even though the answer should be a single
sentence.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** Answer:
[Your answer]

K.4 Prompt of SELECT-FROM Clause
Generation

[Instruction]
Your task is to fill in the missing column
names in an incomplete SQLite query so
that it extracts the columns required to in-
terpret the question correctly. Solve the
task step by step if you need to. The ta-
ble schema, a few example rows, question,
and an incomplete SQLite query will be pro-
vided.

[Constraints]
The SQLite does not need to directly an-
swer the question. You must complete the
SELECT clause so it contains: 1. All value
columns relevant to the question. 2. All
context columns needed to understand what
each row represents (e.g., identifiers, cate-
gories, descriptions). Only insert the miss-
ing column names in the parentheses of the
SELECT statement without modifying any
other part of the given SQL query. Don’t
add other clauses like WHERE and GROUP
BY. Always include context columns like
description, name, category, or type when
they are essential to interpreting the selected
values.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** SQL: “‘sql
[the completed SQL] “‘
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K.5 Prompt of WHERE Clause Generation

[Instruction]
Your task is to fill in the WHERE clause
in an incomplete SQLite query so that it
extracts a useful subset of rows that are most
relevant to answering the question, even if
the query is not final. Solve the task step by
step if you need to. The table schema, a few
example rows, question, and an incomplete
SQLite query will be provided.

[Constraints]
The SQLite does not need to directly an-
swer the question. Insert the necessary con-
dition(s) or subquery in the WHERE clause,
do not modify any other part of the provided
SQL query. Use relaxed fuzzy matching
(e.g., LIKE, IN) as much as possible when
unsure of exact values. When filtering based
on a value from the question (e.g., a team, lo-
cation, or result), ensure the corresponding
column contains similar values that match
the target entity. Avoid filtering on columns
when it is unclear if they support the value
mentioned in the question. Do not assume
a column’s semantics solely based on its
name. Do not invent or hallucinate values
unless they are clearly implied by the ques-
tion and supported by the schema. Do not
add additional SQL clauses such as GROUP
BY or ORDER BY.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** SQL: “‘sql
[the completed SQL] “‘
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K.6 Prompt of WITH AS Clause Generation

[Instruction]
Your task is to write a WITH ... AS SELECT
statement that restructures the original table
to enable accurate computation or aggrega-
tion (e.g., summing, grouping). These com-
putations are needed to answer a provided
question. You should extract or combine rel-
evant parts of one or more columns selected
in the provided SQLite query to create new
columns in the new table. Solve the task
step by step if you need to. The original
table schema, a few example rows, the ques-
tion, and a basic SQLite query (choosing
one or more columns) will be provided.

[Constraints]
The question requires an operation (such
as summing numeric values) that cannot be
performed correctly without splitting or con-
catenating current column(s). Use SQLite
syntax and functions (such as SUBSTR, IN-
STR, or string concatenation) as needed. Be
mindful of data types in the SELECT sub-
query to ensure correct comparisons, com-
putations, and transformations. Preserve all
columns selected by the provided SQLite
query in the new table, even if they do not
require transformation.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** SQL: “‘sql
[the completed SQL] “‘

K.7 Prompt of Aggregate Function Clause
Generation

[Instruction]
Your task is to choose exactly one aggre-
gate function from the list (COUNT, AVG,
MAX, MIN, SUM) and rewrite the provided
SQLite query. This query retrieves informa-
tion from a table to answer a given ques-
tion. Solve the task step by step if you need
to. The table schema, a few example rows,
question, and a basic SQLite query will be
provided.

[Constraints]
The SQLite does not need to directly an-
swer the question. Only consider following
aggregate functions: COUNT, AVG, MAX,
MIN, SUM. Aggregate functions must not
be nested. The aggregate function should
be chosen based on the semantics of the
question (e.g., "total" suggests SUM, "most"
suggests MAX). Modify the basic query by
applying the chosen function to the relevant
column. Keep the structure of the original
query intact, only apply aggregation where
needed. Use aggregate functions properly
over the whole table.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** SQL: “‘sql
[the completed SQL] “‘
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K.8 Prompt of ORDER BY Clause
Generation

[Instruction]
Your task is to add an ORDER BY clause
to the provided SQLite query. This query
retrieves information from a table to answer
a given question. Solve the task step by step
if you need to. The table schema, a few
example rows, question, and a basic SQLite
query will be provided.

