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Abstract

Causal probing aims to analyze foundation
models by examining how intervening on their
representation of various latent properties im-
pacts their outputs. Recent works have cast
doubt on the theoretical basis of several lead-
ing causal probing methods, but it has been
unclear how to systematically evaluate the ef-
fectiveness of these methods in practice. To
address this, we define two key causal prob-
ing desiderata: completeness (how thoroughly
the representation of the target property has
been transformed) and selectivity (how little
non-targeted properties have been impacted).
We find that there is an inherent tradeoff be-
tween the two, which we define as reliability,
their harmonic mean. We introduce an empiri-
cal analysis framework to measure and evaluate
these quantities, allowing us to make the first
direct comparisons between different families
of leading causal probing methods (e.g., linear
vs. nonlinear, or concept removal vs. coun-
terfactual interventions). We find that: (1) all
methods show a clear tradeoff between com-
pleteness and selectivity; (2) more complete
and reliable methods have a greater impact on
LLM behavior; and (3) nonlinear interventions
are almost always more reliable than linear in-
terventions.

Our project webpage is available at: https:
//ahdavies6.github.io/causal_probing
_reliability/

1 Introduction

What latent properties do large language models
(LLMs) learn to represent, and how do they lever-
age such representations? Causal probing aims to
answer this question by intervening on a model’s
embedding representations of some property of in-
terest (e.g., parts-of-speech), feeding the altered
embeddings back into the LLM, and assessing how
the model’s behavior on downstream tasks changes

“These authors contributed equally to this work.

(Geiger et al., 2020; Ravfogel et al., 2020; Elazar
et al., 2021; Tucker et al., 2021; Lasri et al., 2022;
Davies et al., 2023; Zou et al., 2023). However, it
is only possible to draw meaningful conclusions
about the model’s use of the latent property if
we are confident that interventions have fully and
precisely carried out the intended transformation
(Davies and Khakzar, 2024). Indeed, prior works
have raised serious doubts about causal probing,
finding that many intervention methods may have a
large unintended impact on non-targeted properties
(Kumar et al., 2022), and that the original value of
the property may still be recoverable (Elazar et al.,
2021; Ravfogel et al., 2022b). So far, it has been
unclear how these doubts generalize to other types
of interventions or how serious they are in prac-
tice, as there is no generally accepted approach for
evaluating or comparing different methods.

Thus, our main goal in this study is to work
toward a systematic understanding of the effec-
tiveness and limitations of current causal probing
methodologies. Specifically, we propose an empir-
ical analysis framework to evaluate the reliability
of causal probing according to two key desiderata:

1. Completeness: interventions should fully

transform the representation of targeted prop-
erties.

2. Selectivity: interventions should not impact

non-targeted properties.
We define completeness and selectivity using “vali-
dation probes” that enable measuring the impact of
an intervention on both targeted and non-targeted
properties. We apply our framework to several in-
tervention methods and LLMs, observing that each
method exhibits a clear tradeoff between these cri-
teria. We also show that the most complete and
reliable interventions lead to the largest and most
consistent impact in LLM task performance. Fi-
nally, we find a substantial difference between the
reliability of linear versus nonlinear interventions,
where nonlinear methods are almost universally
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Figure 1: Causal Probing and Our Reliability Framework. The process of causal probing is shown in the gray
box, with our reliability framework in the purple box.

* Causal Probing: embeddings h' are extracted from layer L = [ of a model and used to train a probe g to
predict the value Z = z of property Z from embeddings (e.g., the number of the subject, boy, is Z = Sg
for singular). A causal probing intervention do(Z = P1) uses the probe gz to modify the representation
encoded by h' to encode plural instead. The resulting intervened embedding h' is fed back into the model at
layer L = [ + 1 and the forward pass is completed, changing the original prediction opens to the intervened
prediction open.

* Reliability Framework: instead of feeding the intervened embedding h! back into the model, it is passed
alongside h' to validation probes {v, } that independently test whether the intervention has had the intended
effect. Completeness is measured as the similarity between the validation probe prediction and the target
distribution for the intervention (e.g., a perfectly complete counterfactual intervention do(Z = P1) would lead
validation probe vz to predict plural with probability P,(Z = Pl|fll) = 1), and selectivity is the similarity
between the validation probe distribution for non-targeted properties before and after the intervention (which,

for a perfectly selective intervention, should not change).

more reliable than linear methods across LLMs
and between different layers. This suggests that
interventions relying on the linear representation
hypothesis (see, e.g., Vargas and Cotterell, 2020;
Ravfogel et al., 2020, 2022a; Tigges et al., 2023;
Burns et al., 2023; Jiang et al., 2024; Park et al.,
2024b,a) may yield inaccurate interpretations of
model internals and behaviors. Finally, our frame-
work also provides the first concrete basis for cal-
ibrating intervention hyperparameters to balance
completeness and selectivity, allowing for more re-
liable interpretation of LLMs using existing meth-
ods.

2 Background and Related Work

Probing Probing aims to analyze which proper-
ties (e.g., part-of-speech, sentiment labels, etc.)
are represented by a deep learning model (e.g.,
LLM) by training classifiers to predict these prop-
erties from latent embeddings (Belinkov, 2022).
Given, say, an LLM M, input token sequence
x = (21, ..., zy), and embeddings h! = M;(x) of
input x at layer [ of M, suppose Z is a latent prop-

erty of interest that takes a discrete value Z = z for
input x. Here, the formal goal of probing is to train
a classifier gz : Mj(x) — =z to predict the value of
Z from h'. On the most straightforward interpre-
tation, if gz achieves high accuracy on the probe
task, then the model is said to be “representing” Z.
An important criticism of such claims is that corre-
lation does not imply causation — i.e., that simply
because a given property can be predicted from
embedding representations does not mean that the
model is using the property in any way (Hewitt and
Liang, 2019; Elazar et al., 2021; Belinkov, 2022;
Davies et al., 2023).

