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Abstract

To alleviate the high cost of manually annotat-
ing Question Answering (QA) datasets, Ques-
tion Generation (QG) requires the model to gen-
erate a question related to the given answer and
passage. This work primarily focuses on Multi-
Span Question Generation (MSQG), where the
generated question corresponds to multiple can-
didate answers. Existing QG methods may not
suit MSQG as they typically overlook the corre-
lation between the candidate answers and gen-
erate trivial questions, which limits the quality
of the synthetic datasets. Based on the obser-
vation that relevant entities typically share the
same relationship with the same entity, we pro-
pose REGULAR, a framework of RElation-
GUided MuLti-SpAn Question GeneRation.
REGULAR first converts passages into relation
graphs and extracts candidate answers from
the relation graphs. Then, REGULAR utilizes
a QG model to generate a set of candidate
questions and a QA model to obtain the best
question. We construct over 100,000 questions
using Wikipedia corpora, named REGULAR-
WIKI, and conduct experiments to compare
our synthetic datasets with other synthetic QA
datasets. The experiment results show that mod-
els trained with REGULAR-WIKI achieve the
best performance. We also conduct ablation
studies and statistical analysis to verify the qual-
ity of our synthetic dataset. !

1 Introduction

Question Answering (QA) (Rajpurkar et al., 2018;
Kwiatkowski et al., 2019) requires the model to pro-
vide answers for a given question, which has wide-
ranging applications like chat systems(OpenAl
et al., 2024), information retrieval(Esteva et al.,
2021), and Al education (Rabin et al., 2023). As
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Passage:

Ben Kirk, played by Noah Sutherland, made his first on-
screen appearance on 14 December 2001. Ben is the son
of Libby Kennedy (Kym Valentine) and Drew Kirk (Dan
Paris). Ben's birth placed Libby's life in danger and she
was rushed to intensive care with blood loss, but she
eventually recovered...

flAnswers (extracted by NER tools): Ben Kirk, Noah, Libby
i Kennedy, Kym Valentine, Drew Kirk, Dan Paris, Ben p
i Question: Who are the people in this passage? ]

;’Answers (extracted by LLM): made his first on-screen,
i placed Libby’s life in danger, was rushed to intensive care
i Question: What was happened on Ben Kirk? ]

Figure 1: An example where both NER tools and LLM
fail to extract reasonable entities as answers, leading to
questions that are trivial or irrelevant to the answers.

a subtype of the QA task, Multi-Span Question
Answering (MSQA) (Li et al., 2022; Yue et al.,,
2023) requires the model to extract multiple non-
redundant answers from a given passage. However,
the models may need a large amount of training
data to facilitate either MSQA or other QA tasks.
To alleviate the high cost of manually annotating
QA datasets, Question Generation (QG) has been
proposed, which requires the model to generate a
question related to the given answer and passage.
Traditional QG methods (Guo et al., 2024a) typi-
cally train a sequence-to-sequence language model
(Seq2Seq LM) (Sutskever et al., 2014) that takes a
passage and an answer as input to generate the cor-
responding questions. When answers are unavail-
able, these approaches usually employ rule-based
methods (Lyu et al., 2021a; Lee et al., 2023) or
model-based methods (Shakeri et al., 2020) to gen-
erate answers. With recent advancements in Large
Language Models (LLMs), some researches have
explored employing LLMs to generate questions.
For example, Guo et al. (2024b) propose the SGSH
framework that enhances question generation by
incorporating question prefixes in prompts. PFQS
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(Li and Zhang, 2024) decomposes the QG task into
a multi-step process, requiring the LLM first to
generate a planning, then generate questions with
the answer and the planning.

This work primarily focuses on Multi-Span
Question Generation (MSQG), where the gener-
ated question corresponds to multiple candidate
answers. Unfortunately, both existing QG meth-
ods and the LLMs struggle with MSQG. Taking
Figure 1 as an example, the NER tool extracts peo-
ple’s names as answers. However, these answers
are irrelevant, resulting in a trivial question. On
the other hand, LLM extracted multiple action seg-
ments, but *was rushed to intensive care’ did not
occur on Ben Kirk, so the generated question is
incorrect. The reason may be that these methods
primarily focus on generating single-answer ques-
tions, without considering the correlation between
multiple answers in the MSQG task. Although
LIQUID (Lee et al., 2023) employs an additional
QA model to refine the initial candidate answers,
the correlation between candidate answers is still
ignored.

Relation graphs, in which edges connect differ-
ent entities with relation types, may help obtain
relevant candidate answers as relevant entities typ-
ically share the same relationship with the same
entity. We define Commonality Entity (CE) as a
group of entities that share the same relation type
with a specific entity in a relation graph. Then we
propose REGULAR, a framework for RElation-
GUided MuLti-SpAn Question GeneRation. For a
given passage, REGULAR converts it into a rela-
tion graph and employs a graph traversal algorithm
to extract CE as candidate answers. After extract-
ing candidate answers, REGULAR utilizes a QG
model to generate a set of candidate questions and
a QA model to obtain the best question. Compared
with existing QG methods, REGULAR considers
the relevance between candidate answers, avoiding
the negative impact of irrelevant answers on the
synthetic datasets.

We construct the REGULAR-WIKI dataset on
the Wikipedia corpus. We conducted Super-
vised Fine-Tuning (SFT) on multiple open-source
LLMs including Llama-3 (Grattafiori et al., 2024)
and Qwen-2.5(Qwen et al., 2025) using both the
REGULAR-WIKI dataset and MSQA datasets syn-
thesized by existing QG methods, followed by com-
prehensive evaluations on multiple MSQA bench-
marks. Experiment results show that LLMs trained
on the REGULAR-WIKI consistently outperform
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other settings, indicating the superior quality of
REGULAR-WIKI. Ablation studies confirm that
each step in our proposed methodology is essential
for synthesizing high-quality MSQA data. Besides,
we also conduct statistical analysis to verify the
quality of the REGULAR-WIKI dataset.

In summary, our contributions are listed as fol-
lows:

* To obtain relevant candidate answers in
MSQG, we explore extracting entities from
the relation graph as candidate answers. We
define CE as a group of entities that share the
same relation type with a specific entity in a
relation graph, and design a graph traversal
algorithm to extract CE.

