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Abstract

Modern speech applications require compact
embeddings that generalize across both linguis-
tic and paralinguistic tasks. However, most
existing embeddings are task-specific and fail
to transfer effectively across domains. We
propose wavCSE, a feature-based multi-task
learning model that produces a fixed-size uni-
fied speech embedding suitable for both lin-
guistic and paralinguistic tasks. wavCSE is
jointly trained on keyword spotting, speaker
identification, and emotion recognition, achiev-
ing state-of-the-art performance on all three
tasks. The resulting unified embedding is then
evaluated on twelve downstream tasks span-
ning both linguistic and paralinguistic domains.
Experimental results show that it outperforms
strong baselines on nine of the twelve tasks,
indicating effective generalization across do-
mains. To streamline embedding generation,
we introduce a recursive layer selection strat-
egy that identifies the most informative hid-
den layer outputs from the upstream model and
refine how these selected outputs are aggre-
gated in the downstream model. These enhance-
ments reduce memory usage and computational
cost while improving task performance, mak-
ing them broadly applicable to self-supervised
learning-based speech processing models.

1 Introduction

Speech is a time-varying signal that conveys multi-
ple layers of information, including linguistic con-
tent, speaker identity, emotional state, and other
paralinguistic attributes (Yang et al., 2021). To
represent raw speech effectively, prior work has ex-
plored two main strategies: feature engineering and
representation learning (Latif et al., 2023). Feature
engineering relies on domain expertise to manually
design features such as Mel-frequency cepstral co-
efficients (MFCCs), which aim to extract relevant
acoustic properties from the signal. In contrast,
representation learning enables models to automat-
ically learn informative features from data, which

typically leads to better generalization across a va-
riety of speech processing tasks.

Speech representation learning has evolved
through successive methodological advances. Early
approaches relied on clustering and statisti-
cal models such as Gaussian Mixture Models
(GMMs) (Gauvain and Lee, 1994) and Hidden
Markov Models (HMMs) (Bahl et al., 1986) to
capture low-level acoustic patterns. These were fol-
lowed by supervised deep neural networks, which
enabled more expressive representations but re-
quired large amounts of labeled data. More re-
cently, self-supervised learning (SSL) has become
the dominant paradigm, with models such as
wav2vec (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), WavLM (Chen et al., 2022), and
Whisper (Radford et al., 2023) pre-trained on large-
scale unlabeled speech corpora. Representations
extracted from these SSL models have achieved
state-of-the-art (SOTA) performance on a wide
range of downstream tasks (Yang et al., 2021; Chen
et al., 2022), demonstrating strong generalization
and the ability to capture diverse speech character-
istics.

The representations discussed so far are typically
variable-length sequences of vectors that scale with
the duration of the speech signal (Baevski et al.,
2020). Each vector corresponds to a short, fixed-
duration time window, commonly referred to as
a frame, and captures low-level acoustic features
specific to that frame. In contrast, a speech em-
bedding is a higher-level representation derived
by aggregating frame-level representations using
neural networks, resulting in a single fixed-size
vector that summarizes the entire speech signal,
regardless of its duration (Shi et al., 2020). This
compact format enables efficient storage on edge
devices and real-time transmission of speech of
any length. However, converting variable-length
sequences into fixed-size vectors often leads to in-
formation loss (Porjazovski et al., 2024), posing
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a key challenge in designing embeddings that pre-
serve the full richness of the original speech signal.

Most existing speech embeddings are optimized
for specific tasks and do not generalize well across
different types of downstream tasks. For exam-
ple, speaker embeddings such as i-vector (Dehak
et al., 2011), d-vector (Variani et al., 2014), and
x-vector (Snyder et al., 2018) are primarily de-
signed for speaker verification (SV). Similarly, task-
specific embeddings have been proposed for lin-
guistic content (Haque et al., 2019). However, the
development of a fixed-size unified speech embed-
ding that supports both linguistic and paralinguistic
tasks remains relatively underexplored. This limita-
tion is increasingly problematic for modern speech
applications such as virtual assistants, which de-
mand models capable of performing multiple tasks
simultaneously. For instance, keyword spotting
(KS) enables wake-word detection, speaker identi-
fication (SID) enables personalization, and emotion
recognition (ER) enhances user interaction. These
use cases highlight the need for a compact, fixed-
size speech embedding that generalizes well across
diverse downstream tasks.