Causal Probing A prominent response to this
concern has been causal probing, which uses
probes to remove or alter that property in the
model’s representation, and measuring the impact
of such interventions on the model’s predictions
(Elazar et al., 2021; Tucker et al., 2021; Lasri et al.,
2022; Davies et al., 2023; see Figure 1). Specifi-
cally, causal probing performs interventions do(2)
that modify M’s representation of Z in the embed-
dings h!, producing h!, where interventions can
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either encode a counterfactual value Z = 2’ (de-
noted do(Z = 2z’) where z # 2’), or remove the
representation of Z entirely (denoted do(Z = 0)).
Following the intervention, modified embeddings
h! are fed back into M beginning at layer [ + 1
to complete the forward pass, yielding intervened
predictions P/ (+|x,do(Z)). Comparison with the
original predictions Pj;(-|x) allows one to mea-
sure the extent to which M uses its representation
of Z in computing them.

Causal Probing: Limitations Prior works have
indicated that information about the target prop-
erty that should have been completely removed
may still be recoverable by the model (Elazar et al.,
2021; Ravfogel et al., 2022b, 2023), in which case
interventions are not complete; or that most of the
impact of interventions may actually be the result
of collateral damage to correlated, non-targeted
properties (Kumar et al., 2022), in which case in-
terventions are not selective. How seriously should
we take such critiques? We observe several impor-
tant shortcomings in each of these prior studies on
the limitations of causal probing interventions:

1. These limitations have only been empirically
demonstrated for the task of removing infor-
mation about a target property from embed-
dings such that the model cannot be fine-tuned
to use the property for downstream tasks (Ku-
mar et al., 2022; Ravfogel et al., 2022b, 2023).
But considering that the goal of causal prob-
ing is to interpret the behavior of an existing
pre-trained model, the question is not whether
models can be fine-tuned to use the property;
it is whether models already use the property
without task-specific fine-tuning, which has
not been addressed in prior work. Do we ob-
serve the same limitations in this context?

2. These limitations have only been studied for
linear concept removal interventions (e.g.,
Ravfogel et al. 2020, 2022a), despite the
recent proliferation of other causal probing
methodologies, including nonlinear (Tucker
etal., 2021; Ravfogel et al., 2022b; Shao et al.,
2022; Davies et al., 2023) and counterfactual
interventions (Ravfogel et al., 2021; Tucker
et al., 2021; Davies et al., 2023) (see Sec-
tion 4). Do we observe the same limitations
for, e.g., nonlinear counterfactual interven-
tions?

In this work, we answer both questions by provid-
ing a precise, quantifiable, and sufficiently general

definition of completeness and selectivity that it is
applicable to all such causal probing interventions,
and carry out extensive experiments to evaluate
representative methods from each category of inter-
ventions when applied to a pre-trained LLM as it
performs a zero-shot prompt task.

Causal Probing: Evaluation Note that, while
we are the first to define and measure the complete-
ness and selectivity of causal probing interventions,
RAVEL (Huang et al., 2024) provides a broadly
analogous evaluation framework and dataset with
respect to interchange interventions. Methods for
performing interchange interventions over embed-
ding representations of a given property are trained
on counterfactual minimal pairs of the property
(i.e., two inputs which are identical in all respects
except the input property; Geiger et al., 2020; Vig
et al., 2020; Geiger et al., 2024). In contrast, causal
probing, as studied in this work, does not require
minimal pairs for training probes or performing
interventions (Davies et al., 2023), allowing our
empirical analysis to be carried out without access
to such data.

3 Evaluating Causal Probing Reliability

Recall that our main goal in this work is to evaluate
intervention reliability in terms of completeness
(completely transforming M’s representation of
some target property Z;) and selectivity (minimally
impacting M’s representation of other properties
Zj # Z;).! Given that we cannot directly inspect
what value M encodes for any given property Z;,
it is necessary to introduce the notion of valida-
tion probes, which we use to measure the extent to
which interventions have fulfilled either criterion.
Our complete reliability framework is visualized in
Figure 1.

Validation Probes We define a validation probe
v as a probe (trained independently from interven-
tional probes; see Section 4) that returns a distri-
bution P, (Z|h) over the values of property Z, and
we interpret P,,(Z = z|h) as the degree to which
the model’s embedding representations® h given

'In this paper, we use selectivity in the sense described
by Elazar et al. (2021), and not other probing work such as
Hewitt and Liang (2019), where it instead refers to the gap in
performance between probes trained to predict real properties
Versus nonsense properties.

%For simplicity, we omit the superscript [ denoting the layer
embeddings h' from which h is extracted; but our framework
can be applied to study interventions over embeddings from
any layer.
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natural-language input x encodes a belief that x
has the property Z = 2. So, if h encodes value
Z = %z with complete certainty, v should return
a degenerate distribution P,(Z|h) = 1(Z = 2),
whereas we would expect a uniform distribution
P,(Z|h) = U(Z) if h does not encode property Z
at all.> Thus, validation probes enable us to esti-
mate how well various intervention methods carry
out the target transformation. (See Section 4 for
details on validation probe training.)

Completeness If a counterfactual intervention
do(Z = 2’) is perfectly complete, then it would
produce a perfectly-intervened h’,__, that fully
transforms h from encoding value Z = z to en-
coding counterfactual value Z = 2’ # z. Thus, af-
ter performing the intervention, validation probe v
should emit P,(Z = 2'|h},_ ) = P;(Z =2') =
1. For concept removal interventions do(Z = 0), a
perfectly complete representation h’,_, should not
encode Z atall: P,(Z|h}_,) = P3(2) =U(Z).*

We can use any distributional distance metric
(-, -) bounded by [0, 1] to determine how far the
observed distribution P = P,(Z|hy) is from the
“goal” distribution . Throughout this work, we
use total variation (TV) distance, which allows us
to directly compare counterfactual and concept re-
moval distributions: in both cases, 0 < ¢(hz) < 1,
where attaining 1 means the intervention had its
intended effect in transforming the encoding of
Z. Finally, for a given set of test embeddings
H = {h*}"_ | the aggregate completeness over
this test set C'(Hy) is the average c(fﬁz) across all
h* € H.

