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Abstract

Generating rational and generally accurate re-
sponses to tasks, often accompanied by exam-
ple demonstrations, highlights Large Language
Model’s (LLM’s) remarkable In-Context Learn-
ing (ICL) capabilities without requiring updates
to the model’s parameter space. Despite having
an ongoing exploration focused on the infer-
ence from a document-level concept, its be-
havior in learning well-defined functions or re-
lations in context needs careful investigation.
In this article, we present the performance of
ICL on partially ordered relation by introducing
the notion of inductively increasing complexity
in prompts. In most cases, the saturated per-
formance of the chosen metric indicates that
while ICL offers some benefits, its effective-
ness remains constrained as we increase the
complexity in the prompts, even in the pres-
ence of sufficient demonstrative examples. The
behavior is evident from our empirical findings
and has further been theoretically justified in
terms of its implicit optimization process. The
code is available here.1

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in in-context
learning (ICL) (Brown et al., 2020), where tasks
are learned from few-shot demonstrations with-
out parameter updates. While ICL has spurred
extensive research dealing with applications span-
ning language understanding, code generation,
and mathematical reasoning (Ahn et al., 2023;
Cheng et al., 2024), its ability to reason about re-
lational structures—particularly partially ordered
sets (posets)—remains unexplored. Posets are fun-
damental to mathematics and real-world hierar-
chies. For example, genealogical relations such as
one in the Mahabharata (Bedobyas) – Bashistha
was the ancestor of Shaktri, Shaktri was

1� https://github.com/DDuttaGit/ICLonPartialOrder

the ancestor of Parasar, Parasar was the
ancestor of Krishno-dwaipayan Bedobyas –
is an example of linear order. Their mathematical
breadth is further illustrated by a relation say inclu-
sion (⊆). Zorn’s lemma (Zorn, 1935), one of the
widely used results to prove several fundamental
theorems in algebra, finds a proof involving posets.
This exhibitory relevance of posets, thus demands
investigation on reasoning about transitivity, anti-
symmetry, and dependencies beyond function-like
mappings.

Existing works on ICL have primarily explored
linear functions (Garg et al., 2022), regular lan-
guages (Akyürek et al., 2024), and discrete-valued
functions (Bhattamishra et al., 2024). While these
studies reveal insights into model adaptability, they
overlook the challenges posed by relational rea-
soning, where outputs for a single image, unlike
functions, may involve multiple pre-images. Along
this line of study on exploring ICL’s behavior on
algorithms (Veličković et al., 2022), functions, and
even long-context NLP tasks (Bertsch et al., 2025),
investigating their behavior on structured mathe-
matical tasks remains understudied. This research
gap is critical for posets, which provide a rigorous
framework for evaluating reasoning in hierarchical
scenarios. Yet, it is unclear whether LLMs can infer
such relations through ICL, especially as task com-
plexity scales. These challenges form the primary
motivation for our research.

By leveraging posets, we propose a novel evalu-
ation framework using k-shot c-complex prompts,
where k denotes the number of demonstrations and
c quantifies complexity through incremental ex-
tensions of Hasse diagrams (see Fig. 1). Our ex-
periments span different open-source LLMs and
models from GPT family, evaluating their ability to
infer relations on posets: the less than (N, <) and
the divisibility (N, |). The exponential growth in
vertices of the Hasse diagram of the poset (2S ,⊆),
for any finite set S has prevented us from includ-

900

mailto:debanjandutta_r@isical.ac.in
mailto:faizanuddin_r@isical.ac.in
mailto:swagatam.das@isical.ac.in
https://github.com/DDuttaGit/ICLonPartialOrder
https://github.com/DDuttaGit/ICLonPartialOrder


ing them in the study. We further fine-tune models
(e.g., BERT, RoBERTa) to evaluate performance
when enriched with data-specific knowledge.
Key contributions are as follows: (1) We, for the
first time, investigate the performance satura-
tion of ICL on posets when evaluated under the
proposed framework (Section 3) involving k-shot
c-complex prompts. Through a series of exten-
sive experiments (Section 4), we present that while
LLMs can partially encode posets during ICL, their
reasoning is constrained by architectural limita-
tions, particularly in capturing transitivity and anti-
symmetry. (2) We have theoretically justified this
bounded approximation capacity of ICL in terms of
its implicit optimization process (Section 5). This
becomes evident through the analysis of LLMs’
output when viewed as task vectors (Section 6).

2 Revisiting the ICL Landscape

Recent studies have established a strong theoret-
ical basis for ICL by analyzing its connection to
gradient-based optimization. Building on Ahn et al.
(2023)’s work on linear Transformers performing
in-context gradient descent, Cheng et al. (2024)
demonstrated similar behavior in non-linear Trans-
formers under specific activation conditions. Fur-
thermore, Dai et al. (2023) empirically validated
the duality between Transformer attention and gra-
dient descent, showing in-context updates mimic
implicit fine-tuning, particularly when leveraging
momentum-based attention.

In the context of analyzing ICL on functions
from discrete space: Bhattamishra et al. (2024)
found frozen-weight GPT-2 models showed non-
trivial performance on discrete functions like near-
est neighbor. Akyürek et al. (2024) highlighted
in-context (regular) language learning excels via
implicit implementation of n-gram statistics. De-
spite having theoretical universal simulation power
(Qiu et al., 2025; Furuya et al., 2025), Bertsch et al.
(2025) noted diminishing gains in long context
ICL performance in traditional NLP tasks, sug-
gesting fundamental limitations in contextual infer-
ence. Moreover, Akyürek et al. (2023) and Guo
et al. (2024) demonstrated that ICL effectiveness
is highly dependent on the properties of the un-
derlying function, prompting the question of how
LLMs perform when dealing with relations and
partial functions rather than well-structured func-
tions. By analyzing poset, we extend ICL research
into relational reasoning, filling up a crucial gap in

understanding how language models infer depen-
dencies beyond standard function learning.

3 Background and Setup for ICL

3.1 Partially Ordered Set & Hasse Diagram
Poset: On a set S, a relation ⪯ is said to produce a
partial-ordered set or poset (S,⪯), if it follows:

Reflexivity For every element s ∈ S, s ⪯ s,
Anti-symmetry For any two elements s1, s2 ∈ S,

if s1 ⪯ s2 and s2 ⪯ s1, s1 = s2 and
Transitivity For three elements s1, s2 and s3 ∈ S

if s1 ⪯ s2 and s2 ⪯ s3, s1 ⪯ s3.
A poset, in the absence of the reflexivity property,
denoted by (S,≺), is called a linear order if any
two distinct elements i, j ∈ S are comparable i.e.
either i ≺ j or j ≺ i. Our work comprises study
on two posets – the less than relation on the set
of natural numbers (N, <), representative of any
linear order, and the divides relation on the set
of natural numbers (N, |), representing any other
arbitrary poset.

Observation 1. The linear order on the nu-
merical domain, such as (N, <) can be viewed
as length-dependent lexicography order. Suppose
ΣN = {1, 2, . . . , 9} ∪ {0} denotes the alphabet of
N. Then a natural word x = a1a2 . . . an of length
n belongs to Σn

N if and only if ai ∈ ΣN. Suppose
the lexicography order on ΣN is i) the linear order
(0, 1, 2, . . . , 9) and ii) x precedes x′ for any natural
word x ∈ Σi

N and x′ ∈ Σi+k
N where k > 0. Then

length-dependent lexicography order on ΣN is the
linear order (N, <).
Hasse Diagram: Given a poset (S,⪯), a Hasse

4

3

2

1

(a) Hasse representing
({1, . . . , 4}, <) or the
linear order (1, 2, 3, 4).
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(b) Hasse representing
({1, . . . , 6}, |).