In this paper, we propose a feature-based multi-
task learning (MTL) model called wavCSE, de-
signed to generate a fixed-size speech embedding
that generalizes across diverse tasks. Our pipeline
is organized into two phases, each with indepen-
dent training and testing. In Phase 1, wavCSE is
jointly trained on three classification tasks: key-
word spotting (KS), speaker identification (SID),
and emotion recognition (ER), to determine the
optimal unified embedding that captures linguis-
tic, speaker-related, and emotional information. In
Phase 2, the trained wavCSE model is frozen, and
fixed embeddings extracted from it are used as
input features to train and evaluate task-specific
models on twelve downstream tasks, including KS,
SID, and ER on new datasets, as well as additional
tasks spanning both linguistic and paralinguistic
domains. Experimental results show that in Phase
1, wavCSE achieves strong performance across the
three training tasks, while in Phase 2, it outper-
forms strong task-specific baselines on nine of the
twelve downstream tasks, demonstrating its effec-
tiveness as a general-purpose speech embedding.

Beyond deriving a unified speech embedding,
we introduce two architectural improvements in
wavCSE that enhance embedding generation and
are broadly applicable to any SSL-based speech
processing pipeline. First, we propose a recur-

sive layer selection strategy to identify the most
informative transformer encoder layers from the
pre-trained WavLM Large model. Unlike prior
approaches that utilize all 25 layers (Chen et al.,
2022), our method selects only 16, reducing up-
stream model memory usage by 24% while im-
proving downstream task performance. Second,
we replace the commonly used weighted average
pooling (Yang et al., 2021) with learned-norm pool-
ing to aggregate the selected transformer encoder
layer outputs in the downstream model. This pool-
ing mechanism dynamically adjusts each layer’s
output contribution based on its norm, enabling bet-
ter capture of task-relevant information. Together,
these enhancements reduce computational cost and
improve accuracy, enhancing both the efficiency
and scalability of SSL-based speech models.

2 Methodology

We propose wavCSE, a model designed to de-
rive a unified speech embedding. As shown in
Figure 1, its architecture builds on the SUPERB
benchmark (Yang et al., 2021), which consists
of two components: an upstream model and a
downstream model. The upstream model is a self-
supervised learning (SSL) model that extracts rep-
resentations from raw speech signal, while the
downstream model performs task-specific learning
based on these representations. wavCSE adopts
this structure and employs the pre-trained WavLM
Large (Chen et al., 2022) as the upstream model,
selected for its strong performance and ability to
capture both linguistic and paralinguistic informa-
tion. In contrast to SUPERB, which optimizes for
task-specific outputs, wavCSE is designed to pro-
duce a single embedding that generalizes across
tasks. To this end, we introduce three key modifi-
cations to the original SUPERB architecture.

2.1 Recursive Layer Selection

The first architectural modification alters how trans-
former encoder layer outputs from the upstream
model are used in the downstream model. In
the SUPERB architecture, all transformer encoder
layer outputs, along with the input to the first trans-
former encoder layer, are used as speech repre-
sentations for downstream tasks. Since wavCSE
employs WavLM Large, which generates 25 hid-
den layer outputs, using all of them results in high-
dimensional speech representations and increases
computational complexity in the multi-task learn-
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Figure 1: Overview of the proposed wavCSE architecture for deriving a unified speech embedding. The process
begins by feeding input audio into the pre-trained WavLM-Large model (Chen et al., 2022), which outputs 25
frame-level hidden layer outputs. A subset of informative layer outputs from these 25 is selected using the proposed
layer selection strategy. The selected layer outputs are then concatenated along the layer axis and aggregated using
temporal pooling. The pooled output is passed through a fully connected layer, followed by layer-wise pooling, and
then another fully connected layer to produce the final unified speech embedding. During wavCSE training, the
unified embedding is optimized for three tasks: keyword spotting (KS), speaker identification (SID), and emotion
recognition (ER). After training, the resulting embedding can be used as input to any downstream task model.

ing (MTL) setup in the downstream model.