[Constraints]
The SQLite does not need to directly answer
the question. Modify the query by applying
an ORDER BY clause to the relevant col-
umn. The sorting order (ASC or DESC)
should be determined based on the seman-
tics of the question. Apply the ORDER
BY clause to the relevant column. Ensure
that the original query structure remains un-
changed except for the addition of the OR-
DER BY clause.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** SQL: “‘sql
[the completed SQL] “‘

K.9 Prompt of Dynamic Planner (Sufficiency)

[Instruction]
Your task is to decide whether the current
SQL result is sufficient to answer the ques-
tion. The SQLite query retrieves informa-
tion from a table to answer a given question.
Solve the task step by step if needed. The
table schema, a few example rows, the ques-
tion, a SQLite query and its result will be
provided.

[Constraints]
Answer "Yes" if and only if the current SQL
result is sufficient to answer the question or
with reasonable interpretation. Otherwise,
answer "No". Base your decision solely on
the given question and the provided basic
SQLite query. The SQLite query does not
need to be a complete or final answer. If it
includes most key information that allows
someone to infer the answer correctly, "Yes"
is still acceptable, even if the question sug-
gests that additional filtering, aggregation,
or sorting might be needed.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** Decision:
[Yes or No]
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K.10 Prompt of Dynamic Planner (WHERE
Clause)

[Instruction]
Your task is to decide whether answering
the question require using a SQL WHERE
clause to filter rows in the table? Solve the
task step by step if you need to. The ta-
ble schema, the total number of rows, a few
example rows, and the question will be pro-
vided.

[Constraints]
Filtering must use a WHERE clause.
Don’t consider other filtering methods like
GROUP BY. Check the number of rows first.
If the question refers to a subset like “top
10,” but the entire table already contains
only that subset (e.g., the table has exactly
10 rows), then no filtering is needed and the
answer is No. Operations like ORDER BY,
LIMIT, or aggregation across all rows do
not count as filtering. You must make the
decision. Output Yes or No as the decision.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** Decision:
[Yes or No]

K.11 Prompt of WHERE Clause Correction

[Instruction]
When executing the SQLite query below, an
error occurred in the WHERE clause. Please
correct the WHERE clause based on the pro-
vided question, table schema and error in-
formation. Solve the task step by step if
needed. Identify which conditions are ir-
relevant, overly strict, or mismatched. The
corrected WHERE clause should retrieve
rows that can help interpret the question ac-
curately, even if loosely filtered. The table
schema, a few example rows, question, the
incorrect SQLite query and error informa-
tion will be provided. Only fix the WHERE
clause, do not change any other part of the
query. After fixing the query, verify it care-
fully. If possible, include verifiable evidence
in your analysis.

[Constraints]
Modify only the WHERE clause; do not al-
ter SELECT, GROUP BY, or other clauses.
Ensure that the condition(s) in WHERE
match the logic required by the question.
Use correct syntax and valid condition(s)
based on the provided schema. Handle data
types appropriately. e.g., avoid comparing
numeric strings without conversion. Use re-
laxed fuzzy matching (e.g., LIKE, IN) as
much as possible when unsure of exact val-
ues. If the SQL query might return no re-
sults because of overly strict or irrelevant
conditions, modify it to be more flexible: -
Remove conditions when value mismatches
are likely. - Relax LIKE or inequality com-
parisons that don’t match the table’s value
patterns. - Do not remove constraints that
clearly align with the question. Remember:
a runnable and interpretable query is bet-
ter than an overly strict query that returns
nothing.

[Response format]
Your response should be in this format:
Analysis: **[Your analysis]** SQL: “‘sql
[the correct SQL] “‘
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L Prompt Example of Basic Text-to-SQL
(WikiTQ)

[Instruction]
Given the table schema and three example
rows out of the table, write a SQLite pro-
gram to extract the sub-table that contains
the information needed to answer the ques-
tion. The SQLite does not need to directly
answer the question. Assume you always
have enough information when executing
the SQLite. Output only the SQL, with no
explanation.

[Response format]
Your response should be in this format:
SQL: “‘sql [the completed SQL] “‘

M Prompt Example of End-to-End QA
(WikiTQ)

[Instruction]
Your task is to answer a question related to
a given table. Assume you can always find
the answer, so you must give an answer that
makes sense to the question based on the
given table. Your answer should be as short
as possible. Do not use sentences if one or
two words will do. Output only the answer,
with no explanation.
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