For counterfactual interventions, we measure
completeness as:

~

c(hy) =1-05(Pz, Py) (1)

If the intervention is perfectly complete, then
Pz = P} and ¢(hz) = 1. On the other hand,
if Py is maximally different from the goal dis-
tribution P} (e.g., Py = Py(Z = z|lhz_.) =

3 A validation probe’s prediction is subtly different from the
prediction an arbitrary classifier should make in the absence
of any evidence about Z: such a classifier should revert to the
empirical distribution P(Z).

“This is only expected when using concept removal in-
terventions for causal probing — i.e., when intervening on a
model’s representation and feeding it back into the model to
observe how the intervention modifies its behavior. When con-
sidering concept removal interventions for concept removal (a
more common setting), a more appropriate “goal” distribution
P7 would be P(Z), the label distribution. See Appendix A
for further discussion.

1), then ¢(hyz) = 0. For properties with more
than two possible values, completeness is com-
puted by averaging over each possible counter-
factual value 2}, ..., 2, # 2, yielding c(hy) =
§ i élhz—.).

For concept removal interventions, we mea-
sure completeness as:

~ k ~
cthz) =1— 17— (P Fz) 2
where k is the number of values Z can take. The
normalizing factor is needed because P} is the
uniform distribution over k values and hence 0 <

Selectivity If an intervention on property Z; is se-
lective, the intervention should not impact M’s rep-
resentation of any non-targeted property Z; # Z;.
Thus, for both counterfactual and concept removal
interventions, validation probe v’s prediction for
any such Z; should not change after the interven-
tion.

To measure the selectivity of a modified repre-
sentation h;, with respect to Z;, denoted s;(hy,),
we can again measure the distance between the
observed distribution sz = P,(Zj|hy,) and
the original (non-intervened) distribution Pz, =
PU (Z i ‘ h) :

N 1 .
si(hz) =1——6(Pz.Pz) @)

where m = max (1 — min(Pz,), max(Pz,))

Since 0 < 5(]32j,PZj) < m, we divide by m to
normalize selectivity to 0 < sj(fl z;) < 1. If multi-
ple non-targeted properties Zj, , ..., Zj,.. are being
considered, selectivity s(hy,) is computed as the
average over all such properties s;,, (fl z,)- Finally,
analogous to completeness, the aggregate selectiv-
ity over a set of test embeddings Hz, = {h*}7_,
denoted S(Hy, ), is the average selectivity S(fllz)
across all h%i € Hy,.

Reliability Since completeness and selectivity
can be seen as a trade-off, we define the overall
reliability of an intervention R(H) as the harmonic
mean of C(H') and S(H'). This is analogous to
the F1-score, which is the harmonic mean of pre-
cision and recall: just as a degenerate classifier
can achieve perfect recall and low precision by al-
ways predicting the positive class, a degenerate
intervention can achieve perfect selectivity and low
completeness by performing no intervention at all.
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Using harmonic mean to calculate reliability heav-
ily penalizes such interventions.

4 Experimental Setting

LLMs We test our framework in experiments
across six language models: BERT (Devlin et al.,
2019), GPT-2 (Radford et al., 2019), three Pythia
models (160M, 1.4B, and 6.9B; Biderman et al.,
2023), and Llama 3.2 (3B, instruction-tuned;
Grattafiori et al., 2024). We include BERT and
GPT-2 to test causal probing methods in more tra-
ditional settings they were originally designed for
—e.g., BERT (an encoder-only masked language
model) has been very extensively studied in causal
probing (Ravfogel et al., 2020; Rogers et al., 2021;
Elazar et al., 2021; Ravfogel et al., 2021; Lasri
et al., 2022; Ravfogel et al., 2022b, 2023; Davies
et al., 2023), and many methods have been de-
signed specifically with this model in mind. We
include the range of Pythia models to study how
these methods scale and generalize to the popu-
lar GPT-like family of architectures (decoder-only
models trained on autoregressive language model-
ing). Finally, we account for the effect of popular
post-training techniques like instruction-tuning and
RLHF by studying the selected Llama model.’

Task Following several prior causal probing
works (Lasri et al., 2022; Ravfogel et al., 2021;
Arora et al., 2024), we select the prompting task
of subject-verb agreement. (In Appendix C.5,
we also repeat some experiments for the 101 task
introduced by Wang et al. 2023.) In subject-verb
agreement, each data point takes the form (x;, ;)
where x; is a sentence such as “the boy with the
keys [MASK] the door,” and the task of the LLM is
to predict P/ (y;|x) > Pas(y,|x) (here, that y;
“locks” rather than y; = “lock”) — see the example
in Figure 1. The causal variable Z, is the number
of the subject (Sg or P1), because (grammatically)
this is the only variable that determines the number
of the verb in English. The environmental (non-
causal) variable Z, is the number (Sg or P1) of the
noun immediately preceding the verb to be conju-
gated when that noun is not the subject (e.g., “keys”
in the phrase “with the keys”). Note that, in this
work, we consider a task in the simplest experimen-
tal setting (two binary properties) that allows us to

SFor  information on  post-training of  the
Llama-3.2-3B-Instruct model used in our experi-
ments, see: https://huggingface.co/meta-1lama/Llama
-3.2-3B-Instruct#training-data
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study interventions using our framework; however,
nothing in our methodology precludes the use of
more properties, or properties with more possible
values.