We propose REGULAR, which extracts CE
from graph structures as candidate answers
and generates corresponding questions. We
construct the REGULAR-WIKI dataset from
the Wikipedia corpus.

Experiment results demonstrate that our syn-
thetic datasets can be used to train open-
source LLLMs and achieve better performance.
We also conduct ablation studies and statis-
tical analysis to validate the quality of the
synthetic dataset.

2 Related Work

2.1 Question Generation

QG requires models to generate a question that
matches the given passage and the answer. This
work primarily focuses on MSQG where the gener-
ated question corresponds to multiple answers. In
real-world applications, the answers are often un-
known, so obtaining the answers is necessary first
and then generating the corresponding questions.
Traditional methods typically utilize LMs or
rule-based tools to extract candidate answers. Puri
et al. (2020) train a BERT (Devlin et al., 2019) to
extract candidate answers. Shakeri et al. (2020) use
a Sequence-to-Sequence LM to end-to-end gener-
ate both questions and answers. Lyu et al. (2021a)
extract summarization of the given passage and
then use NER tools and syntactic parsing tools
to extract candidate answers. LIQUID (Lee et al.,
2023) first extracts multiple candidate answers with
a summarization model and NER tool, and gener-
ates multi-answer questions, followed by iterative
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Figure 2: The pipeline of our REGULAR framework.

updates to both the questions and candidate an-
swers. However, these methods fail to consider
the correlation between candidate answers. In con-
trast, we extract CE in the relation graph, ensuring
the correlation among the candidate answers and
improving the quality of the synthetic datasets.

2.2 LLM-based Question Generation

Recently, LLMs (Grattafiori et al., 2024; Ope-
nAl et al., 2024) have gained widespread attention
due to their powerful language modeling and text
generation capabilities. Recent studies have ex-
plored methods such as In-Context Learning (ICL)
(Brown et al., 2020) and Chain-of-Thought (CoT)
(Wei et al., 2022; Kojima et al., 2022) to further
improve the performance of LLMs in QG tasks.
For example, TASE-CoT (Lin et al., 2024) first
uses the TS5 (Raffel et al., 2020) model to pre-
dict the question type and key fragments within
the question, then designs a three-step CoT ap-
proach to guide the LLM in generating multi-hop
questions. Similarly, SGSH (Guo et al., 2024b)
addresses Knowledge Base Question Generation
(KBQG) by using a fine-tuned BART (Lewis et al.,
2020) model to provide the question prefix before
generating questions with GPT-3.5. Li and Zhang
(2024) focus on controllable question generation
and propose the PFQS framework. This framework
first generates an initial plan based on the question
label, adjusts it with the context, and then gener-
ates the question based on the article, answer, and
plan. In addition to text-only question generation,
Wau et al. (2024) focus on Multi-Modal Question
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Generation (MMQG) and they propose SMMQG,
which samples multi-modal sources and generates
different types of questions with GPT-4.

In this work, we primarily utilize advanced
LLMs to convert passages into relation graphs and
use fine-tuned LLMs to generate questions.

3 Method

The MSQG task can be described as: Given a pas-
sage p, models are required to first extract a set of
non-redundant text spans as the candidate answers
A, and then generate the corresponding question g,
as shown in Equation 1:

A = Extract_Answers(p)
q= M QG (p ) A)7
where Mg refers to the QG model.

Figure 2 shows the architecture of our REG-
ULAR framework. Specifically, the REGULAR
framework consists of four steps: (1) Convert the
given passage to a relation graph; (2) Extract CE
from the relation graph as candidate answers; (3)
Utilize a QG model to generate a set of candidate
questions; (4) Score each candidate question with
a QA model and select the best question with the
highest score for constructing the MSQA dataset.
Steps 1 and 2 ensure the relevance of the candidate
answers, while steps 3 and 4 guarantee the con-
sistency between the generated questions and the
candidate answers.

Next, we will introduce the definition of CE in
Section 3.1, and elaborate on each step from Sec-
tion 3.2 to Section 3.4.

ey



3.1 Commonality Entity

The definition of CE can be described as follows:
Given a reference entity v and a relation r, CE is
defined as a set of entities that connect to v with
the edges that share the same relation r. The above
definition can be represented by Equation 2.

CE(v,r) ={v|lv € N(v) AR(vv) =71}, (2)

where N (v) represents the neighbor entities of v
and R (v, v) represents the relation of the edge be-
tween v and v.

3.2 Extracting CE as candidate answers

In MSQG tasks, selecting multiple candidate an-
swers is important because unrelated candidate an-
swers may result in low-quality questions (Lyu
et al., 2021b; Lee et al., 2023). Existing methods
(Lee et al., 2023) typically utilize NER tools (e.g.,
SpaCy ?) to extract named entities. However, these
approaches fail to consider the correlations among
candidate answers, thereby limiting the quality of
the synthetic data.

We propose extracting CE as candidate answers,
considering that CE in a relation graph is connected
to a specific entity through the same edges, ensur-
ing relevance among these entities. This process
contains two steps: converting passages into rela-
tion graphs and extracting CE in the relation graph.

Converting Passages into Relation Graphs We
utilize LangChain LLMGraphTransformer® to con-
vert passages into relation graphs. This process can
be described as Equation 3:

G = LangChain(p), 3)

where p refers to the passage and G refers to
the relation graph and LangChain() refers to the
LangChain tool.

Extracting CE in the Relation Graph We de-
sign a graph traversal algorithm that identifies CE
by counting the 1-hop neighbors of each node. We
extract CE with two or more entities as candidate
answers A. This process can be described as Equa-
tion 4:

A = Extract_Answers(G), “4)

where G refers to the relation graph. We provide a
detailed algorithm in Appendix A.