Figure 1: Examples of Hasse diagrams.

diagram (e.g. Fig: 1) is a directed acyclic graph
(DAG) H = (S,E) where E ⊂ S × S represents
the directed edge (a, b) such that a ⪯ b and there
exists no c such that a ⪯ c ⪯ b when a ̸= b and
self-loop in case of a = b depending on reflexivity
(or, irreflexivity). The Hasse diagram of the rela-
tion less than is a directed path. Suppose not, then
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S → IET

I → ΣR

R → Reflexivity R′ | Irreflexivity R′

R′ → Anti-Symmetry Transitivity

E → a ⪯ b, E | a ⪯ b for a, b ∈ Σ+ and a ⪯ b

T → DT ′

D → Output True or False to the following case(s)

T ′ → a ⪯ b, T ′ | a ⪯ b for a, b ∈ Σ+.

Figure 2: Grammar for production of a prompt. Illustra-
tive prompts have been provided in Appendix A.

for any three distinct integer a, b1, and b2, there
exist at least two paths, say from a to b1 and a to
b2 such that b1 and b2 are not connected in either
direction. Then, by definition of Hasse b1 and b2
are incomparable, contradicting the basic rule that
with any two different integers, one is smaller than
the other. The Hasse diagram of the relation di-
vides, on the other hand, can contain such b1 and
b2, representing any arbitrary DAG.

3.2 Formalizing k-Shot c-Complex Prompt

Let’s revisit the existing definition of ICL (Garg
et al., 2022) in relevance to our experimental con-
text. Assuming Σ represents the alphabet in the
poset, the grammar producing a prompt P has
been provided as Backus–Naur form in Figure 2.
A prompt is a concatenation of instruction (I), ex-
amples (E), and task (T ). The instruction provides
information about the alphabet in the poset and def-
inition of anti-symmetry, transitivity, and/or reflex-
ivity depending on the nature of the relation. The
task describes the output format and test point(s).

A prompt is generally termed as a k-shot prompt
Pk if the non-terminal E has expanded k times.
Further, we call Pk minimal if the examples in Pk

are the pairs a ⪯ b such that (a, b) are edges in the
respective Hasse diagram. This can be considered
aligned with the concept of a teaching sequence
(Goldman and Kearns, 1995). The approach con-
structs a sequence {x, f(x)} (here, a relation) ca-
pable of uniquely identifying a function f within a
given function class. Minimal prompts were care-
fully designed to ensure interpretability and com-
pactness while retaining task specificity. Thus, the
examples combined with the instruction segment
of a prompt Pk can provide information about the
entire poset ({1, 2, . . . , k},⪯).

Xu et al. (2024) proved the existence of a (for-
mal) language that cannot be produced by any iter-
ative learning algorithms such as neural language

models. We extend the experiments to understand
at what extent ICL can remedy this problem. Given
any existing language model L, a problem class
Q, and a problem q ∈ Q, bad for L; we ask to
what extent the actual answer of q deviates from
the answer generated by L.

Given some knowledge about a problem class Q,
suppose Q is enumerable in terms of its increasing
complexity with respect to a problem q′ ∈ Q and
say q ∈ Q is the ith instance for which a neural lan-
guage model L fails to generate a correct answer.
The term complexity here denotes the difficulty in
accurately representing q, given the existing knowl-
edge about class Q, the known problem q′, and
the inherent knowledge of L. Then intuitively, the
i+ 1, . . . problems would not only be mistaken by
L but the mistake would get severe as we go right.
We discovered that this intuition does not hold true
as ICL induces different outcomes. Despite be-
ing restricted to poset, with a suitable definition
of complexity, the experiment can be reproduced
analogously for suitable Q.

Now we define a k-shot c-complex prompt Pk,c.
It is a minimal k-shot prompt Pk on a poset
({1, 2, . . . , k},⪯) which provides task T ′ that is
c-complex, meaning T ′ provides evaluation points
a ⪯ b such that the edge (a, b) or (b, a) is not
present in the Hasse diagram of the poset and at
least one of a, b ∈ {k + 1, k + 2, . . . , k + c}.The
rationale behind considering the test point produc-
tion rule T ′ is – had T ′ been defined with a ⪯ b
alone, the evaluation of L(Pk,c) would lack robust-
ness. Therefore, a sequence of c-complex prompts,
P→,c

2, enhances the understanding of the provided
data and is expected to yield improved performance.
On the other hand, a sequence of k-shot prompts
Pk,→ progressively increases the task’s difficulty.

3.3 Experimental Setup & Evaluation Metric

During this experiment, we chose to keep the cardi-
nality of evaluation points, |Pk,c[T

′]|, as 50 and 30
for the tasks less than and divides respectively. For
example, consider the prompt P20,10 in task less
than. There are exactly 19 demonstrations given by
1 < 2, 2 < 3, . . . , 19 < 20 and 50 random evalua-
tion points (a, b) from {1 . . . , 30} × {21, . . . , 30}
or the reversed order such that the pairs are not
present in the demonstration. If a ⪯ b is the ith

evaluation point, Pk,c[T
′][i], we say its target value

V (Pk,c[T
′][i]) is true if there is a path from a to b

2The notation denotes the sequence {Pk,c}k={1,2,...}.
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in the Hasse diagram or false, otherwise. Then the
accuracy of a generated response corresponding to
a prompt Pk,c is measured by

1

|Pk,c[T ′]|
∑

i

I
(
L(Pk,c)[i], V (Pk,c[T

′][i])
)
,

where, I(a, b) yields 1, when a = b and 0, other-
wise. Similarly, the mean cumulative accuracy, say,
for a sequence of c-complex prompts, is given by

1∑
c≤c

for all k

|Pk,c[T ′]|
∑

c≤c
for all k

∑

i

I
(
L(Pk,c)[i], V (Pk,c[T

′][i])
)
.

A similar evaluation metric can also be incorpo-
rated for varying demonstrative examples, keeping
the complexity parameter the same on average.
Models and Plots: We have employed five
decoder based models, viz Gemma2, Llama3,
Mathstral, Qwen2-math, Phi3 and two prevalent
models from GPT family viz GPT-3.5-Turbo and
GPT-4.o-mini for ICL based experiments while for
fine-tuning we have employed two encoder-only
transformer architectures, BERT and RoBERTa
and an auto-regressive architecture XLNet, an
improvement over BERT (for model details see
Appendix Table 1). Despite belonging to decoder-
based category, the well-known architectures
exhibit varying performance on the same dataset,
hence selecting them to assess their efficiency.
We have plotted mean cumulative accuracy
for the sequence {L(Pk,c)}k={1,2,...,K} against
varying complexities, for some K. It denotes that
we are plotting mean cumulative accuracy for
{L(Pk,1)}k={1,...,K}, {L(Pk,2)}k={1,...,K}, . . ..
This implies maintaining a similar number of
demonstrations on average, we are increasing
complexity as we go right.

4 In-Context Learning on Poset

We present the first analysis of ICL for poset reason-
ing through systematic evaluation across: (1) linear
orders (N, <) , (2) its binary variant ({0, 1}∗, <)
(testing length-aware lexicographic reasoning), and
(3) divisibility posets (N, |) (challenging DAG-
based transitive inference). Performance of open-
source language models on the linear order and
divisibility posets in subsections 4.1 and 4.2, re-
spectively, keeping analysis on the GPT models
separate in subsection 4.3.

4.1 Linear Order
We have experimented with ICL on linear order us-
ing posets (N, <) and ({0, 1}∗, <), on a collection
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Figure 3: Subfigure 3a describes the mean cumulative
accuracy plot for the sequence {L(Pk,c)}k={1,2,...,150}
against varying complexities. Subfigure 3b describes the
same metric for {L(Pk,c)}c={1,2,...,150} against vary-
ing shots. Similarly, subfigure 3c represents the mean
cumulative accuracy curve for linear order ({0, 1}∗, <
). The color scheme of the subfigures 3a-3c depicts
the behavior corresponding to the models Gemma2,
Lamma3, Mathstral, Qwen2-math, and Phi3.

of k-shot, c-complex prompts, k, c ≤ 150. Figure
3a and 3b depict the performance of the language
models on poset (N, <). Irrespective of the size
of language models, the majority of them (except
Qwen) failed to learn the pattern successfully.