Dataset We use the LGD dataset (Linzen et al.,
2016), which consists of >1M naturalistic English
sentences from Wikipedia; from this we take only
sentences for which both singular and plural forms
of the target verb are in LLMs’ vocabularies. We
use 40% of the examples to train validation probes,
40% to train interventional probes, and 20% as
a test set. (More dataset details can be found in
Appendix B.1.)

Validation Probes For each layer / and probed
property Z, we experiment with several instanti-
ations of validation probes, including linear and
MLP probes across a range of hyperparameters
(Appendix B.2), observing similar results between
them (see Appendix C.3). Thus, for all results re-
ported in the main paper, we default to the val-
idation probe architecture and hyperparameters
with the highest validation-set accuracy for the
probed property.® Validation probes are trained
on data that is completely disjoint from that used to
train interventional probes, and where Z. and Z,
are made independent by subsampling the largest
(random) subset that preserves label distributions
P(Z.),P(Z.). This is important for validation
probes to serve as unbiased arbiters of selectiv-
ity, as spurious correlations between the variables
could lead a probe that is trained on property Z.
to partially rely on representations of Z. (Kumar
et al., 2022).”

Interventions We explore two (linear) concept
removal interventions: INLP (Ravfogel et al.,
2020), which iteratively trains classifiers on Z
and projects embeddings into their nullspaces; and
RLACE (Ravfogel et al., 2022a), which identifies
a minimal-rank subspace to remove information
that is linearly predictive of Z by solving a con-
strained minimax game. We explore one linear

®Note that this always results in MLP validation probes;
see Appendix C.3 for results with linear validation probes.
Validation sets used for selecting validation probes have the
same independence and label-distribution properties as their
train sets.

"We leave these spurious correlations in training data of
interventional probes to test the impact that they have on the
resulting interventions’ completeness and selectivity, as this is
a better proxy for their completeness and selectivity in more
realistic settings where controlling for spurious correlations
may not always be possible.
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Figure 2: Completeness, selectivity, reliability, and ATask Acc for all interventions in the final layer of Pythia-
160M. Each point in both plots corresponds to a different hyperparameter setting. (Appendix C.1 contains analogous

results for all other models.)

counterfactual method, AlterRep (Ravfogel et al.,
2021), which builds on INLP by projecting embed-
dings along classifiers’ rowspaces, placing them
on the counterfactual side of the separating hyper-
planes. Finally, we study three nonlinear coun-
terfactual methods, which are all gradient-based
interventions (Davies et al., 2023): a MLP probe
is trained on Z, then gradient-based (“white-box’)
adversarial attacks are applied to minimize the loss
of the probe with respect to the target counterfac-
tual value Z = 2’ within an L..-ball of radius ¢
around the original embedding. We experiment
with three gradient attack methods — FGSM (Good-
fellow et al., 2015), PGD (Madry et al., 2017), and
AutoAttack (Croce and Hein, 2020) — as described
in Appendix B.3. After intervening on Z. to obtain
representations h z., we use validation probes 6 to
measure completeness, selectivity, and reliability.
Due to compute limitations, we restrict our analysis
for Pythia-1.4B and -6.9B to three of the six meth-
ods: INLP, AlterRep, and FGSM. Note that this
includes at least one method from each of the three
classes of methods defined above (linear removal,
linear counterfactual, and nonlinear counterfactual,
respectively).

Impact on Model Behavior The ultimate goal
of causal probing is to measure a model M’s use
of a property Z by comparing intervened predic-
tions P/ (+|x,do(Z)) to its original predictions
Pas(¢|x). Our framework aims to measure the
reliability of the interventions themselves, a pre-
requisite to making claims about the underlying
model. It is nonetheless important to consider how
the completeness, selectivity, and reliability of a

given intervention relate to its impact on model
behavior. Thus, for each intervention, we also
feed intervened final-layer embeddings h' for all
test instances back into models immediately before
word prediction, measuring task accuracy based on
whether they assign the correct verb form a higher
probability, and subtract this “intervened” accuracy
from the original task accuracy (98.62%) for each
intervention to yield ATask Acc (cf. Elazar et al.,
2021; Lasri et al., 2022; Davies et al., 2023).

5 Experimental Results

Below, we present results for completeness, selec-
tivity, reliability, and ATask Acc of all interven-
tion methods in models’ final layer (Section 5.1),
then examine their reliability in earlier layers (Sec-
tion 5.2). Note that, while we only have space to
include plots for Pythia-160M (henceforth referred
to as “Pythia”) in this section of the main paper,
analogous plots for the other models are available
in Appendix C.

5.1 Final-Layer Results

First, we note that both validation probes are able
to consistently predict each property (97.3% and
94.4% accuracy for Z. and Z., respectively), which
is a necessary prerequisite to validate any further
results.

Completeness, Selectivity, & Reliability Each
intervention has a hyperparameter (¢ for GBIs,
rank r for INLP and RLACE, and « for AlterRep),
where increasing its value leads to stronger inter-
ventions. Thus, each hyperparameter setting yields
a different value of completeness, selectivity, and
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| BERT GPT2 Pythia-160M Pythia-1.4B  Pythia-6.9B Llama-3.2-3B
INLP 0.464  0.106 0.739 0.841 0.751 0.668
RLACE 0429 0.495 0.627
AlterRep | 0.835  0.427 0.717 0.597 0.519 0.891
FGSM 0.552  0.958 0.934 0.920 0.951 0.960
PGD 0.509  0.98 0.943
AutoAttack | 0.514  0.97 0.938

Table 1: Intervention scores for maximum-reliability hyperparameters in the final layer of all models. (See
Section 5.2 for results in earlier layers.) Scores are reported for the hyperparameter x,,; that maximizes the
reliability of each respective method, and the highest-reliability method for each model is bolded.

reliability for a given intervention. Figure 2a plots
selectivity against completeness for each method
in Pythia’s final layer, showing that increasing the
hyperparameter values yields higher completeness
and lower selectivity. (Analogous results for other
models, as well as plots of completeness, selectiv-
ity, and reliability broken down by method and hy-
perparameter value, are available in Appendix C.1.)