To address this, wavCSE introduces a strategy
called recursive layer selection, inspired by Recur-
sive Feature Elimination (RFE) (Zhang and Liu,
2007). We begin by applying weighted average
pooling (WAP) (Kalantidis et al., 2016) over all
25 layer outputs, using the learned weights to as-
sess the relative importance of each output. The
least informative layer output, as determined by
its weight, is removed, and the model is retrained.
This process continues recursively, removing one
layer output at a time, until only a single output
remains. Among all intermediate subsets of layer
outputs generated during this process, we select
the one that achieves the highest average accuracy
across the three training tasks. The detailed evalua-
tion and performance trend of this recursive process
are presented in Section 4.

2.2 Refined Layer-wise Pooling Strategy

The second architectural modification addresses
how the selected layer outputs are aggregated in
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the downstream model. While the SUPERB frame-
work applies mean pooling over time and weighted
average pooling across layers, wavCSE retains
mean pooling for temporal aggregation, as the tem-
poral structure of the outputs remains unchanged
after selection. However, we re-evaluate the layer-
wise pooling strategy to better accommodate the
reduced number of selected layers. Specifically, we
compare ten layer-wise pooling methods described
in SUPERB-EP (Sritharan et al., 2025) and adopt
the one that achieves the highest average accuracy
across the three training tasks as the final pooling
mechanism for layer-wise aggregation.

2.3 Feature-based Multi-task Learning

The third architectural modification redesigns the
downstream model to support the learning of a uni-
fied speech embedding. While SUPERB adopts
separate single-task models, wavCSE employs a
feature-based MTL framework (Zhang and Yang,
2022) to jointly train multiple tasks using shared
features. The architecture includes shared layers



Downstream Task Dataset Language
. Football Keyword
Keyword Spotting (KS) (Rostami et al., 2022) fa
Language Identification (SLI) VoxForge (MacLean, 2018) de, Ei:tn,rzs’ fr
bn, gu, hi, kn
Speaker Identification (SID) Kathbath (Javed et al., 2023) ml, mr, or, pa
sa, ta, te, ur
Speaker Verification (SV) CNCeleb v1 (Fan et al., 2020) zh
Gender Recognition (SGR) TIMIT (Garofolo et al., 1993) en
Age Recognition (SAR) TIMIT (Garofolo et al., 1993) en
Dialect Recognition (SDR) TIMIT (Garofolo et al., 1993) en
Emotion Recognition (ER) AESDD (Vryzas et al., 2018) el
Valence Recognition (VR) IEMOCAP (Busso et al., 2008) en
Activation Recognition (AR) IEMOCAP (Busso et al., 2008) en
Dominance Recognition (DR) IEMOCAP (Busso et al., 2008) en
Intent Classification (IC) Fluent Speech Commands en

(Lugosch et al., 2019)

Table 1: Downstream tasks, datasets, and corresponding languages used in Phase 2 experiments.

followed by task-specific output layers, allowing
the model to learn generalizable features while pre-
serving task-specific distinctions. During training,
we compute individual losses for each task and
combine them using the equal-weighting loss bal-
ancing strategy (Lin and Zhang, 2023), where all
task losses contribute equally to the total loss. This
approach is simple, effective, and commonly used
in feature-based MTL models.

3 Experimental Setup

We conduct our experiments in two distinct phases.
In Phase 1, the focus is on optimizing the wavCSE
architecture and training it jointly on multiple tasks
to obtain a robust unified embedding. In Phase
2, the trained wavCSE model is frozen, and the
learned embedding is used to train and evaluate
task-specific models on unseen downstream tasks
and datasets in multiple languages. All datasets are
used with their standard training and test splits in
both phases to ensure fair and consistent evaluation.
All experiments are implemented in PyTorch and
executed on an NVIDIA Quadro RTX 6000 GPU
with 30 GB of memory. For optimization,! we em-
ploy grid search to tune the batch size and learning
rate, and apply Bayesian optimization (Wu et al.,
2019) to determine the optimal layer dimensions
and regularization parameters.