Figure 3a indicates that maintaining a fixed
knowledge representation, on average, does not
impact ICL capabilities as complexity increases,
and it remains unchanged over sufficiently com-
plex regions for models – Gemma2, Llama3 and
Mathstral, though Qwen2-math has shown a non-
trivial performance increase. Similarly, Figure 3b
demonstrates that increasing knowledge has no ob-
servable effect on learning performance. In fact,
we see either stagnant behavior (after 115 in case
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of Llama3 and Mathstral) or a mildly decaying
accuracy (in case of Gemma2 and Qwen2-math).

We performed similar experiments on its bi-
nary variant. The motivation behind reducing the
alphabet from {0, 1, . . . , 9} to {0, 1} is to vali-
date observation 1. By using length-dependent
lexicography, achieved by converting integers
to their binary equivalents, we observed certain
key characteristics while analyzing the sequence
{L(Pk,c)}c={1,2,...,150} against varying shots, as
shown in Figure 3c. Although both Llama3 and
Mathstral reach saturation despite having a poor
performance compared to (N, <) , both Gemma2
and Qwen2-math demonstrate a prominent de-
cline in mean cumulative accuracy, which appeared
milder in the case of (N, <). However, a sharp per-
formance gap across models for tasks (N, <) and
({0, 1}∗, <) (Fig. 3b, 3c) underscores their failure
to generalize lexicography. The trivial performance
of Phi3 confirms its incapability of processing min-
imal prompts for linear orders when we maintain
an identical experimental setup for each model.

4.2 Division
In contrast to linear order, the poset (N, |) repre-
sents a more general class of partial order in the
sense that the Hasse diagram of (N, |) is a gen-
eral directed acyclic graph having source vertex 1
and integers n =

∏
pqii , where pi are primes and

qi > 0, as nodes such that any n has edges from
n/pi. In our experiment, as we progressed to 150-
shot 150-complex prompts, the ICL is expected to
construct incrementally a Hasse diagram of height
at most 1 + ⌊log2 300⌋.

Considering |Pk,c[T
′]| = 30, except some

pathological cases, Figure 4a and 4b analo-
gously describe the mean cumulative accuracy
plot for the sequence {L(Pk,c)}k={1,2,...,150}
against varying complexities and for the sequence
{L(Pk,c)}c={1,2,...,150} against varying shots, re-
spectively. The former describes when the knowl-
edge remains constant on average, increasing com-
plexity has no observable effect on ICL for Llama3,
Mathstral, Qwen2-math and Phi3. However,
Gemma2 demonstrates a declining learning trend
under the same conditions. Interestingly, as knowl-
edge accumulation increases, as illustrated in Fig-
ure 4b, ICL yields a notable performance enhance-
ment in the Llama3, Mathstral and Phi3 models,
though only within a limited region. The saturation
in learning can be observed in both Mathstral and
Gemma2. The abrupt descent in performance for
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Figure 4: Subfigure 4a depicts the mean cumulative
accuracy plot for the sequence {L(Pk,c)}k={1,2,...,150}
against varying complexities. Subfigure 4b, similarly,
describes the same metric for {L(Pk,c)}c={1,2,...,150}
against varying shots. Similar to Figure 3, the color
scheme depicts the behavior corresponding to the mod-
els Gemma2, Lamma3, Mathstral, Qwen2-math,
and Phi3.

Phi3 is due to its inability to encode context with a
window of size 4096, which we keep identical for
evaluation across all the open-source models.
On fine-tuning. For both the posets, performance
on fine-tuning have been presented in Figure 8 (in
Appendix A). We found that while all three models
eventually attain saturation, RoBERTa adapts more
efficently than BERT and XL-Net.

4.3 Performance on GPT Family

We have extended our experiments towards verify-
ing the saturating nature of the evaluation metric
by employing LLM such as GPT-3.5-Turbo hav-
ing context-window 16,385. Instead of performing
on the whole dataset, we have constrained the ex-
periments to 75-shot 75-complex prompts. Figure
5a shows that after initial fluctuations (c ≤ 30),
performance with prompts from ({0, 1}∗, <) stabi-
lizes and variation decreases as plot width narrows.
A similar trend has also been observed in (N, |),
except the fact that there is no observable fluctua-
tion even in the beginning. However, for the task
(N, <), the model excelled irrespective of the com-
plexity. The abrupt decrease in performance for
some initial points resembles ({0, 1}∗, <). Now

904



(a)

0 10 20 30 40 50 60 70

Complexity (c)

0.2

0.4

0.6

0.8

1.0

M
ea

n
C

u
m

u
la

ti
ve

A
cc

u
ra

cy

(b)

0 10 20 30 40 50 60 70

Shots (k)

0.2

0.4

0.6

0.8

1.0

M
ea

n
C

u
m

u
la

ti
ve

A
cc

u
ra

cy

(c)

0 10 20 30 40 50 60 70

Complexity (c)

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
C

u
m

u
la

ti
ve

A
cc

u
ra

cy

(d)

0 10 20 30 40 50 60 70

Shots (k)

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
C

u
m

u
la

ti
ve

A
cc

u
ra

cy

Figure 5: Subfigure 5a and 5c plots the mean cumula-
tive accuracy (on GPT-3.5-Turbo and GPT-4.o-mini
respectively) for the sequence {L(Pk,c)}k={1,2,...,75}
against varying complexities for posets less than
((N, <), ({0, 1}∗, <)) and divides ((N, |). Subfigure
5b and 5d similarly describes the same metric for
{L(Pk,c)}c={1,2,...,75} against varying shots. The color
scheme of the above subfigures corresponds to the be-
havior for posets (N, <), ({0, 1}∗, <), and (N, |).

keeping the complexity constant on average and in-
creasing the knowledge, for task ({0, 1}∗, <) (sub-
figure 5b), a slightly better performance can be
observed compared to subfigure 5a, but it deterio-
rates, however, with decreasing slope. Interestingly,
the behavior in (N, |) shows a sharp increase till

k ≤ 40 and stabilizes afterward. Even though
(N, <) has performed significantly well from the
beginning, its performance did not improve with
increasing knowledge. Because we have conducted
our experiment on a compressed dataset, we antici-
pate a gradual saturation with increasing examples.

GPT4.o-mini with context window of 128k to-
kens presents an interesting behavior when we con-
sider the experiment on poset (N, |). Figure 5c
shows mean cumulative accuracy decreases rapidly
with increasing complexity till c = 45 and its de-
scent becomes gradual afterwards – showing its in-
competence to generalize the representation of arbi-
trary DAGs. In contrast, Figure 5d exhibits a slight
increase in performance with increasing knowledge.
Even though a perfect saturation could not be ob-
served with compressed data {Pk,c}k,c={1,2,...,75},
the subfigures exhibit diminishing descent or gains
respectively. On poset ({0, 1}∗, <), the perfor-
mance with increasing knowledge (Fig. 5d) has
plateaued after an initial decline.

For both the GPT models, significant disagree-
ment between the performance of ({0, 1}∗, <) and
(N, <) (in Fig. 5) highlights capturing length-
dependent lexicography is far-fetched for such
models despite their promising performance on
somewhat manageable tasks (N, <).