Table 1 shows these metrics for each method at
the hyperparameter that yields the highest reliabil-
ity. For all models other than BERT, the nonlin-
ear counterfactual methods (GBIs: FGSM, PGD,
and AutoAttack) have the highest overall reliabil-
ity; for BERT only, AlterRep is most reliable; and
otherwise, the linear methods (both removal and
counterfactual) tend to show middling reliability,
varying from a low of 0.106 for INLP on GPT2 to
a high of 0.841 for INLP on Pythia-1.4B.

Task Accuracy Figure 2b shows ATask Acc as a
function of the reliability for each intervention and
hyperparameter setting. For most methods and hy-
perparameter values, ATask Acc increases along-
side intervention reliability. Notably, the points
at which the GBIs (FGSM, PGD, and AutoAttack)
achieve the highest ATask Acc are not at their high-
est reliability values, resulting in a backward curve
visible at the top of Figure 2b, corresponding to
hyperparameter € being raised past the point of
maximum reliability where there is near-perfect
completeness but much lower selectivity (see Ap-
pendix C.1). Finally, RLACE and INLP shows
a similar impact on task accuracy even for differ-
ent completeness and reliability scores due to its
“noisy” equilibrium in reliability and completeness
for high rank r (see Appendix C.1).

5.2 Reliability by Layer

As in the final layer, validation probes over earlier
layers can consistently predict each property with
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Figure 3: Maximum reliability by layer for each
intervention across all layers of Pythia-160M. (Ap-
pendix C.2 contains analogous results for all other mod-
els.)

high accuracy (see Appendix C.4). Figure 3 shows
the reliability for each method using the hyperpa-
rameters that obtain the highest reliability in that
layer. Across all layers, each nonlinear counterfac-
tual method (GBIs: FGSM, PGD, and AutoAttack)
is more reliable than all linear methods. We also ob-
serve this trend for all other models Appendix C.2
(with the exception of BERT, for which AlterRep
is more reliable than the GBIs in layers 10-12; see
Figure 9).

6 Discussion

Tradeoff: Completeness vs. Selectivity In
Pythia’s final layer, no method is able to achieve
perfect completeness without sacrificing selectivity
(see Figure 2a), a trend which we also see for all
other models (see Appendix C.1). However, we ob-
serve a very favorable tradeoff for GBIs, which in-
cur only a small selectivity cost for increasing com-
pleteness, leading to high overall reliability across
all models and layers (see Appendix C.2). In con-
trast, linear removal methods (INLP and RLACE)
tend to have much higher selectivity than they do
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completeness, which is likely because these meth-
ods are explicitly optimized to minimize collateral
damage (Ravfogel et al., 2020, 2022a), despite be-
ing linear and potentially incomplete (with respect
to putatively nonlinear representations). Finally,
the linear counterfactual method (AlterRep) tends
to have highly variable behavior between different
models: for Pythia-160M, Llama 3.2, and GPT2, it
shows middling performance across layers; it is the
most reliable method in BERTs last 3 layers, with
high selectivity and near-perfect completeness; and
it is the least reliable method in the later layers of
Pythia-1.4B and Pythia-6.9B.

Reliability and Task Accuracy Figures 2b, 4b
and 5b show a clear trend: more complete inter-
ventions and hyperparameter values show a greater
impact on task performance. In particular, coun-
terfactual methods (GBIs and AlterRep), which
show consistently higher completeness than re-
moval methods (INLP and RLACE), also show
(near-)total ATask Acc. This is highly intuitive: in
the case where models perform the subject-verb
agreement task by leveraging its representation of
Z., then more complete interventions would have
a greater effect on the model’s task performance.
We do not claim that this is necessarily the case —
e.g., our results might have looked different if we
had intervened in earlier layers; and the primary
object of our study is the completeness, selectivity,
and reliability of the causal probing methods we
have experimented with, not the representations
used by LLMs to perform a simple grammatical
task. Rather, we take the clear relationship be-
tween intervention completeness and ATask Acc
to be a strong indicator that more complete meth-
ods indeed yield stronger results, reinforcing the
utility of our framework in evaluating causal prob-
ing interventions as tools for studying models’ use
of latent representations. In particular, our frame-
work provides the first concrete approach for cali-
brating intervention hyperparameters in the latent
space (i.e., max-reliability hyperparameter search
using validation probes), allowing researchers to
adaptively balance the priorities of completeness
and selectivity and examine the corresponding ef-
fect on model behaviors, rather than simply resort-
ing to maximum-strength (Tucker et al., 2021) or
minimum-collateral damage (Ravfogel et al., 2020,
2022a) interventions.

Linearity by Layer Overall, the nonlinear GBI
methods are more reliable than the linear methods

across all models and layers, (with the sole excep-
tion of BERT in layers 10-12; see Appendix C.2).
Without adequate controls, this might simply be
the result of using MLP validation probes in all
results reported in the main paper, which could
bias our analysis in favor of nonlinear methods,
as validation probes and nonlinear interventional
probes might be relying on similarly-encoded infor-
mation and neglecting linearly-encoded informa-
tion. We account for this possibility by repeating
layerwise reliability experiments using linear val-
idation probes in Appendix C.3, finding that they
show remarkably similar results to MLP validation
probes.