2https://spacy. io/

3https ://python.langchain.com/api_
reference/experimental/graph_transformers/
langchain_experimental.graph_transformers.1llm.
LLMGraphTransformer.html
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3.3 Generating Questions

Generating Questions with CE We utilize a
generative LM Mg as the QG model to gener-
ate questions. The inputs of Mg are the pas-
sage p, the candidate answers A, reference entity
v, and relation . We sample k candidate ques-
tions @ = {q1, ..., qx },» where k is the number of
generated questions, shown in Equation 5:

Q = MQG(}?,A,U,T), (5)

Extracting Relations for Training the QG Model
Existing MSQA datasets such as MultiSpanQA(Li
et al., 2022) and MA-MRC(Yue et al., 2023) do
not include commonality relation we need. Intu-
itively, we could use a prompted LLM to extract the
commonality relation from the question. However,
this may introduce bias between training and gen-
erating. To address this problem, we first prompt
an LLM to convert the question-answer pairs into
declarative sentences. Then, following the method
proposed in Section 3.2, we check whether the an-
swers satisfy the definition of CE. If the candidate
answers are CE, we add the corresponding com-
monality relation r to the training data, otherwise,
we discard this data.

3.4 Obtaining Optimal Question

Existing QG researches (Lee et al., 2023; Mo-
hammadshabhi et al., 2023) typically employ a QA
model to validate the generated questions. In this
work, we employ a QA model Mg 4 fine-tuned on
the MSQA datasets to score the candidate questions
generated in Section 3.3 and select the question
with the highest score. For each candidate question
g; € (@ and its corresponding passage p, we predict
its answers with Mg 4. Then we calculate the F1
score of the predicted answers and obtain the best
question ¢ that maximizes the F1 score.
This process can be described as Equation 6:

O; = Mqa(p, 4i)
Sq, = F1_Score(0;, A)

4 = argmax(sy,),
¢GER

(6)

where F'1_Score(O;, A) refers to the F1 score of
4

O; when A is used as the reference”.
Finally, we construct synthetic dataset D with
the candidate answers A and the generated question
*When calculating the F1 score, we take the average of the

Exact Match F1 and Partial Match F1 scores. Details of Exact
Match and Partial Match are shown in Section 4.1


https://spacy.io/
https://python.langchain.com/api_reference/experimental/graph_transformers/langchain_experimental.graph_transformers.llm.LLMGraphTransformer.html
https://python.langchain.com/api_reference/experimental/graph_transformers/langchain_experimental.graph_transformers.llm.LLMGraphTransformer.html
https://python.langchain.com/api_reference/experimental/graph_transformers/langchain_experimental.graph_transformers.llm.LLMGraphTransformer.html
https://python.langchain.com/api_reference/experimental/graph_transformers/langchain_experimental.graph_transformers.llm.LLMGraphTransformer.html

q, shown in Equation 7:

D ={(p,4,9)},

where n refers to the question number of D.

(7

4 Experiments

Based on the hypothesis that higher-quality syn-
thetic datasets yield more capable models, we
systematically compare datasets generated by our
REGULAR framework and conventional QG meth-
ods. We perform supervised fine-tuning (SFT)
on LLMs using each synthetic dataset, followed
by out-of-domain (OOD) evaluation on human-
annotated MSQA benchmarks. Furthermore, we
design ablation studies to examine the contribution
of key components in the REGULAR framework
and validate their rationality.

4.1 Experimental Setup

Synthetic Dataset We select the open-source cor-
pus Wikipedia > and construct the REGULAR-
WIKI dataset with our proposed framework. The
REGULAR-WIKI dataset contains over 100,000
questions. To save computation cost, we randomly
sample 5,000 high-quality questions for our experi-
ment.

MSQA Benchmarks We select the Multi-
SpanQA (Li et al., 2022), MA-MRC (Yue et al.,
2023), and QUOREF (Dasigi et al., 2019) for
our experiments. Considering that the MA-MRC
dataset contains over 8,000 questions in the vali-
dation set, we randomly sample 1,000 questions
for evaluation to reduce computational cost. De-
tails of the MSQA benchmarks are shown in Ap-
pendix B.1.

Models We select Llama3.2-3B, Llama3.1-8B
(Grattafiori et al., 2024) °, Qwen2.5-3B, and
Qwen2.5-7B (Qwen et al., 2025) for our experi-
ments. We download the model checkpoints from
huggingface’.

Baselines We set both training-free baselines
(zero-shot and few-shot) and training-required base-
lines (QAGen-LLM and LIQUID) for our experi-
ments:

* Zero-shot: We prompt LLM to extract an-
swers from the given passage. The prompt

5https://www.wikipedia.org/
®For simply expression, we refer Llama-3.2 and Llama-3.1
"https://huggingface.co/
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only contains the task definition, passage, and
question.

Few-shot: Building upon the zero-shot set-
ting, we enhance the prompt with examples
containing a passage, a question, and gold
answers. In our experiment, we utilize the
BM25 retriever (Robertson and Walker, 1994)
and select 3 examples for each question in the
validation set. The prompt for zero-shot and
few-shot is shown in Appendix Table 7.

QAGen-LLM (Shakeri et al., 2020) use a gen-
erative LM to generate questions and answers.
In this work, we employ GPT-40 ® to generate
question-answer pairs from given passages.
We add 2 examples in the prompt to facilitate
the generation of multi-answer questions and
their corresponding answers. The prompt for
QAGen-LLM is shown in Appendix Table 9.

LIQUID (Lee et al., 2023) first uses a sum-
marization model and NER tools to extract
named entities as candidate answers. Then,
LIQUID employs a QG model to gener-
ate questions, and the questions and can-
didate answers are updated through multi-
ple iterations. We download the LIQUID-
WIKI datasets from https://github.com/
dmis-1ab/LIQUID for our experiments.

Evaluation Metrics Following (Li et al., 2022),
we use Exact Match (EM) and Partial Match
(PM) as the main metrics. EM assigns a score of
1 when a prediction fully matches one of the gold
answers and 0 otherwise, while PM considers the
overlap between the predictions and gold answers.
We report F1 scores in our experiments.

Implementation Details When converting pas-
sages to relation graphs, we utilize the LangChain
LLMGraphTransformer ° and invoke GPT-40-mini
10, When generating questions, we select Llama3.1-
8B as the QG model and train it on MultiSpanQA
and MA-MRC datasets. The prompt for the QG
model is shown in Appendix Table 8. When se-
lecting the best question, we choose Unified(QA-
T5-large'!' and fine-tune it on MultiSpanQA and
MA-MRC datasets. Training details are shown in
Appendix B.2.