5 Theoretical Insights

Building on the perspective by Dai et al. (2023),
we frame ICL as a process where pre-trained lan-
guage models act as meta-optimizers: they gener-
ate meta-gradients through forward computation
over demonstrations and apply these updates via
attention mechanisms, effectively simulating pa-
rameter tuning without explicit backpropagation.
Consider a pre-trained model M with embedding
dimension d, where the attention operation over
k demonstration tokens {x′i}ki=1 and their embed-
dings {x′

i ∈ Rd} approximates gradient updates
to a base parameter matrix WZSL. Following Dai
et al., the attention output for a query q can be
decomposed into two components:

F̃ICL(q) = WZSLq+
k∑

i=1

(
WV x

′
i ⊗WKx′

i

)
q

︸ ︷︷ ︸
∆WICLq

,

where WV ,WK are value and key projection matri-
ces. Here, ∆WICL represents the cumulative meta-
gradient updates derived from demonstrations. Cru-
cially, each term (WV x

′
i)⊗ (WKx′

i) constitutes a
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Figure 6: ICL regression performance vs. number of
demonstrations k. Error bars show standard deviation
across 5 seeds. Vertical dashed line at k = d = 16
marks the saturation threshold. Further plots have been
provided in Fig. 9 with d ∈ {4, 32, 40}.

rank-1 matrix, and the rank of ∆WICL is inherently
bounded by the number of linearly independent
demonstration embeddings. (For more, see Ap-
pendix B).
Bounded Representational Capacity of ICL:
This meta-optimization framework exposes fun-
damental constraints on ICL’s ability to encode
relational structures. As demonstrations increase,
the rank of ∆WICL grows linearly until k exceeds d,
after which additional demonstrations fail to enrich
the model’s representational capacity. Formally:

Theorem 1. For a pre-trained language model
M with parameter θ and a demonstration context
C = {(x′i, y′i)}ki=1 of k-shot examples. The up-
date matrix ∆WICL in the attention mechanism
of ICL (as presented above) has a rank bounded
by min (k, d) where d is the embedding dimension.
For k > d, additional demonstrations do not con-
tribute new information, leading to saturation in
the representational capacity of ICL.

Proof Outline: Each demonstration contributes
a rank-1 update (WV x

′
i) ⊗ (WKx′

i). For k ≤ d,
these updates are linearly independent if embed-
dings {x′

i} span Rd. For k > d, embeddings oc-
cupy a d-dimensional subspace, forcing subsequent
updates to lie in the span of prior terms. Conse-
quently, ∆WICL cannot exceed rank d, limiting
ICL’s capacity to assimilate new information. (See
proof and discussion in Appendix B.1).

To empirically validate Theorem 1, we adapt
the regression-based ICL formulation introduced
by Guo et al. (2024) and construct a synthetic in-
context regression task using a transformer trained
on linear functions. The model receives k demon-
stration pairs (xi, yi) sampled from a fixed linear
function, followed by a query input xq. As shown

in Figure 6, performance improves with increas-
ing k but saturates beyond the embedding dimen-
sion d = 16, confirming our theoretical result that
the rank of ∆WICL is upper-bounded by min(k, d).
Full experimental details and results are deferred
to Appendix B.2.

We next also provide a geometric counterpart to
the theorem using the concept of task vectors.

6 Task Vector Geometry in Poset ICL

To better understand how LLMs represent rela-
tional tasks under ICL, we adopt the framework
of task vectors introduced by Hendel et al. (2023),
which characterizes ICL as a two-step process:
compressing a prompt into a fixed-size task vec-
tor θ, and applying a query-conditioned function
f(x; θ) to generate predictions.

Formally, given a k-shot, c-complex prompt
Pk,c, we first adapt it to P̃k,c such that P̃k,c does
not contain the instruction I (Fig. 2) explicitly.
In turn, the minimal set of demonstrations has
now been labeled. We define the task vector
θ(P̃k,c) ∈ Rd as the hidden representation of a
sentinel token (e.g., “→”) at a fixed transformer
layer ℓ: θ(P̃k,c) := Encℓ(P̃k,c)[t→], where Encℓ(·)
denotes the model’s (e.g. Llama3) embedding at
layer ℓ, and t→ is the index of the delimiter token
(See Appendix C for detail).

We conduct geometric analysis of task vec-
tors under two settings: (i) Varying demonstra-
tions with fixed complexity: For each k ∈
{10, 20, 25, . . . , 100}, we construct 10 prompts
using the same demonstration set and 10 dis-
tinct queries, producing 10 task vectors per
case. These are projected via t-SNE and plot-
ted for each task—DIV ((N, |)), LO ((N, <)), and
LOBIN (({0, 1}∗, <))—using the format Task_k
(e.g., LO_50). (ii) Varying complexity with fixed
demonstrations: For each complexity level c ∈
{10, 30, 50, 70, 90}, we fix k = 10 and generate
10 prompts by combining the same demonstrations
with queries of the specified complexity. These
are similarly projected via t-SNE, and labeled as
Task_10_c (e.g., DIV_10_30), indicating the task,
fixed demonstrations, and complexity level. In both
settings, low-shot or low-complexity cases are high-
lighted using circles.

As shown in Figure 7a-7c, all three tasks exhibit
a characteristic pattern of geometric convergence.
In the low-shot regime (k ≤ 30, circled), task vec-
tor clusters are relatively well-separated, indicating
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Figure 7: t-SNE projections of task vectors for each task:
DIV, LO, LOBIN. (Subfigures 7a–7c): fixed complexity,
varying shots k ∈ [10, 100]. (Subfigures 7d–7f): fixed
k = 10, varying complexity c ∈ [10, 90]. Circled clus-
ters denote lower-shot or lower-complexity conditions.
Overlap at higher values reflects latent representational
saturation. (Best viewed in 300% zoom.)

distinct representations when contextual support is
limited. However, as k increases, the correspond-
ing clusters begin to collapse and increasingly over-
lap with those from lower-shot settings. This drift
toward a shared latent region suggests diminishing
representational changes as the number of demon-
strations grows, consistent with saturation effects.
Task-specific behaviors are also evident. For the
DIV task, which involves a non-trivial DAG struc-
ture, the representations gradually merge into a
contiguous manifold beyond k = 60. In contrast,
the LO task shows early overlap from k = 40 on-
ward, reflecting the simpler, transitive nature of
total orders. The LOBIN task exhibits delayed con-
vergence, with binary encodings preserving more
structural variation at higher k values.

The overlap of task vector clusters in t-SNE
space visually substantiates Theorem 1 that ICL’s
meta-gradient updates saturate beyond the embed-
ding dimension d.

Figures 7d, 7e and 7f show similar patterns when
varying complexity. Across all tasks we observe
that task vectors from lower-complexity prompts

(c = 10, 30) tend to form distinct clusters. How-
ever, as complexity increases, the representations
become progressively less distinguishable and be-
gin to overlap with those of lower complexity. This
convergence suggests that higher complexity levels
do not always induce richer or structurally unique
task encodings within the model’s latent space.
Task-specific behaviors again emerge. For the DIV
task, which involves arbitrary DAGs, the latent rep-
resentations at higher complexities (c ≥ 70) col-
lapse noticeably, indicating a possible limit in the
model’s ability to understand and represent com-
plex relationships that involve multiple reasoning
steps. The LO task saturates earlier, with conver-
gence emerging from c = 50, likely due to limited
structural variation in total orders, whereas LOBIN
maintains moderate separation, reflecting the richer
combinatorics of binary encodings. We defer this
study on Pythia-2.8B (Biderman et al., 2023) and
Llama3 (along with incorporating instruction I to
P̃k,c) in Appendix C.4.