Thus, we briefly consider the more interesting
possibility that the reliability gap between linear
and nonlinear LLMs may be due to LLMs encoding
task-relevant representations nonlinearly, partic-
ularly in intermediate layers: for instance, in ad-
dition to the aforementioned example of BERT’s
last 3 layers, Pythia-160M also shows that all lin-
ear methods are substantially more reliable in the
first and last layers than they are in intermediate
layers. While this conjecture is not fully supported
by all results (e.g., INLP and AlterRep drop sub-
stantially in reliability in GPT2’s final layer), it
is nonetheless intuitive that some models may be
more nonlinear in intermediate layers than their fi-
nal layer, as embeddings in earlier layers will pass
through many nonlinearities before word predic-
tion, allowing a high degree of nonlinear represen-
tation (White et al., 2021); whereas any output-
discriminative information must be made linearly
separable in the final embedding layer of neural net-
works (Alain and Bengio, 2017). There is a long
history of work studying the so-called linear repre-
sentation hypothesis (LRH; Mikolov et al., 2013;
Pennington et al., 2014; Bolukbasi et al., 2016; Var-
gas and Cotterell, 2020) — i.e., that neural networks
encode most or all features linearly — with some
recent works suggesting that this hypothesis is true
even for modern LLMs (Burns et al., 2023; Tigges
et al., 2023; Park et al., 2024b). However, many
of these studies often consider embeddings only in
the input or final (“unembedding”) layer of LLMs
(Jiang et al., 2024; Park et al., 2024b,a), neglecting
intermediate layers. Our findings provide an impor-
tant contrast: while they do not directly validate or
refute the LRH, the stark difference between the
reliability of linear and nonlinear counterfactual
methods indicates that it is critical to consider mul-
tiple layers throughout models when studying the
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LRH, as findings of linearity in the final layer may
not generalize to earlier layers.

7 Conclusion

In this work, we proposed a general empirical evalu-
ation framework for causal probing, defining the re-
liability of interventions in terms of completeness,
selectivity, and reliability. Our framework makes
it possible to directly compare different kinds of
interventions, such as linear vs. nonlinear or coun-
terfactual vs concept removal methods. We applied
our framework to study leading causal probing tech-
niques across a range of LLMs, finding that they
all exhibit a tradeoff between completeness and se-
lectivity, that more reliable and complete methods
yield a greater impact on LLM task performance,
and that nonlinear methods tend to be much more
reliable than linear methods. Finally, we explored
the implications of these findings for future work in
optimizing intervention hyperparameters and study-
ing the linear representation hypothesis.

Limitations

An important empirical limitation of our work is
that we only study the relatively simple subject-
verb agreement task (and I0OI; see Appendix C.5).
We intentionally select simple, well-studied syn-
tactic tasks with a single binary causal variable
and one binary environmental variable, opting for
a more parsimonious task in this setting to avoid
introducing exogenous confounds while studying
a novel latent-space evaluation framework in the
context of several highly distinct families of meth-
ods. Selecting simple tasks also allows for easy
comparison between a range of LL.Ms at different
scales (which are all able to solve the task nearly
perfectly). However, now that we have validated
our framework in the context of these simple tasks,
it will be important to extend this study to more
complex and interesting tasks, such as those with
multiple causal variables that take an arbitrary num-
ber of possible values, or those that even frontier
models struggle to solve (for use in “debugging”
what representations are being learned and used by
LLMs in performing difficult tasks). We aim to
explore such settings in future work.
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A Framework Details

Completeness of Concept Removal Interventions In Equation (2), we define the “goal” distribution
P of a concept removal intervention used in causal probing as being the uniform distribution — i.e., for
a perfect concept removal intervention, P} = P,(Z|h%_,) = U(Z). However, this is only true in the
case of causal probing, and is not true of some concept removal applications such as guarding protected
attributes (see, e.g., Ravfogel et al. 2023). That is, in the case of causal probing, the goal of an intervention
is to intervene on a model’s representation during its forward pass, feeding the intervened embedding
back into the model and observing the change in the model’s behavior (as described in Section 2). Recall
that the purpose of a validation probe v is to decode model M ’s representation of a given property Z, not
to predict its ground truth value — that is, even if M encodes the incorrect value of Z = 2’ rather than
7 = z for a given input, the validation probe should still decode the incorrect value Z = 2’. Indeed, this
is precisely the principle behind using validation probes in the case of counterfactual interventions that
change the representation of Z = z to counterfactual value Z = 2/, where validation probes are used to
validate the extent to which the representation has actually been changed to encode this counterfactual
value, and the ideal counterfactual intervention yields P,(Z = 2'|h},_ ;) = P*(Z = 2’) = 1. However,
in the case of concept removal interventions do(Z = 0), an intervened embedding h?,_, would ideally
remove all information encoding M’s representation of the value taken by Z, meaning that the M
would not encode any value Z = z; as being more probable than Z = z5 (as any information that is
predictive of the value taken by Z should have been removed). In this case, the validation probe v would
predict an equal probability P, (Z = z;|h%_,) for any given value z; that may be taken by Z; —i.e.,
P, (Zlhy_o) = Py = U(Z).

However, this is not the case in the context of instances such as guarding protected attributes, where the
goal of an intervention do(Z = 0) is to remove all information that is predictive of Z from embedding
representations h,_ such that no probe g can be trained to predict P 4(Z|h7,_ ) any better than predicting
P(Z) —1i.e., ignoring the embedding entirely and simply mapping every input to the label distribution
P(Z) (Ravfogel et al., 2023). In this case, the probe ¢ is trained on intervened embeddings hy_o, in
which case it can learn to map every such embedding to the label distribution P(Z), which yields superior
performance relative to predicting the uniform distribution /(Z) in any case where the label distribution
P(Z) is not perfectly uniform, as such a g would have an expected accuracy equal to the proportion of test
instances with the most common label Z = zygmax (Which would be greater than the accuracy % expected
by defaulting to U (2)).