'Experimental hyperparameters are as follows. For
wavCSE, the two fully connected layers had output dimen-

Multi-task learning (MTL) models are typically
trained on datasets jointly annotated for all target
tasks (Zhang and Yang, 2022). However, to the
best of our knowledge, no single dataset exists that
satisfies this requirement for our work. Following
the approach of Tang et al. (2017), we construct
a composite MTL dataset in Phase 1 by merging
task-specific datasets. Specifically, we use Google
Speech Commands v1.0 (Warden, 2018) for KS,
VoxCeleb vl (Nagrani et al., 2017) for SID, and
IEMOCAP (Busso et al., 2008) for ER. As all three
tasks are classification problems, we train wavCSE
using cross-entropy loss for each task and report
accuracy as the evaluation metric.

In Phase 2, we evaluate the generalizability of
the learned speech embedding across 12 down-
stream tasks listed in Table 1. These include seven
classification tasks (KS, SLI, SID, SGR, SDR, ER,
and IC), four regression tasks (SAR, VR, AR, and
DR), and one verification task (SV). Each classifi-
cation task is modeled using a single-layer neural
network, and performance is measured by accu-
racy. For regression, the affective dimensions (VR,
AR, and DR) are jointly modeled using a single-
layer neural network and evaluated with the Con-
cordance Correlation Coefficient (CCC), whereas
SAR is evaluated separately using Mean Absolute

sions of 512 (FC1) and 2000 (FC2). We used a batch size
of 2048 during Phase 1 and 64 during Phase 2. Regulariza-
tion was applied in both phases with L1 A = 1 x 10~" and
L2A=1x10"".
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Figure 2: Layer-wise importance weights assigned by
weighted average pooling in the initial wavCSE model.
The x-axis denotes encoder layers (0 to 24) of WavLM-
Large, and the y-axis shows the learned weight for each
layer. Layer O represents the input to the first trans-
former encoder, while the others correspond to the out-
puts of the respective encoder layers.

Error (MAE). SV is performed using Probabilistic
Linear Discriminant Analysis (PLDA), with perfor-
mance measured by Equal Error Rate (EER).

4 Results and Discussion

In the SUPERB architecture (Yang et al., 2021), all
25 hidden layer outputs from the upstream model
are aggregated using weighted average pooling
(WAP). We adopt the same approach in our ini-
tial wavCSE setup and examine the distribution of
learned importance weights across these 25 outputs
from WavLM Large. As shown in Figure 2, lower-
layer outputs consistently receive higher weights
than upper layers. This suggests that lower layers
capture general acoustic information transferable
across tasks, whereas higher layers encode more
specialized or task-specific features that contribute
less to overall generalization. Motivated by this
observation, we aim to eliminate less informative
layers. However, defining a fixed threshold for
removal is nontrivial due to potential interdepen-
dencies among layers.

To address this, we apply the recursive represen-
tation selection strategy introduced in Section 2.1.
As shown in Figure 3, the highest average accu-
racy across KS, SID, and ER is achieved in the
10™ round, by which point nine layers have been
eliminated. The selected subset at this round in-
cludes layers 0—14 and layer 17. These results
support the earlier observation that upper layers
contribute less and demonstrate that only 16 of the
original 25 hidden layer outputs are sufficient to
construct effective representations for downstream

o Mw
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85 —— ER

Accuracy (%)

80
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Figure 3: Performance of the initial wavCSE model
across recursive elimination rounds. The x-axis shows
the number of elimination rounds (1-25), and the y-
axis presents task accuracy for keyword spotting (KS),
speaker identification (SID), and emotion recognition
(ER). Round 1 corresponds to using all 25 layer outputs.

Pooling KS SID ER

Weighted Average 98.32 97.08 77.58
Max 98.43 96.59 76.85
Mean 98.23 97.10 75.95
Mixed 98.62 9691 77.94
Gated 98.55 97.44 77.03
Learned-Norm 98.81 97.59 79.39
Log-Sum-Exp 98.52 97.89 77.22
Smooth-Maximum 98.36 97.18 77.94
Auto 98.45 9741 78.12
Self-Attention 98.55 96.99 76.13

Table 2: Comparison of different layer-wise pooling
strategies in wavCSE, with measured performance on
keyword spotting (KS), speaker identification (SID),
and emotion recognition (ER).

tasks. This also implies that loading up to the 171
transformer encoder layer is sufficient when using
WavLM Large as the upstream model, reducing its
parameter count from 315M to 240M and memory
usage from 1.175 GB to 0.894 GB.