7 Conclusion and Future Directions

We presented the first study of ICL in LLMs
for posets, addressing a key gap in their reason-
ing beyond functions. Our research introduced
a novel evaluation framework using k-shot c-
complex prompts to assess how LLMs infer hierar-
chical structures, such as the less than (N, <) and
divisibility (N, |) posets, which are fundamental
in mathematics and real-world applications (e.g.,
genealogical trees, set inclusion). These posets
were chosen for their distinct properties—path vs
arbitrary DAG structures—providing a rigorous
testbed for evaluating transitive and anti-symmetric
reasoning. The exclusion of exponential-growth
posets like (2S ,⊆) was necessitated by computa-
tional constraints, but the methodology remains ex-
tensible to such cases. Our study reveals fundamen-
tal limitations of ICL for poset reasoning: while
LLMs learn basic linear orders (e.g., (N, <) from
few-shot examples, performance plateaus with in-
creasing complexity. For DAG-structured posets
like (N, |), ICL shows greater limitations, failing
to generalize beyond initial demonstrations. Even
large-context models (e.g., GPT-4) struggle with
lexicographic orders ({0, 1}∗, <), exposing ICL’s
inherent constraints in learning hierarchical rela-
tions without parameter updates. Theoretical anal-
ysis tied this limitation to the bounded rank of
meta-gradient updates, highlighting a fundamen-
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tal constraint on ICL’s representational capacity.
Task vector geometry further confirmed this sat-
uration, showing collapsed latent representations
for high-complexity prompts. Future work should
explore hybrid models that combine neural and for-
mal reasoning. By bridging theoretical foundations
with empirical rigor, this study advances the dis-
course on LLM’s limitations and opportunities in
relational learning.

8 Limitation

Our research explores ICL on various language
models for partially ordered relations. However,
it is essential to acknowledge certain limitations.
We have utilized the quantized version (Q4_0) of
these models due to limitations in computational
resources. This research could also delve into an
investigation of performance on simpler architec-
tures like vanilla Transformer or LSTM networks,
as emphasized by (Bhattamishra et al., 2024) which
may provide insights and verification towards our
claim from a more foundational level.

While this research indicates that existing mathe-
matical models for scattered linear orders (Bruyère
and Carton, 2007; Bruyère et al., 2009) are not
directly implementable via ICL, further analysis
could yield insights into ICL’s computational capa-
bilities.

Readers might be concerned about our exper-
iments using GPT to compress the evaluation
dataset to one-fourth of its original size. How-
ever, our empirical framework for assessing ICL
demonstrates justifiable analogous behavior in per-
formance, similar to what is observed in local
LLMs, even within this constrained scenario with
limited data, a measure towards saving expenses in
the subscription-based GPT models.
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Appendix

A Results on Fine-tuning and Illustrative
Prompts

Large (neural) language models can generally be
classified into two categories: those with encoder-
only architectures and those with decoder-only ar-
chitectures. Due to the ability to produce self-
attentive encoded representations, the former is
widely adopted for language classification tasks. In
contrast, the latter, being auto-regressive in nature,
is primarily used for language generation. The task
description, given by D, in Figure 2 may drive
us to analyze ICL on encoder-only LLMs and do
fine-tuning for the other category. However, fol-
lowing the opposite approach does not result much
improvements, which can be implied from the plots
of finetuned LLMs as presented in Figure 8.

In the fine-tuning experiments, because of sig-
nificant training time, we have performed simi-
lar experiments by keeping the complexity con-
stant concerning the provided knowledge. Con-

909

https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/2023.findings-acl.247
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=6S4WQD1LZR
https://openreview.net/forum?id=6S4WQD1LZR
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://doi.org/10.1006/jcss.1995.1003
https://doi.org/10.1006/jcss.1995.1003
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=ikwEDva1JZ
https://openreview.net/forum?id=ikwEDva1JZ
https://openreview.net/forum?id=ikwEDva1JZ
https://openreview.net/forum?id=ikwEDva1JZ
https://doi.org/10.18653/v1/2023.findings-emnlp.624
http://www.jstor.org/stable/2235668
http://www.jstor.org/stable/2235668
https://mistral.ai/news/mathstral/
https://openreview.net/forum?id=AS8SPTyBgw
https://openreview.net/forum?id=AS8SPTyBgw
https://api.semanticscholar.org/CorpusID:270843326
https://api.semanticscholar.org/CorpusID:270843326
https://proceedings.mlr.press/v162/velickovic22a.html
https://api.semanticscholar.org/CorpusID:267069207
https://api.semanticscholar.org/CorpusID:267069207
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://www.ams.org/journals/bull/1935-41-10/S0002-9904-1935-06166-X/
https://www.ams.org/journals/bull/1935-41-10/S0002-9904-1935-06166-X/


(a)

0 200 400 600 800 1000

Shots (k)

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
C

u
m

u
la

ti
ve

A
cc

u
ra

cy

bert

roberta

xlnet

(b)

0 200 400 600 800 1000

Shots (k)

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
C

u
m

u
la

ti
ve

A
cc

u
ra

cy

bert

roberta

xlnet

Figure 8: Subfigure 8a represents the mean cumulative
accuracy plot while fine-tuned for linear order (N, <).
And 8b represents the same metric for the partial order
(N, |).

sider a sequence of k-shot k-complex prompts
{Pk,k}k={10,15,...,1000}. The fine-tuning involves
producing the examples of the prompt Pk,k as
training samples, alike a binary classification prob-
lem, while inference was based on the range
({1, 2, 3, . . . , 2k}, <). Figure 8a shows a behav-
ior similar to the earlier experiment (Fig. 3) for all
the encoder-based models. The plots with faded
lines show the behavior of test cases drawn from
the training range but not included in training sam-
ples. An observable saturation can be noted for
the models BERT and XLNet after k = 600, while
RoBERTa shows a decaying performance which
becomes milder as k increases beyond 800.
As we continue for the poset (N, |) under a sim-
ilar setup, Figure 8b, presents mean cumulative
accuracy (y-axis) over training range (x-axis). The
plot for BERT, RoBERTa, and XLNet, with solid
lines (and faded lines) represents average train-
ing performance (and variations on test cases).
RoBERTa consistently outperforms BERT and XL-
Net throughout training, stabilizing around the
training range 400, while BERT and XLNet display
similar trends, with XLNet achieving lower accu-
racy overall. This pattern suggests that RoBERTa
adapts more efficiently during fine-tuning, although

all three models eventually reach a performance
plateau where further fine-tuning yields minimal
improvement. Despite initial benefits of fine-
tuning, performance saturation indicates, these
models fully exploit contextual knowledge avail-
able in training data early on.

Table 1 specifies the open-sourced language
models that we have used during our ICL experi-
ment, which are available in ollama library. The
experiment is expensive in terms of both resources
and computation time. The experiment has been
conducted on NVIDIA GeForce RTX 3090 series.
We use BERT and RoBERTa as key encoder-based
models for NLP, leveraging bidirectional context,
unlike autoregressive LLMs. This makes them
well-suited for fine-tuning in binary classification
tasks like ours. For completeness, we also fine-tune
XLNet, which captures bidirectional context using
an autoregressive approach. Fine-tuning is con-
ducted for up to 100 epochs with Early Stopping.
See table 1 for details.

Analogous to the Hasse diagram provided in
Figure 1, the below block illustrates a 4-shot 2-
complex prompt P4,2 on (N, |). Please note, even
though we considered the cardinality of Pk,c[T

′]
are 50 and 30 for (N, <) and (N, |) respectively in
Section 4, for trivial cases where it was not possible
to sample the required number of test cases, we
generated as many distinct cases as feasible.

Example Prompt 1

Relation Description: There is a relation
divides ‘|’ between integers composed of
digits "0", "1", "2", "3", "4", "5", "6",
"7", "8" and "9".
Given such integers x, y, and z, the relation
has the following properties:
(a) if x|y is true, then y|x is false,
(b) if both x|y and y|z are true, then x|z is
true, and
(c) x|x is always true, for any x.