8https
‘https

://openai.com/api/

://python.langchain.com/
10https://openai.com/api/
11https://huggingface.co/allenai/

unifiedga-t5-large
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MultiSpanQA MA-MRC QUOREF Average

EMF1 PMF1 | EMF1 PMF1 | EMF1 PMF1 | EMF1 PMF1
Llama3.2-3B
Zero-Shot 57.31 75.23 56.40 71.42 63.47 75.71 59.06 74.12
Few-Shot 65.03 80.03 69.64 80.65 64.34 72.06 66.34 77.58
SFT (QAGen-gptd4o) | 69.06 83.30 67.40 80.04 64.83 77.34 67.10 80.23
SFT (LIQUID) 59.75 77.45 62.38 75.50 55.23 70.05 59.12 74.33
SFT (REGULAR) 70.49 84.45 73.75 83.85 67.04 81.76 70.43 83.35
Llama3.1-8B
Zero-Shot 58.41 76.66 62.51 75.61 73.02 82.80 64.65 78.36
Few-Shot 68.79 84.16 71.79 81.65 74.08 83.81 71.55 83.21
SFT (QAGen-gptdo) | 70.16 85.45 69.01 81.15 74.59 84.43 71.25 83.68
SFT (LIQUID) 68.45 84.20 69.85 80.77 70.27 81.75 69.52 82.24
SFT (REGULAR) 72.12 86.23 74.60 83.98 76.79 85.66 74.50 85.29
Qwen2.5-3B
Zero-Shot 59.45 76.24 57.56 71.76 64.42 73.75 60.48 73.92
Few-Shot 65.22 79.61 65.52 77.76 64.43 74.70 65.06 77.36
SFT (QAGen-gptdo) | 67.73 82.63 62.54 77.52 67.93 80.61 66.07 80.25
SFT (LIQUID) 67.11 82.44 66.25 78.33 67.31 78.17 66.89 79.65
SFT (REGULAR) 69.06 82.45 72.11 82.70 69.15 81.54 70.11 82.23
Qwen2.5-7B
Zero-Shot 68.06 82.79 60.12 73.26 75.88 84.19 68.02 80.08
Few-Shot 70.58 84.59 68.02 79.89 76.17 84.01 71.59 82.83
SFT (QAGen-gptdo) | 70.55 84.14 73.31 83.45 74.71 85.40 72.86 84.33
SFT (LIQUID) 69.59 83.61 64.08 76.72 64.29 76.21 65.99 78.85
SFT (REGULAR) 71.23 85.28 72.59 83.28 78.79 85.75 74.20 84.77

Table 1: Exact Match and Partial Match F1 scores of the LLMs in the training-free and training-required settings.
"SFT (QAGen-LLM)", "SFT (LIQUID)", and "SFT (REGULAR)" refer to the models trained with QAGen-LLM,
LIQUID, and REGULAR-WIKI datasets, respectively. The best results are in bold.

4.2 Main Results

The main results are shown in Table 1. Based
on these results, the following conclusions can
be made: (1) Incorporating some demonstra-
tions improves the performance of LLMs. For
instance, on the MultiSpanQA dataset, the EM F1
score of Llama-3B in the few-shot setting improves
by 8 points compared to the zero-shot setting. The
improvements on the QUOREF dataset are lim-
ited, probably due to the excessive length of the
demonstrations, which constrained the LLM’s per-
formance. (2) Traditional QG methods struggle
with generating high-quality MSQA datasets.
We observe that after training on the LIQUID
dataset, the performance of the LLM only slightly
surpassed the zero-shot setting. Moreover, even
models trained on data directly generated by GPT-
40 exhibit a decline in performance. (3) The qual-
ity of the REGULAR dataset exceeds that of
other synthetic datasets. In our experiments,
LLMs trained on REGULAR achieve best perfor-
mance in most settings, with particularly significant
improvements observed in the 3B model. This is
because the REGULAR framework extracts CE
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Llama3.2-3B Llama3.1-8B
EMF1 PMF1 | EMF1 PMF1

REGULAR | 70.49 84.45 72.12 86.23
Step 1-2

NER ans 61.47 77.00 63.82 79.85
LLM ans 59.46 74.86 62.29 77.52
Step 3

w/o context | 69.61 83.90 71.74 85.65
w/o relation | 69.84 83.53 71.17 85.96
Step 4

Random Q 68.30 82.27 70.34 84.94
Worst Q 65.89 79.68 68.85 81.35

Table 2: Ablation Study on the validation set of Multi-
SpanQA. The best results are in bold.

from the relation graph, ensuring the correlation
between candidate answers, and thereby improving
the quality of the synthetic dataset.

Besides the OOD experiments, we also compare
LLMs trained with REGULAR-WIKI and human-
annotated datasets. Results and analysis are shown
in Appendix C.1.
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4.3 Ablation Study

We hypothesize that each step in REGULAR con-
tributes to constructing a higher-quality synthetic
dataset. To validate this, we perform ablation stud-
ies on each REGULAR synthetic step and evaluate
the validation set of the MultiSpanQA dataset. We
implement the following ablation strategies: (1)
NER ans: Use NER tools to extract candidate an-
swers from the passage. (2) LLM ans: Directly
prompt the LLM to extract candidate answers from
the passage along with the commonality relation.
The prompt is shown in Appendix Table 10 (3)
w/o context: Remove the passage when gener-
ating questions. (4) w/o relation: Remove the
commonality relation and key entity when generat-
ing questions. (5) Random Q: Randomly select a
candidate question instead of the highest-scoring
question. (6) Worst Q: Select the lowest-scoring
question instead of the highest-scoring question.

As shown in Table 2, all ablation settings lead to
a decline in model performance. Specifically, the
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ablations of Step 1 and Step 2 cause EM/F1 scores
of Llama3.2-3B to decrease by 9 and 11 points, re-
spectively. This suggests that using NER tools and
prompting the LLM to extract answers does not
yield high-quality results. On the other hand, train-
ing on datasets constructed with the worst questions
(worst Q) also results in a performance decline, in-
dicating that selecting best questions is beneficial
for better LLM training.