We further investigated whether WAP remained
the most effective method for aggregating the se-
lected layer outputs or if alternative pooling strate-
gies could offer improved performance. To this
end, we evaluated ten pooling techniques, includ-
ing WAP, as described as layer-wise pooling meth-
ods in SUPERB-EP (Sritharan et al., 2025), and
measured accuracy on KS, SID, and ER. As shown
in Table 2, learned-norm pooling (LNP) achieved
the highest average accuracy across the three tasks,
outperforming all other methods on KS and ER,
and ranking second on SID. Unlike WAP, which
performs a linear combination of the selected layer
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Model KS SID ER
Vygon et al. (2021) 98.55 - -

Hu et al. (2023) - 95.65 -
Peng et al. (2021) - - 79.10
wav2vec 2.0 Large  96.66 86.14 65.64
HuBERT Large 95.29 90.33 67.62
WavLM Large 97.86 9549 70.62
wavCSE 98.81 97.59 79.39

Table 3: Performance comparison of the proposed

wavCSE model against task-specific models and SSL-
based baselines on keyword spotting (KS), speaker iden-
tification (SID), and emotion recognition (ER).

outputs, LNP applies a non-linear transformation
that adapts to their statistical distribution. These re-
sults suggest that wavCSE benefits from non-linear
pooling strategies when aggregating information
across layers.

Based on the experiments discussed thus far, we
finalize the wavCSE architecture and now evaluate
the finalized model against state-of-the-art (SOTA)
baselines on the three tasks used for model devel-
opment. These baselines include top-performing
individual models for KS, SID, and ER (Vygon and
Mikhaylovskiy, 2021; Hu et al., 2023; Peng et al.,
2021), as well as self-supervised learning (SSL)
models such as wav2vec 2.0 (Baevski et al., 2020),
HuBERT (Hsu et al., 2021), and WavLM (Chen
et al., 2022). As shown in Table 3, wavCSE out-
performs all baselines across the three tasks, sur-
passing both task-specific models and SSL-based
models. These results validate the effectiveness of
the proposed modifications and confirm that the
finalized wavCSE model is competitive with SOTA
approaches.

We next evaluate the unified speech embedding
derived from the trained wavCSE model by ex-
tracting the output of the final shared layer, fol-
lowing Shi et al. (2020). In this second phase, the
wavCSE model is kept frozen, and the extracted
fixed-size embeddings are used as input features to
train and evaluate lightweight task-specific models
across twelve downstream tasks, as described in
Section 3. Each task is benchmarked against its
corresponding SOTA baseline: KS (Rostami et al.,
2022), SLU (Sarthak et al., 2019), SID (Sritharan
and Thayasivam, 2025), SV (Fan et al., 2020), SGR,
SAR, SDR (Wang and Sun, 2024), ER (Ma et al.,
2024), VR, AR, DR (Messaoudi et al., 2024), and
IC (Chen et al., 2022).

Table 4 presents the performance of downstream

models trained using wavCSE-based embeddings.
The results show that wavCSE-based embeddings
outperform the SOTA baselines on nine out of
twelve tasks, demonstrating strong generalizabil-
ity across a diverse range of downstream settings.
The largest gains are observed on SDR and VR,
likely due to the diversity of accents and emotional
expressiveness captured during wavCSE develop-
ment. For linguistic tasks, the embeddings improve
over the best baselines on KS and SLI, while among
paralinguistic tasks, consistent gains are observed
on SGR, SAR, ER, AR, and DR. These findings
confirm that the fixed-size embedding learned in
Phase 1 transfers effectively to both linguistic and
paralinguistic tasks in Phase 2.