The key technical distinction between these two use cases of concept removal interventions is whether
or not probes or underlying models are trained or fine-tuned in the context of interventions. In the case of
causal probing, they are not — the (frozen) model M has no opportunity to recover the original value of
Z = z following a concept removal intervention do(Z = 0), and this should be reflected by validation
probes. This is natural, given that the purpose of causal probing is to interpret the properties used by
M in making a given prediction, not to test whether M can be trained to recover properties removed
by interventions; and this is reflected by validation probes v, which are never trained on intervened
embeddings. In contrast, for concept removal, probes (or models) are trained on intervened embeddings,
and may learn to recover properties removed by interventions, meaning that — even in the worst case
where all information has been removed — it would at least be possible to learn to reproduce the label
distribution P(Z); but there is no reason to expect a model M or validation probe v to do so, given that
they have never been trained on intervened embeddings. Thus, while we define the “goal” distribution
P}, = U(Z) for measuring the completeness of concept removal interventions as being ¢/ (Z) rather than
P(Z), this distribution would instead be P} = P(Z) in the case of concept removal.

B Experimental Details

B.1 LGD Dataset

We use syntax annotations to extract values for the environmental variable Z, from the LGD dataset
(Linzen et al., 2016): if the part-of-speech of the word immediately preceding the [MASK] token is a noun,
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\ Ze=@ Z.=Sg Z.=Pl \ Total

Ze=sg | 176K  3IK 5K | 213K
Z.=Pl | 78K 10K 4K 92K
Total | 254K 41K 9K | 305K

Table 2: Contingency Table on Test Set. Distribution of data across combinations of causal and environmental
variables. Z. = @ denotes instances which have no prepositional phrase attached to the subject (and thus,
contain no environmental variable). Note that the label distributions are unbalanced: P(Z. = Sg) = 69.8% and
P(Z, = Sg|E # @) = 81.5%.

and it is the object of a preposition (i.e., not the subject), then its number defines Z.. About 83% of
the sentences do not have a prepositional object preceding [MASK], and so are only relevant for causal
interventions.

The contingency table for values of Z. and Z, in the test set are in Table 2.

B.2 Probe Details

Our experiments include linear and MLP probes (both for interventions and as validation probes). Linear
interventions (INLP, RLACE, and AlterRep) require linear probes; and for nonlinear interventions (GBIs),
we use MLPs. We implement probes using PyTorch (Paszke, 2019), and leverage LLM implementations
of all models available via HuggingFace Transformers (Wolf et al., 2019). For validation probes, we
experiment with both linear and MLP probes. For all probes, we select hyperparameters by performing a
grid search across candidate hyperparameter values, selecting the hyperparameters that yield the highest
validation-set accuracy. We save probe parameters from the epoch with the highest validation-set accuracy
with patience of 4 epochs. All probes are trained with cross-entropy loss.

For all linear probes, we consider learning rates in [0.0001, 0.001, 0.01, 0.1].

For MLP probes, we perform grid search over the following hyperparameter values:

* Number of hidden layers: [1, 2, 3]
* Layer size: [64, 256, 512, 1024]
* Learning rate: [0.0001, 0.001, 0.01]

B.3 Interventions

Gradient Based Interventions For all gradient-based intervention methods (Davies et al., 2023), we
define the maximum perturbation magnitude of each intervention as ¢ (i.e., ||hz — h||o, < &), and
experiment over a range of £ values between 0.005 to 5.0 — specifically, € € [0.005, 0.006, 0.007, 0.009,
0.011, 0.013, 0.016, 0.019, 0.024, 0.029, 0.035, 0.042, 0.051, 0.062, 0.076, 0.092, 0.112, 0.136, 0.165,
0.2, 0.286, 0.409, 0.585, 0.836, 1.196, 1.71, 2.445, 3.497, 5.0]. We consider the following gradient attack
methods for GBIs:

1. FGSM We implement Fast Gradient Sign Method (FGSM; Goodfellow et al., 2015) interventions as:

h/ =h+e- sgn (th (fclsa IE,y))

2. PGD We implement Projected Gradient Descent (PGD; Madry et al., 2017) interventions as h’ = hT
where

hiv1 = Ty (he 4 o - sgn (Vi L(fas, 2,9)))

for iterations t = 0,1, ..., 7, projection operator II, and L.,-neighborhood N'(h) = {h’ : ||h —
I|| < e}. For PGD, we use 2 additional hyperparameters: iterations 7" and step size «, while fixing
T = 40, as suggested by (Davies et al., 2023).

3. AutoAttack AutoAttack (Croce and Hein, 2020) is an ensemble of adversarial attacks that includes
FAB, Square, and APGD attacks. Auto-PGD (APGD) is a variant of PGD that automatically adjusts
the step size to ensure effective convergence. The parameters used were set as norm = L, and for
Square attack, the n_queries=5000.
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Concept Removal Interventions For concept removal interventions, we project embeddings into the
nullspaces of classifiers. Here, the the rank r corresponds to the dimensionality of the subspace identified
and erased by the intervention, meaning that the number of dimensions removed is equal to the rank.®
We experiment over the range of values r € [0, 1, ...,40]. We consider the following concept removal
interventions:

1. INLP We implement Iterative Nullspace Projection (INLP; Ravfogel et al., 2020) as follows: we train
a series of classifiers wy, ..., wy, where in each iteration, embeddings are projected into the nullspace
of the preceding classifiers Py (wp) N - -+ N Pyx(wy,). We then apply the combined projection matrix
to calculate the final projection where P := Py (wy) N --- N N(w;), X is the full set of embeddings,
and Xprojected ~— P (X )

2. RLACE We implement Relaxed Linear Adversarial Concept Erasure (R-LACE; (Ravfogel et al.,
2022a)) which defines a linear minimax game to adversarially identify and remove a linear bias
subspace. In this approach, Py is defined as the set of all D x D orthogonal projection matrices that
neutralize a rank r subspace:

PePyoP=Ip-W'W

The minimax equation is then solved to obtain the projection matrix P which is used to calculate the
final intervened embedding X, ojected, Similar to INLP

N
mingcemax pep, Zf (yna g ! <9Tp$n>)
n=1

Hyperparameters for P and 6 were a learning rate of 0.005 and weight decay of le-5.