S Analysis on the Synthetic Dataset

In this section, we statistically analyze the answer
types, number of answers, and question types in
the REGULAR-WIKI and MultiSpanQA datasets.
We also conduct a case study to compare the
REGULAR-WIKI dataset with the QAGen-LLM
dataset.

5.1 Number of Answers

We analyze the number of answers for each ques-
tion in the MultiSpanQA and REGULAR-WIKI
datasets, as shown in Figure 3. Compared with
the MultiSpanQA dataset, the REGULAR-WIKI
dataset has a higher proportion of questions with
2 answers and a lower proportion with more than
3 answers. This may be because REGULAR ex-
tracts answers with specific topological structures
(i.e. CE), limiting the number of answers.

5.2 Types of Answers

We use SpaCy to analyze the answer types in the
MultiSpanQA and REGULAR-WIKI datasets. Fig-
ure 3 shows the proportion of named entity answers
with top-5 frequencies and non-named entity an-
swers. Surprisingly, we observe that the proportion
of non-entity answers in REGULAR-WIKI was
much higher than in MultiSpanQA. This may be
because both named and non-named entities were



Passage:

The 2007 Future Cup was a 3 ODI cricket series between India and
South Africa between 23 June and 1 July. The series was preceded by
each team playing one match against Ireland...

Passage:

In 1940, Hanna Maron joined Habimah. During World War II, she
volunteered for the Auxiliary Territorial Service of the British Army,
serving two years before joining the Jewish Brigade's entertainment
troupe. In 1945 she joined the Cameri Theater in Tel Aviv...

Answers (generated by QAGen-LLM):
N/A

Question:

N/A

! Answers (Generated by REGULAR):

i India ; South Africa

1 Question:

'.\which team played in the 2007 future cup?

,
I
1

\

.
[}
1

"Answers (generated by QAGen-LLM):

Joined Habimah in 1940 ; Joined the Cameri Theater in Tel Aviv in
1945 ; Became one of Israel's leading actresses after her success as
Mika in 'He Walked in the Fields

Question:

What significant roles did Hanna Maron have during her career?

Answers (Generated by REGULAR):
Habimah, Jewish Brigade
Question:

Figure 5: Case study. The examples are selected from the QAGen-LLM and REGULAR-WIKI datasets.

included as nodes during the relation graph extrac-
tion process. The reason may be that incorporat-
ing more non-named entities as candidate answers
helps enhance the diversity of questions and an-
SWers.

Time (1,000 data)
Step 1 51 min.
Step 2 <ls
Step 3 17 min.
Step 4 42 min.
Total 110 min.

Table 3: Inference time of REGULAR. REGULAR
takes about 110 minutes to generate 1,000 questions.

5.3 Types of Questions

We further analyze the distribution of question
types in REGULAR-WIKI and MultiSpanQA
datasets. We adopt the categories proposed by Lee
et al. (2023): Simple Questions, Lexical Variation,
Inter-sentence Reasoning, Number of Answers, and
Entailment, where a question may correspond to
multiple types. We sample 200 questions and use
GPT-40 to classify each question. Detailed defini-
tions of the five types of questions can be found in
Appendix D.

The statistical results are shown in Figure 4!2.
Compared with the MultiSpanQA dataset, the
REGULAR-WIKI dataset contains fewer Simple
Questions. These questions typically have an-
swers within a single sentence, but the answers
in REGULAR-WIKI are derived from relation

2Due to differences in sampling data and evaluation meth-
ods, the analysis results may differ from the results in (Lee
et al., 2023).
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graphs and might span multiple sentences. On the
other hand, REGULAR-WIKI contains more En-
tailment questions, perhaps because the generated
questions implicitly contain prior knowledge from
the QG model. Overall, the question distribution
in REGULAR-WIKI is more balanced, suggest-
ing that the REGULAR framework can generate a
wider variety of questions.

5.4 Case Study

We conduct a case study demonstrating that the
REGULAR method can generate better synthetic
datasets. Figure 5 shows examples of questions
and answers generated by QAGen-LLM and REG-
ULAR for the same passage. In the first case,
QAGen-LLM fails to provide a question and an-
swers. However, "India" and "South Africa" are
countries that joined in "the 2007 Future Cup".
In contrast, REGULAR extracts these countries
and provides a question that is relevant to the an-
swers. In the second case, although QAGen-LLM
provide a correct question, the answers extracted
by QAGen-LLM are relatively long and could be
simplified. The answers generated by REGULAR
are more concise, which is beneficial for training.
These examples demonstrate that the REGULAR
method, by extracting CE, can generate higher-
quality questions and answers.

5.5 Time Cost

We calculate the time cost of constructing 1,000
questions using the REGULAR pipeline. The result
is shown in Table 3. REGULAR takes about 2
hours to generate 1,000 questions, where the main
time expenses are in the first and fourth steps. The
time cost could be further reduced by adopting
parallel technology and faster APIs.



6 Conclusion

This work focuses on the MSQG task and proposes
REGULAR, a framework for relation-guided Multi-
Span Question Generation. REGULAR converts
passages into relation graphs and extracts CE as the
candidate answers. Then, REGULAR utilizes a QG
model to generate a set of candidate questions and a
QA model to obtain the best question. We construct
over 100,000 questions using the Wikipedia cor-
pora, named REGULAR-WIKI. We conduct SFT
experiments where we compare models trained
with REGULAR-WIKI and models trained with
other synthetic datasets. The experiment results
show that models trained with the REGULAR-
WIMI dataset achieve best performance in most
settings, indicating that the quality of the REGU-
LAR datasets is higher than other synthetic QA
datasets. Besides, we also conduct ablation studies
and statistical analysis to validate the quality of the
synthetic dataset.

7 Limitations and Future Work

In this work, we utilize LangChain to convert pas-
sages into relation graphs. However, this step relies
on advanced LLMs (e.g., GPT-40-mini), which
may incur significant costs. Although we assume
that advanced LL.Ms have mastered the ability to
extract relation graphs during their training, we
have not explicitly addressed the potential errors
that may occur. On the other hand, we primarily
focus on generating multi-answer questions. We
do not consider other types of question genera-
tion (e.g., multi-hop reasoning questions, multiple-
choice questions, etc.).