Examples: "1 | 1", "1 | 2", "2 | 2", "1 | 3",
"3 | 3", "2 | 4", "4 | 4"

Task Description: Given the above information,
determine if {integer 1} | {integer 2} is
true.
If it is true, your answer must be "{integer
1} | {integer 2}: true".
If it is false, your answer must be "{integer
1} | {integer 2}: false".
If you do not know if it is true or false, you
answer must be "{integer 1} | {integer 2} :
unknown".
Follow the specified format for answering:
1 | 5
2 | 6
5 | 6 . . .
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Models Parameters Avg. Inference Time Avg. Fine-tune Time
Gemma2 (Riviere et al., 2024) 9.24B 9.87-13.03 sec ×
Lamma3 (Grattafiori et al., 2024) 8.03B 5.32-7.9 sec ×
Mathstral (Mixtral, 2024) 7.25B 4.98-15.23 sec ×
Qwen2-math (Yang et al., 2024) 7.62B 3.08-30.88 sec ×
Phi3 (Abdin et al., 2024) 14B 1.08-7.05 sec ×
GPT3.5 Turbo × 3.32-5.80 sec ×
GPT4.o Mini × 5.45-10.14 sec ×
BERT (Devlin et al., 2019) 110M × 8.28 - 9.37 min
RoBERTa (Liu, 2019) 125M × 10.42 - 13.01 min
XLNet (Yang et al., 2019) 110M × 7.36 - 8.43 min

Table 1: Model specifications and inference/fine-tuning times are presented in this table. The reported time represents
the average duration required to process a single prompt, either for in-context learning (ICL) or fine-tuning using
examples from a single prompt for respective models.

Response by Gemma2:
"1 | 5 : true
2 | 6 : true
5 | 6 : true . . . "

Similarly, below are some more demonstrative
prompts for the linear order of P26,101 in the (N, <)
and P33,84 in the ({0, 1}∗, <).

Example Prompt 2

Relation Description: There is a relation
less than "<" between strings made of decimal
digits "0", "1", "2", "3", "4","5", "6", "7",
"8" and "9".
Given such integers x, y, and z, the relation
has the following properties:
(a) if x<y is true, then y<x is false,
(b) if both x<y and y<z are true, then x<z is
true, and
(c) x<x is always false, for any x.

Examples: "0 < 1", "1 < 2", "2 < 3", . . . ,
"24 < 25", "25 < 26"

Task Description: Given the above information,
determine if {integer 1} < {integer 2} is
true.
If it is true, your answer must be "{integer
1} < {integer 2}: true".
If it is false, your answer must be "{integer
1} < {integer 2}: false".
If you do not know if it is true or false, you
answer must be "{integer 1} < {integer 2} :
unknown".
Follow the specified format for answering:
121 < 16
22 < 85
73 < 15
122 < 18 . . .

Response by Llama3:
"121 < 16 : true
22 < 85 : true
73 < 15 : false
122 < 18 : false . . . "

Response by Phi3:
"The numbers that are less than the first
number but greater than or equal to it is
called ’lesser’. So, if x=2 and y = 3, then
the range of x4 − 7x3 + 19x2 + 60 is [2x− 5, 8]

because when you substitute in x = −5 ,you
get:

p(x) = a(x−5)4−7a(x+5)−19a(x+5)+60. If we
compare this with the given inequality, then
we have a(x−5)4−7a(x+5)−19a(x+5)+60 < 20.
Since (x− 5)4 is always positive and greater
than or equal to zero for any x, when it’s
raised to the power of four, it will be a
very large number if x is negative.
Hence, we have:
7(a)(x3 − 19ax2 + 60) < 20"

Example Prompt 3

Relation Description: There is a relation
less than "<" between binary strings made of
characters "0" and "1".
Given such strings x, y, and z, the relation
has the following properties:
(a) if x<y is true, then y<x is false,
(b) if both x<y and y<z are true, then x<z is
true, and
(c) x<x is always false, for any x.

Examples: "0 < 1", "1 < 10", "10 < 11", . . . ,
"11111<100000", "100000<100001"

Task Description: Given the above information,
determine if {string 1} < {string 2} is true.
If it is true, your answer must be "{string
1} < {string 2}: true".
If it is false, your answer must be "{string
1} < {string 2}: false".
If you do not know if it is true or false,
you answer must be "{string 1} < {string 2}
: unknown".
Follow the specified format for answering:
"1010001 < 111111"
"100010 < 1000011"
"1001011 < 110010" . . .

Response by Qwen2-math:
"1010001 < 111111: false
100010 < 1000011: false
1001011 < 110010: false . . . "

B ICL as Meta-Optimizer

Let W,∆W ∈ Rdout×din denotes the parameter
weights and update matrix of a vanilla feed-forward
linear network. On receiving an input representa-
tion x ∈ Rdin a single step of gradient descent can
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be expressed as

F(x) = (W +∆W )x.

Expanding ∆W can be unfolded using
∑

i ei ⊗ x′
i

where ei is the negative of the gradient multiplied
by an learning rate and x′

i be the prior input rep-
resentation. This allows us to rewrite F(x) =

Wx +
∑

i(ei ⊗ x′
i)x = Wx +

∑
i ei

(
x′
i
⊤x

)
=

LinAttn(E,X ′,q), where LinAttn(V,K,q) de-
notes linear attention.
To facilitate a clear qualitative analysis of ICL, soft-
max attention is often approximated with linear at-
tention. This relaxation has been instrumental in
prior work investigating the representational capa-
bilities of ICL. During the course of this discus-
sion, we will follow the assessment provided by
Dai et al.. Given WQ,WK and WV ∈ Rd×d, being
the projection matrices for computing the (atten-
tion) queries, keys, and values, respectively, where
d denotes the embedding dimension; let X denotes
the input representations of query tokens occurring
prior to the current query token t. Suppose that the
token t has input representation x and been rep-
resented by the query vector q = WQx. Let X ′

denotes the input representations of the example to-
kens in a ICL prompt, then avoiding the dimension
scaling a softmax attention can be expressed as

FICL(q) = WV [X
′;X] softmax

(
WK [X ′;X]⊤q

)
.

Replacing the softmax attention with a linear atten-
tion gives rise to

FICL(q) ≈ WV [X
′;X]

(
WK [X ′;X]⊤q

)

= WV X(WKX)⊤q+WV X
′(WKX ′)⊤q

= WZSLq+ LinAttn(WKX ′,WV X
′,q)

=
∼
FICL(q)

where, WZSLq = WV X(WKX)⊤q. This formu-

lation helps to rewrite
∼
FICL(q) as follows, repre-

senting attention to example tokens is equivalent to
parameter update an amount of ∆WICL affecting
WZSL:
∼
FICL(q) = WZSLq+ LinAttn(WKX ′,WV X

′,q)

= WZSLq+
∑

i

(
(WV x

′
i)⊗ (WKx′

i)
)
q

= WZSLq+∆WICLq.

Based on this observation, we present the proof of
Theorem 1 below.

B.1 Proof of Theorem 1
Proof. ICL computes the update matrix ∆WICL in
the attention mechanism as:

∆WICL =
k∑

i=1

(WV x
′
i)⊗ (WKx′

i)
⊤, (1)

where, WV ∈ Rd‘×d is the value projection matrix,
WK ∈ Rd‘×d is the key projection matrix, x′

i ∈ Rd

represents the embedding of the i-th demonstration
token.

The term (WV x
′
i)⊗ (WKx′

i)
⊤ is an outer prod-

uct, which contributes a rank-1 matrix to ∆WICL.
Thus, the rank of ∆WICL is at most the number of
linearly independent embeddings x′

i. Formally, the
rank is bounded as:

rank(∆WICL) ≤ min(k, d). (2)

The proof has been appended below.
For k ≤ d, each demonstration contributes a

unique, linearly independent term, and the rank of
∆WICL increases linearly with k. However, for k >
d, the token embeddings x′

i lie in a d-dimensional
space, and any additional embedding x′

j can be
expressed as a linear combination of the first d
embeddings:

x′
j =

d∑

i=1

αix
′
i, for j > d.