Among the three tasks where wavCSE-based
embeddings do not achieve the top performance,
SID falls marginally short, differing only in the
first decimal place from the best baseline. The
baseline employs an upstream model trained on a
multilingual corpus including low-resource Indian
languages, whereas wavCSE builds on WavLM
Large, pre-trained solely on English data. For SV,
the results indicate a lack of fine-grained speaker-
discriminative cues, despite strong performance on
related speaker profiling tasks such as SGR, SAR,
and SDR. The largest gap appears in IC, where
the embedding achieves about 70% of the SOTA
score. While linguistic tasks such as KS and SLI
are handled well, IC likely requires deeper seman-
tic abstraction not yet captured by the current em-
bedding, motivating the inclusion of semantically
oriented tasks in future wavCSE development.

5 Conclusion and Future Work

This paper presented wavCSE, a feature-based
multi-task learning model built on WavLM Large,
designed to learn fixed-size unified speech embed-
dings that support both linguistic and paralinguis-
tic tasks. In the first phase, wavCSE was opti-
mized through joint training on keyword spotting,
speaker identification, and emotion recognition to
learn a robust unified embedding that captures lin-
guistic, speaker-related, and emotional informa-
tion. In the second phase, the trained model was
frozen, and the learned embedding was extracted
and evaluated across twelve downstream tasks us-
ing datasets from twenty-one languages covering
both high-resource and low-resource conditions.
The embedding outperformed strong task-specific
baselines on nine tasks and demonstrated consis-
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Model KS Model SLI Model SID Model SV
ResNet 95.88 1D ConvNet 93.70 IndicWav2Vec 79.26 i-vector 15.00
EfficientNet 95.83 2D ConvNet 94.30 Sritharan et al. 97.96 x-vector 11.99
wavCSE 96.46 wavCSE 99.23 wavCSE 97.33 wavCSE 16.87
Model SGR Model SAR Model SDR Model ER
MLP 98.00 MLP 6.66 MLP 16.00 data2vec 2.0 83.07
LSTM  99.00 LSTM 597 LSTM  15.00 emotion2vec 84.85
wavCSE 99.84 wavCSE 3.79 wavCSE 51.27 wavCSE 89.26
Model VR Model AR Model DR Model I1C
LSTM 0.32 LSTM 0.67 LSTM 0.53 HuBERT Large 98.76
CNNI1D 0.35 CNNID 0.65 CNNI1D 0.53 WavLM Large 99.31
wavCSE 0.67 wavCSE 0.68 wavCSE 0.59 wavCSE 71.00

Table 4: Comparison of downstream models trained on wavCSE-based embeddings with task-specific baselines
across twelve downstream tasks. Metrics and datasets are defined in Section 3.

tent generalization across linguistic and paralinguis-
tic domains. Although performance was slightly
lower on certain speaker-related and semantically
demanding tasks, the results confirm the effective-
ness and transferability of the embedding learned
by the proposed model.

Architectural enhancements introduced in
wavCSE for generating unified embeddings are
broadly applicable to any self-supervised learning-
based speech processing pipeline. First, we pro-
posed a recursive layer selection strategy to reduce
the number of transformer encoder outputs used
from the pre-trained WavLLM Large model, result-
ing in a more compact and efficient upstream con-
figuration. Second, we replaced weighted average
pooling with learned-norm pooling to aggregate the
selected outputs, which consistently improved task
performance across training objectives. For future
work, we plan to enhance the embedding’s ability
to capture semantic content, aiming for improved
results on tasks such as intent classification and slot
filling. We also intend to extend its applicability
beyond classification, regression, and verification
to generative tasks such as speech synthesis and
automatic speech recognition.

Limitations

This work focuses on developing a unified speech
embedding that supports classification, regression,
and verification tasks across both linguistic and par-
alinguistic domains. While the embedding demon-
strates strong performance in these areas, it has

not been extended to generative applications such
as speech synthesis or automatic speech recogni-
tion, which we leave for future work. Additionally,
we intentionally avoid data augmentation to ensure
that the model learns embeddings directly from raw
audio, consistent with our goal of generalizable
learning without task-specific heuristics. Finally,
we adopt WavLM Large as the upstream model,
which was pre-trained solely on English. Despite
this, our unified embedding demonstrates strong
performance across twenty-one languages, includ-
ing low-resource settings, as shown in Section 4.
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