In future work, we plan to improve the ability
of LLMs to extract relation graphs with the open-
source LLMs (e.g., Llama, Qwen). Additionally,
we will explore how this method can be applied to
generate other types of questions.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario

77

Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Pradeep Dasigi, Nelson F. Liu, Ana Marasovi¢, Noah A.
Smith, and Matt Gardner. 2019. Quoref: A read-
ing comprehension dataset with questions requir-
ing coreferential reasoning. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 5925-5932, Hong Kong,
China. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Andre Esteva, Anuprit Kale, Romain Paulus, Kazuma
Hashimoto, Wenpeng Yin, Dragomir Radev, and
Richard Socher. 2021. Covid-19 information re-
trieval with deep-learning based semantic search,
question answering, and abstractive summarization.
NP/J digital medicine, 4(1):68.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzman, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal


https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vitor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,

78

Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqgiang Zhang, Shuqgiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad



Tonescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Shash Guo, Lizi Liao, Cuiping Li, and Tat-Seng Chua.
2024a. A survey on neural question generation: meth-
ods, applications, and prospects. In Proceedings of
the Thirty-Third International Joint Conference on
Artificial Intelligence, IICAI ’24.

Shasha Guo, Lizi Liao, Jing Zhang, Yanling Wang,
Cuiping Li, and Hong Chen. 2024b. SGSH: Stimu-
late large language models with skeleton heuristics
for knowledge base question generation. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2024, pages 4613-4625, Mexico City,
Mexico. Association for Computational Linguistics.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199-22213. Curran Associates, Inc.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Seongyun Lee, Hyunjae Kim, and Jaewoo Kang. 2023.
Liquid: A framework for list question answering
dataset generation. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 37(11):13014-13024.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In ACL:2020:main, pages 7871-7880,
Online. acl.

Haonan Li, Martin Tomko, Maria Vasardani, and Tim-
othy Baldwin. 2022. MultiSpanQA: A dataset for
multi-span question answering. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1250-1260,
Seattle, United States. Association for Computational
Linguistics.

79

Kunze Li and Yu Zhang. 2024. Planning first, ques-
tion second: An LLM-guided method for control-
lable question generation. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 4715-4729, Bangkok, Thailand. Association
for Computational Linguistics.

Zefeng Lin, Weidong Chen, Yan Song, and Yongdong
Zhang. 2024. Prompting few-shot multi-hop ques-
tion generation via comprehending type-aware se-
mantics. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 3730-3740,
Mexico City, Mexico. Association for Computational
Linguistics.

Chenyang Lyu, Lifeng Shang, Yvette Graham, Jennifer
Foster, Xin Jiang, and Qun Liu. 2021a. Improving
unsupervised question answering via summarization-
informed question generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4134—4148, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Chenyang Lyu, Lifeng Shang, Yvette Graham, Jennifer
Foster, Xin Jiang, and Qun Liu. 2021b. Improving
unsupervised question answering via summarization-
informed question generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4134-4148, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Alireza Mohammadshahi, Thomas Scialom, Majid Yaz-
dani, Pouya Yanki, Angela Fan, James Henderson,
and Marzieh Saeidi. 2023. RQUGE: Reference-free
metric for evaluating question generation by answer-
ing the question. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 6845—
6867, Toronto, Canada. Association for Computa-
tional Linguistics.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik


https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.24963/ijcai.2024/889
https://doi.org/10.24963/ijcai.2024/889
https://doi.org/10.18653/v1/2024.findings-naacl.287
https://doi.org/10.18653/v1/2024.findings-naacl.287
https://doi.org/10.18653/v1/2024.findings-naacl.287
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.1609/aaai.v37i11.26529
https://doi.org/10.1609/aaai.v37i11.26529
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.naacl-main.90
https://doi.org/10.18653/v1/2022.naacl-main.90
https://doi.org/10.18653/v1/2024.findings-acl.280
https://doi.org/10.18653/v1/2024.findings-acl.280
https://doi.org/10.18653/v1/2024.findings-acl.280
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.18653/v1/2024.findings-naacl.236
https://doi.org/10.18653/v1/2021.emnlp-main.340
https://doi.org/10.18653/v1/2021.emnlp-main.340
https://doi.org/10.18653/v1/2021.emnlp-main.340
https://doi.org/10.18653/v1/2021.emnlp-main.340
https://doi.org/10.18653/v1/2021.emnlp-main.340
https://doi.org/10.18653/v1/2021.emnlp-main.340
https://doi.org/10.18653/v1/2023.findings-acl.428
https://doi.org/10.18653/v1/2023.findings-acl.428
https://doi.org/10.18653/v1/2023.findings-acl.428

Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Fukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
MEély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-

80

ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Raul Puri, Ryan Spring, Mohammad Shoeybi, Mostofa

Patwary, and Bryan Catanzaro. 2020. Training
question answering models from synthetic data. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5811-5826, Online. Association for Computa-
tional Linguistics.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,

Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yugiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Roni Rabin, Alexandre Djerbetian, Roee Engelberg,

Lidan Hackmon, Gal Elidan, Reut Tsarfaty, and Amir
Globerson. 2023. Covering uncommon ground: Gap-
focused question generation for answer assessment.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 215-227, Toronto, Canada.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-

ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,

21(140):1-67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.

Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784-789,
Melbourne, Australia. Association for Computational
Linguistics.

. E. Robertson and S. Walker. 1994. Some simple

effective approximations to the 2-poisson model for
probabilistic weighted retrieval. In SIGIR 94, pages
232-241, London. Springer London.

Siamak Shakeri, Cicero Nogueira dos Santos, Henghui

Zhu, Patrick Ng, Feng Nan, Zhiguo Wang, Ramesh
Nallapati, and Bing Xiang. 2020. End-to-end syn-
thetic data generation for domain adaptation of ques-
tion answering systems. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5445-5460, On-
line. Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.