Substituting this into (WV x
′
j) ⊗ (WKx′

j)
⊤, we

observe that the corresponding matrix lies in the
span of the previous d terms:

(WV x
′
j)⊗ (WKx′

j)
T ∈ span{(WV x

′
i)⊗ (WKx′

i)
⊤ | i ≤ d}.

Thus, for k > d, the rank of ∆WICL saturates at
d, and the representation of the context does not
improve with additional tokens.

Alternatively, one can also illustrate the satura-
tion as: Let k = d+r, where r > 0. The additional
terms x′

d+1,x
′
d+2, . . . ,x

′
d+r contribute the follow-

ing:

∆WICL =
d∑

i=1

(WV x
′
i)⊗ (WKx′

i)
⊤

+
d+r∑

j=d+1

(WV x
′
j)⊗ (WKx′

j)
⊤.

However, since rank(∆WICL) ≤ d, the second
summation does not increase the rank of ∆WICL
and introduces redundancy.
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Figure 9: Analogous to Fig. 6, this one plots ICL regression performance vs. number of demonstrations k across
varying embedding dimension d ∈ {4, 32, 40} (L-R). Error bars show standard deviation across five different seeds.
Except for the trivial case when d = 4, vertical dashed lines at k = d mark the saturation thresholds.

Proof of Inequation 2: Assuming X = {x′
i}ki=1

equation 1 can be written as ∆WICL =
(WV X)(WKX)⊤. Then,

rank(∆WICL) ≤ min(rank(WV X), rank((WKX)⊤))

≤ min(min(rank(WV ), rank(X),

min(rank(W⊤
K ), rank(X⊤)))

= min(k, d, d′)

= min(k, d) (in practice, d = d′)

□
Remark 1.1. This theorem aligns with our empir-
ical observations of performance saturation. As
complexity increases (e.g., longer chains in Hasse
diagrams), the model’s ability to infer transitive
or antisymmetric relations depends on its capac-
ity to encode linearly independent updates. Once
k surpasses d, redundant demonstrations fail to
enhance reasoning—a phenomenon exacerbated
in complex posets like (N, |), where dependencies
form branching structures. This bottleneck under-
scores a fundamental limitation of ICL.

B.2 Synthetic ICL Regression Experiment
Motivation. Inspired by the setup in Guo et al.
(2024) and aligned with our theoretical framework,
we implement a synthetic in-context learning (ICL)
experiment for regression to directly observe the
saturation behavior predicted by Theorem 1. This
task provides a controlled, transparent environment
to examine how the transformer’s representational
capacity evolves with increasing demonstrations.

Problem Setup. The task is a linear regression
problem of the form:

y = ⟨w,x⟩+ ϵ,

where x ∈ Rd, w ∼ N(0, I), ϵ ∼ N(0, σ2). We
fix a weight vector w ∈ R16 and generate batches

of (k + 1) samples per task. Each task consists
of k in-context demonstration pairs (xi, yi) and a
query point (xq, yq). The final point is treated as
the prediction target.

Model Architecture. We use a transformer en-
coder architecture with: (i) Input: Concatenated
(x, y) tokens of dimension d+ 1. (ii) transformer
layers, 4 attention heads, hidden size of 64. (iii)
The final token corresponds to the query, and its
hidden state is projected via a linear layer to output
the prediction ŷ.

Training. The model is trained using MSE loss
and Adam optimizer. We use a learning rate of
1e-3 and StepLR scheduler with decay at 500 steps
(factor 0.5). We train for 10,000 steps with a batch
size of 128. Input noise is set to σ = 0.05 to mimic
realistic data variance.

Evaluation Protocol. After training, we fix the
model and test its generalization across k ∈
{1, 2, . . . , 32}. For each k, we run 2000 trials
and average the test MSE. This process is repeated
across 5 random seeds to compute the mean and
standard deviation.

An interactive python notebook containing the
complete training and evaluation code is available
inside the same repository.

Results. Figure 6 shows that model performance
(measured in test MSE) improves sharply as k in-
creases up to d = 16, but saturates thereafter. This
empirically confirms the rank constraint in Theo-
rem 1, where the cumulative meta-update matrix
∆WICL has rank at most min(k, d). Beyond k = d,
the transformer receives no representational gain,
and additional examples yield diminishing returns.
More experimental evidence has been provided in
Figure 9.
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Figure 10: t-SNE projections of task vectors from Pythia-2.8B under increasing number of demonstrations
(k ∈ [10, 100]) with fixed complexity. Subfigures 10a-10c correspond to LO, DIV, and LOBIN, respectively. Low-shot
clusters are well-separated, with convergence and overlap appearing as k increases, reflecting latent saturation.

Comparison to Related Work. Our setup draws
inspiration from Guo et al. (2024), who demon-
strate that transformers can perform ridge regres-
sion on representations via in-context updates.
However, our experiment isolates this behavior in
a minimal setting—where no representation func-
tion is required—allowing us to directly test the
effect of linear independence among demonstra-
tions and its alignment with theoretical limits on
attention-based updates.

C Task Vector Analysis for ICL on Posets

C.1 Formal Setup and Definition

Let P̃k,c denote a prompt composed of:

• k minimal demonstrations of format (xi ⪯
yi) → True, if xi ⪯ yi or (xi ⪯ yi) →
False, if yi ⪯ xi,

• a query point of format xk+1 ⪯ yk+1 such
that the query satisfies the c-complexity con-
straint: (xk+1, yk+1) /∈ Hasse(P̃k), and either
xk+1 or yk+1 ∈ {k + 1, . . . , k + c}.

We define the task vector associated with prompt
P̃k,c as:

θ(P̃k,c) := Encℓ(P̃k,c)[t→] ∈ Rd,

where Encℓ(·) is the embedding of the delimiter
token at layer ℓ of the transformer. This vector
is interpreted as the compressed representation of
the relational structure implied by the prompt, con-
sistent with the hypothesis class view f(x; θ) of
ICL.

C.2 Experimental Design
We consider three task types:

T ∈ {(N, <), ({0, 1}∗, <), (N, |)} ,

and let DT defines the collection of prompts for
each T. We evaluate the evolution of task vectors
along two axes:

1. Varying Demonstrations k (Fixed c): We fix
complexity c and compute

Θvar-k
T,c =

{
θ(P̃

(i)
k,c)

}N

i=1
, where P̃

(i)
k,c ∼ DT.

2. Varying Complexity c (Fixed k): We fix k
and compute

Θvar-c
T,k =

{
θ(P̃

(j)
k,c )

}M

j=1
, where P̃

(j)
k,c ∼ DT.

C.3 t-SNE Visualization and Analysis
To visualize the geometry of task vectors, we
project Θ ⊂ Rd → R2 using t-SNE (cosine dis-
tance, perplexity 10). Separate plots are generated
for:

i. Each task T,
ii. Each variation type (demonstration or com-

plexity),

Each plot is annotated with the corresponding k or
c value. We analyze:

i Whether increasing k or c induces representa-
tional drift or collapse,

ii. Whether saturation occurs, consistent with the-
oretical rank bounds (Theorem 1).
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C.3.1 Connection to Meta-Optimization
Limits

The representational capacity of ICL under the
attention-as-optimization hypothesis using Theo-
rem 1 is constrained by the following:

rank(∆WICL) ≤ min(k, d),

where d is the embedding dimension and x′i are the
embeddings of the demonstration tokens. Hence,
for k > d, additional demonstrations yield no rep-
resentational gain.

This explains empirical saturation: if task vec-
tors θ(P̃k,c) collapse to a low-rank subspace for
k > d or for large c, then performance plateau and
geometric flattening in t-SNE should co-occur.

C.4 Supplemental Experimental Results on
Task Vectors

We have followed Hendel et al.’s way for finding
the layer with maximum accuracy within a prede-
fined range to plot the t-SNE of the task vectors.
Along the line, the 2D t-SNE plots have been ini-
tialized with 41 random states. All the experiments
have been conducted on a 48 GB NVIDIA RTX
A6000 GPU.