Sequence to sequence learning with neural networks.
In Proceedings of the 28th International Conference


https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2020.emnlp-main.468
https://doi.org/10.18653/v1/2020.emnlp-main.468
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://doi.org/10.18653/v1/2023.acl-short.20
https://doi.org/10.18653/v1/2023.acl-short.20
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/2020.emnlp-main.439
https://doi.org/10.18653/v1/2020.emnlp-main.439
https://doi.org/10.18653/v1/2020.emnlp-main.439

on Neural Information Processing Systems - Volume
2, NIPS’ 14, page 3104-3112, Cambridge, MA, USA.
MIT Press.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Ian Wu, Sravan Jayanthi, Vijay Viswanathan, Simon
Rosenberg, Sina Khoshfetrat Pakazad, Tongshuang
Wu, and Graham Neubig. 2024. Synthetic multi-
modal question generation. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 12960-12993, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Zhiang Yue, Jingping Liu, Cong Zhang, Chao Wang,
Haiyun Jiang, Yue Zhang, Xianyang Tian, Zhedong
Cen, Yanghua Xiao, and Tong Ruan. 2023. Ma-
mrc: A multi-answer machine reading comprehen-
sion dataset. In Proceedings of the 46th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’23, page
2144-2148, New York, NY, USA. Association for
Computing Machinery.

A Algorithm for Extracting Commonality
Entity

The algorithm for extracting CE is shown in Al-
gorithm 1. Specifically, for a given relation graph
G = {V, E}, we first initialize its adjacency ma-
trix M¢. Then, for each node v € V, we count
its 1-hop neighbor nodes and the types of edges
connecting them. If node v is connected to a set of
neighbor nodes V' via edges of the same type, or if
V point to v using edges of the same type, then V
are considered as CE.

B Experimental Setup

B.1 MSQA Datasets

MultiSpanQA (Li et al., 2022) MultiSpanQA
focuses on questions with more than one answer.
The raw questions and contexts are extracted from

the Natural Question dataset (Kwiatkowski et al.,
2019).

MA-MRC (Yue et al., 2023) MA-MRC is a
large-scale dataset containing over 100,000 ques-
tions, including both multi-span questions and
single-span questions. In this work, we randomly
sample 10,000 training data and 1,000 validation
data and obtain MA-MRC-10k for our experiment.
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QUOREF (Dasigi et al., 2019) The QUOREF
dataset is sourced from Wikipedia and contains
over 4,700 passages and more than 24,000 ques-
tions. The QUOREF dataset requires the model to
possess certain co-reference resolution and reason-
ing abilities. In this work, we select questions with
multiple answers for our experiment.

Since the official test sets of these datasets are
not public, we report the performance on validation
sets. Some statistics about the four datasets are
shown in Table 4.

B.2 Implementation Details

We utilize Huggingface’s trl 13 to conduct SFT.
We train our model with 4 V100 GPUs (32GB).
Training hyper-parameters are shown in Table 6.

C Additional Experiment and Analysis

C.1 Comparisons with Human-annotated
Datasets

We compare the performance of LLMs trained with
REGULAR-WIKI and human-annotated datasets.
The training implementation details are the same
as the main experiments. The results are shown
in Table 5. Due to the domain gaps between
the REGULAR-WIKI dataset and the human-
annotated dataset, the performance of LLMs
trained with REGULAR-WIKI is slightly lower
than LLMs trained on human-annotated datasets.
However, LLMs trained with REGULAR-WIKI
achieve second-best performance in some set-
tings. For example, Llama-3B trained with
REGULAR-WIKI performs better than Llama-3B
trained with QUOREF and MultiSpanQA datasets.
This indicates that the REGULAR-WIKI dataset
could improve the generalization ability of LLMs
and achieve similar results compared to human-
annotated datasets.

D Definition of the Types of Question

Lee et al. (2023) proposes a category for question
types based on the reasoning required to answer
these questions, listed as follows:

* Simple questions: Questions simply derived
from evidence texts with few lexical varia-
tions.

* Lexical variation: Questions created with
lexical variations using synonyms and hyper-
nyms.

Bhttps://github.com/huggingface/trl
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. average answer average average
#train - #dev number context length question length
MultiSpanQA 5,230 658 2.89 279 10
MA-MRC (10k) | 10,000 1000 2.31 77 10
QUOREF 1,963 215 2.45 431 19

Table 4: Dataset Statistic.

MultiSpanQA MA-MRC QUOREF Average

EMF1 PMF1 | EMF1 PMF1 | EMF1 PMF1 | EMF1 PMF1
Llama3.2-3B
Oracle (MultiSpanQA) | 76.28 88.97 66.63 82.32 75.14 87.53 72.68 86.27
Oracle (MA-MRC) 65.14 80.64 80.02 87.57 70.23 81.80 71.80 83.34
Oracle (QUOREF) 7552 8535 65.23 78.56 83.12 90.71 74.62  84.87
SFT (REGULAR) 70.49 84.45 7375  83.85 67.04 81.76 70.43 83.35
Llama3.1-8B
Oracle (MultiSpanQA) | 77.47  89.69 67.96 83.28 7539 8836 | 73.61 87.11
Oracle (MA-MRC) 67.67 82.02 82.95 89.23 72.42 83.75 74.35 85.00
Oracle (QUOREF) 79.53  88.28 | 72.28 82.16 854 92.66 79.07 87.70
SFT (REGULAR) 72.12 86.23 74.6 83.98 76.79 85.66 7450  85.29
Qwen2.5-3B
Oracle (MultiSpanQA) | 75.16  87.78 66.79 82.44 | 7238  85.68 71.44 85.30
Oracle (MA-MRC) 64.66 80.50 79.76 87.12 68.21 81.19 70.88 82.94
Oracle (QUOREF) 7518  84.57 65.66 76.61 80.9 88.02 7391  83.07
SFT (REGULAR) 69.06 82.45 7211  82.70 69.15 81.54 70.11 82.23
Qwen2.5-7B
Oracle (MultiSpanQA) | 76.22  88.89 65.84  81.69 | 73.53 86.86 71.86  85.81
Oracle (MA-MRC) 65.64 81.15 80.55 87.89 70.23 82.04 72.14 83.69
Oracle (QUOREF) 7898 8741 | 7498  84.15 87.01 92.83 80.32 88.13
SFT (REGULAR) 71.23 85.28 72.59 83.28 78.79 85.75 74.20 84.77

Table 5: Exact Match and Partial Match F1 scores of the LLMs trained with REGULAR-WIKI and human-annotated
datasets. "SFT (REGULAR)" refers to the models trained with REGULAR-WIKI. "Oracle (MultiSpanQA)", "Oracle
(MA-MRCQ)", and "Oracle (QUOREF)" refer to the models trained with MultiSpanQA, MA-MRC, and QUOREF
datasets, respectively. The best results are in bold and the second-best results are in underline.

Hyperparameter Value * Inter-sentence reasoning: Questions that re-
Learning Rate Se-5 quire high-level reasoning such as anaphora,
Warmup Steps 20 or answers that are distributed across multiple
Batch Size 24 sentences.

epochs 2

Max Input Length 2048 * Number of answers: Questions that specify
Max Output Length 128 the number of answers, which is a characteris-
Random Seed 1111 tic of a list of questions.

Optimizer Adam * Entailment: Questions that require textual
LoRA rank 32 entailment based on the evidence texts and
LoRA alpha 32 commonsense.

LoRA Dropout 0.1

Table 6: Training Hyper-parameters. "Ist-tune" and
"2nd-tune" refer to the first step and the second step of
the 2-step fine-tuning strategy, respectively.
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Algorithm 1: Extracting Commonality Entities

Input: G = {V, E} : Knowledge Graph
Output: C'E_list : Commonality Entities List
1 Function ExtractCommonalityEntities(G):

2 CE_list < 0;
/* Initialize adjacency matrix M of G. */
3 M < adjacency_matrix(G);
/* Find commonality entites with the structure like B+ A— C or B— A+ C. */
4 foreach entity vin V do
/* Initialize Groupsi and Groupsz as a map. */
5 Groupsi < map();
6 Groupsz < map();
7 foreach entity u in V do
/* If there exists edge from v to u, then M[u][v] > 0. */
8 r1 < Mv][ul;
9 ro < Mlu][v];
10 if 71 > 0 then
11 L Groupsi|ri] < Groupsi[ri] Um;
12 if 72 > 0 then
13 L Groupsz|ri] < Groupsz[ri] Un;
14 foreach group in Groups: do
/* Add groups with more than 2 elements to C'E_list */
15 if len(group) > 2 then
16 | CE_list « CE_list U group
17 foreach group in Groupsz do
18 if len(group) > 2 then
19 L CE_list < CE_list U group
20 return CE_list;
# Task Definition

Answering the following question which contains one or more answers. You should extract the answer
spans from the given context. Use ‘#° to separate each answers,for example, if the answers are *Tom’
and ’Jerry’, you should output *Tom # Jerry’. Your reply should not contain any explanation.

# Examples
Example 1:

Inputs:

Question: questionl
Passage: passagel
Outputs:

Answers: answers1

Inputs:

Question: question
Passage: passage
Outputs:

Answers:

Table 7: Prompts for MSQA task
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# Role:
You are an English exam question designer specializing in generating corresponding questions based
on given articles and candidate answers.

# Input:

Context: Contains multiple sentences.

Answers: Includes multiple text fragments or phrases.

Key Entity: All candidate answers share the same relationship type with this entity.
Relation: The shared relationship between the key entity and each candidate answer.

# Output:

Question: An interrogative sentence that must meet the following conditions:

1. Answerability: The question should be answerable by reading the article, with all candidate answers
serving as correct responses.

2. Relevance: The question must relate to the key entity and specifically inquire about the corresponding
relationship type.

3. Fluency: The question must be grammatically correct and free of errors or awkward phrasing.

Additional notes:

The generated question should naturally elicit all provided candidate answers when answered correctly.
The relationship between the key entity and answers should be clearly reflected in the question’s
formulation.

Avoid yes/no questions to ensure answers require the provided text fragments.

# Example:

Input:

Answers: basketball ; football

Relation: LIKE

key_entity: John

Context: John lives in New York. He likes playing basketball and football.

Output:
Question: What sports does John like?

Table 8: Prompts for the question generation step of REGULAR.
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# Task Instruction:

You will be given an article. Your task is to:

1. Generate a question based on the article’s content.

2. Provide answers to the question using multiple direct text snippets extracted from the article.

# Output Requirements:

- Format the output as JSON with the following keys:

- "question": The generated question (value: string).

- "answers": A list of answer snippets copied verbatim from the article (value: array of strings).

Here are some examples for you:
Example 1:

Input:

Passage: passage

Output:

{

"question":{question }

"answers:[

answerl },{answer2 }

{
]
}

Table 9: Prompts for the QAGen-LLM.

Task Instruction:

You will be given an article. Your goal is to identify all "commonality entities" in the text. Here, Entity
A and Entity B are defined as "commonality entities" if they share the same relation type with Entity
C (referred to as the "key entity"). Note that an article may contain multiple such entities, and your
output must list all of them. You should also note that the "commonality entities" and "key entities"
must be in the given passage.

Output Format:
Provide the results in JSON format with the following keys:

o ne,

commonality_entities"‘: A list of all identified commonality entities (value: array). The entities
may contain multiple words and you should split each word with space.

ne,

- “"key_entity"*: The key entity (value: string).

- “"relation"*: The shared relation type (value: string).
Your output should start with "{" and end with "}".

Here is an example for you:

Input: Idiopathic nonspecific inflammatory disease of the orbit (orbital pseudotumor) was diagnosed
detected in a cat. The cat had progressive lagophthalmia, keratitis, and decreased motion of the
right eye. Four months later, the left eye was affected in a similar manner. Response to antibiotics
and immunosuppressive agents was not detected. Computed tomography of the brain and orbits
revealed bilateral thickening of the sclera and episcleral tissues. Bilateral exenteration of the eyes was
required because of worsening clinical signs or corneal perforation. Histologic examination revealed
proliferation of spindle cells and fibrovascular tissue within and adjacent to the sclera.

Output: {"commonality_entities": ["Lagophthalmia", "Keratitis","Decreased Motion Of The Right
Eye"], "key_entity": "Cat", "relation": "HAS_SYMPTOM"}

Table 10: Prompts for the QAGen-LLM.
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