C.4.1 Task Vector Geometry under varying
Demonstrations with Pythia-2.8B

To test the generality of latent representation trends
across model families, we extend our analysis to
the Pythia-2.8B model—part of an open suite of
decoder-only architectures designed for transparent
scaling and training behavior. Following the setup
above we fix the complexity and vary the number of
in-context demonstrations k ∈ {10, 20, . . . , 100}
across three tasks: DIV ((N, |)), LO ((N, <)), and
LOBIN (({0, 1}∗, <)). For each k, we generate ten
prompts using the same demonstrations with vary-
ing queries, extract task vectors from a fixed trans-
former layer, and visualize them using t-SNE.

As shown in Figure 10, Pythia exhibits represen-
tational trends broadly consistent with our Llama3
findings (Fig. 7). In the low-shot regime (k ≤ 30),
clusters are well-separated, indicating distinct task
representations. As k increases, task vector clusters
progressively collapse, converging toward shared
latent regions indicative of representational satura-
tion. This pattern confirms the broader validity of
the saturation phenomenon under ICL.

Notably, Pythia-2.8B shows a relatively slower
convergence in task vector geometry compared to

Llama3, particularly for DIV and LOBIN. This may
reflect Pythia’s architectural emphasis on scaling
consistency rather than peak performance, as in-
tended by its design (Biderman et al., 2023). For in-
stance, DIV clusters remain spread even at k = 70,
suggesting limited generalization over deeper DAG
relations. In contrast, LO shows earlier saturation
with cluster overlap emerging from k = 40, high-
lighting the lower representational burden of total
orders. The LOBIN task retains intermediate separa-
tion, echoing patterns observed in Llama3.

These observations visually affirm Theorem 1,
which bounds ICL’s representational capacity by
the model’s embedding rank. The consistent satu-
ration across both Pythia and Llama families un-
derscores this limitation and motivates future di-
rections in attention mechanisms and model design
for relational tasks.

C.4.2 Task Vector Geometry under varying
Complexity with Pythia-2.8B

In this setup, we consider the prompts P̃k,c along
with the instruction I , that is, restricting |Pk,c[T

′]|
to one. To assess how the complexity impacts la-
tent representations in ICL, we evaluate the Pythia-
2.8B model under fixed-shot prompts (k = 10)
while varying the complexity of the target query
c ∈ {10, 20, . . . , 100}. Following the protocol as
discussed above, we generate ten prompts for each
complexity level by pairing a constant set of demon-
strations with increasingly complex queries. We
extract task vectors from a fixed transformer layer
and visualize their geometry via t-SNE.

As shown in Figure 11, Pythia-2.8B exhibits
consistent cluster convergence across increasing
c, though the saturation dynamics vary by task.
For LO ((N, <)), task vector clusters collapse
rapidly by c = 50, consistent with the lin-
ear structure’s limited inferential depth. In con-
trast, DIV ((N, |)) shows more persistent separa-
tion, with full convergence only emerging beyond
c = 70. LOBIN (({0, 1}∗, <)) occupies an inter-
mediate regime—maintaining moderate separation
through mid-range complexities and gradually col-
lapsing at higher levels (c ≥ 80).

Compared to Llama3 (in Fig. 7), Pythia’s latent
space appears more diffuse for structurally intricate
tasks such as DIV. This aligns with Pythia’s design
motivation as outlined in Biderman et al. (2023),
where training stability and scaling transparency
are prioritized over optimization for downstream
accuracy. These geometric observations reinforce
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Figure 11: t-SNE projections of task vectors from Pythia-2.8B under increasing complexity (c ∈ [10, 100]) with
fixed demonstrations (k = 10). Each subfigure corresponds to a task: (a) LO, (b) DIV, and (c) LOBIN. Cluster
convergence at higher c levels illustrates latent saturation as predicted by Theorem 1.
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Figure 12: Subfigure 12a plots the t-SNE projections of task vectors under increasing number of demonstrations
(k ∈ [10, 100]) with fixed complexity (c = 10) for the poset DIV((N, |)). Subfigures 12b & 12c plot the same
under increasing complexities (c ∈ [10, 100]) with fixed demonstrations (k = 10) for the posets LO((N, <)) and
LOBIN(({0, 1}∗, <)) respectively. Note that, these plots represent the task vectors for the latent representation of the
model Llama3 where the prompts P̃k,c has been augmented with the instruction I as mentioned in Section C.4.2.

our theoretical result (Theorem 1) that ICL updates
are rank-bounded by the embedding dimension,
with saturation manifesting visibly as latent col-
lapse in t-SNE space.

Together with the earlier shot-based findings,
this analysis highlights that decoder-based LLMs
consistently struggle to encode deep relational ab-
stractions through ICL alone. Models with im-
proved inductive generalization will require archi-
tectural changes to mitigate the geometric bottle-
necks revealed here.

Figure 12 illustrates an analogous study con-
ducted on Llama3 under a similar setup.

D Additional Experimental Results

In Figure 13, we provide a few diagrams represent-
ing the effectiveness of ICL through mean accuracy
plots across various cases. Before closing the anal-
ysis of our empirical studies, here we present how
well the language models correspond with each
other under the regime of minimal prompts for par-
tially ordered set. Because of the involvement of
more than two objects to be ranked, we employ
Kendall’s W : Nm×n → [0, 1], a non-parametric
statistic measuring ranking correlation between m
judges (the language models) and n items (the tasks
on which the language models have been evaluated)
(Kendall and Babington, 1939). To rank the items,
the squared deviation between the sum of ranks of
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Figure 13: Subfigure 13a describes the mean accuracy plot for the sequence {L(Pk,c)}k={1,2,...,150} against varying
complexities and subfigure 13b describes the same evaluation scheme on {L(Pk,c)}c={1,2,...,150} against varying
shots on the poset (N, <). Subfigures 13c and 13d illustrate a similar experimental result on poset (N, |). Subfigures
13e and 13f depict mean accuracy plot for the sequence {L(Pk,c)}k={1,2,...,75} against varying complexities and the
same metric on {L(Pk,c)}c={1,2,...,75} against varying shots for GPT-3.5-Turbo respectively. Similarly, subfigures
13g and 13h plot the same for GPT-4.o-mini. Like earlier, the color scheme in 13a-13d corresponds to Gemma2,
Lamma3, Mathstral, Qwen2-math, and Phi3. In 13e-13h it corresponds to posets (N, <), ({0, 1}∗, <), and (N, |).
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different judges (Ri =
∑m

j=1 rij) and their mean
value is usually calculated and the statistic is ex-
pressed by

W =

∑n
i=1(Ri − R̄)2

m2

12 (n
3 − n)

.

For our case, the ranking was done based on the
mean cumulative accuracy metric. Now if, the
judges have weights assigned to them, which is the
number of parameter in our case, the expression
for Kendall’s W : (R+)

m×n → [0, 1] becomes:

W =

∑n
i=1(Ri − R̄)2

n
12(n

2 − 1)
,

where Ri =
∑m

j=1wjrij and the weight wj as-
signed to judge j is normalized. The higher the
value of Kendall’s W, the closer the models towards
their ICL performance. Table 2 demonstrates the
behavior of the LLMs on tasks employed:

Judges Rank of Items
Gemma (N, <), (N, |), ({0, 1}∗, <)
Lamma (N, |), (N, <), ({0, 1}∗, <)
Mathstral (N, <), (N, |), ({0, 1}∗, <)
Qwen2.5-math (N, <), (N, |), ({0, 1}∗, <)
Phi (N, |), (N, <), ({0, 1}∗, <)

Kendall’s W 0.7506 (medium)

Table 2: Ranks and Calculation of Kendall’s W showing
non-trivial correspondence between the language mod-
els.
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