AlterRep We implement AlterRep (Ravfogel et al., 2021) by first running INLP, saving all classifiers,
and using these to compute rowspace projections that push all embeddings to the positive Z = P1 or
negative Z = Sg side of the separating hyperplane for all classifiers. That is, we compute

hY,_o = Py(h) +a Y (=1)¥NP (. h)h
weW
hYp = Py(h) +a 3 (~1)SN@R) (4 h)h
weEW
where Py is the nullspace projection from INLP.

C Supplemental Results

C.1 Final-Layer Completeness, Reliability, and Selectivity

In Figures 4a, 5a and 6a to 6¢, we visualize final-layer completeness and selectivity of intervention
methods for all models except Pythia-160M, analogously to the Figure 2a results reported in the main
paper for Pythia-160M. In Figures 4b and 5b, we show the relationship between ATask Acc and reliability
for BERT and GPT?2 (respectively), analogously to the Figure 2b results reported in the main paper for
Pythia-160M.

8This is only true for binary properties Z — for variables that can take n values with n > 2, the number of dimensions
removedisn - r.
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Figure 4: (BERT) Completeness, selectivity, reliability, and ATask Acc for all interventions in BERT’s final
layer. Each point in both plots corresponds to a different hyperparameter setting.
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| C(Hz)

S(I:IZ)

R(Hz)

INLP
RLACE

0.3308 +0.0013
0.2961 + 0.0013

0.7792 + 0.0012
0.7782 £ 0.0012

0.4644 + 0.0013
0.4290 £ 0.0014

AlterRep

| 1.0000 % 0.0000

0.7162 £ 0.0017

0.8346 £ 0.0012

FGSM
PGD
AutoAttack

0.8923 £ 0.0011
0.7343 £ 0.0016
0.8433 £ 0.0013

0.3994 + 0.0018
0.3897 £ 0.0018
0.3692 + 0.0019

0.5518 £ 0.0017
0.5092 + 0.0016
0.5136 £ 0.0018

Lopt
r=2_8
r =33
a=0.1
e=0.112
e=0.112
e=0.112

Table 3: (BERT) Intervention scores for maximum-reliability hyperparameters in the final layer, with standard
error included. All scores are reported for the hyperparameter x,,; that maximizes the reliability of each respective
method. Counterfactual methods are grouped above the double line, with concept removal methods below it.

Additionally, in Table 3, we report the standard error of completeness, selectivity, and reliability for
BERT’s maximum-reliability final-layer results displayed in Table 1. Note that all scores have standard
error < 0.002, and we observe the same pattern for all other models.

Hyperparameter Variation In Figures 7 and 8, we observe that increasing the degree of control
that interventions have over the representation of the target property by increasing the intervention
hyperparameter associated with a given intervention type (i.e., €, c, or rank) generally leads to both
improved completeness and decreased selectivity.
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C.2 Reliability by Layer

In Figure 9, we visualize maximum reliability of intervention methods across layers for all models
(except Pythia-160M, which is reported in the main paper), analogously to the Figure 3 results reported in
Section 5.2.
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Figure 9: Maximum reliability by layer across models for each intervention across all layers.
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C.3 Linear Validation Probes

We present the reliability by layer for BERT and Pythia-160M using linear validation probes in Figures 10a
and 10b (respectively). The main trends (specifically, reliability ordering of methods by layer) shown here
are very similar to those using MLP validation probes, as shown in Figures 3 and 9a, with the exception
that the linear counterfactual method (AlterRep) does not surpass the reliability of GBIs as strongly in
the later layers (for BERT). The BERT result is not especially surprising, as linear validation probes are
expected to be less resilient to linear interventions than MLP validation probes (as MLPs can also rely on
nonlinearly-encoded information to make predictions) leading to lower selectivity and correspondingly
lower reliability using linear interventions with linear validation probes compared to evaluations using
nonlinear validation probes. However, it is important to note that the overall ordering of methods, and
the specific scores observed, are still remarkably similar between linear vs nonlinear validation probes
for both models, indicating that the differences in reliability between linear and nonlinear methods are
unlikely to be due to the (non)linearity of validation probes.
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Figure 10: Maximum reliability by layer for each intervention across all layers, using linear validation probes.
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C.4 Validation Probe Accuracy by Layer
In Figure 11, we report the layerwise validation probe accuracy across all models.
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Figure 11: Validation Probe Accuracy by Layer across models.
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C.5 Results on Indirect Object Identification (I0OI) Task

The Indirect Object Identification (IOI) task (Wang et al., 2023) is a well-studied benchmark in mechanistic
interpretability research, requiring models to identify the correct referent in sentences with multiple names.
Each sentence has an initial dependent clause introducing two names (e.g., "After John and Mary went to
the store..."), followed by a main clause where one person performs an action involving the other (e.g., "...
John gave a bottle of milk to..."). The model must correctly complete the sentence with "Mary" (i.e., the
indirect object) rather than repeating "John".

For our experiments, we define the causal variable Z, as denoting whether the first or second mentioned
person in the sequence is the correct indirect object (each label has probability 0.5 in this dataset), and the
environmental variable Z, as the tense of the root verb (e.g., "gives" vs "gave"), which is clearly irrelevant
to solving the task.

Following Zhang and Nanda (2024), we study IOl in the context of GPT2. Figure 12 shows the relation
between selectivity and completeness as well as the reliability of the various interventions across layers.
(Note that we only display results on layers 7—12 because the earlier layers do not encode necessary
information to predict the variables of interest — i.e., in these layers, we cannot train a probe to predict the
target features at sufficiently high accuracy, as also observed by Zhang and Nanda 2024.) The results are
similar with the subject-verb agreement task on GPT2 in that FGSM (nonlinear) is more reliable than
INLP and AlterRep (linear) at all layers; but on the IOI task, we find that AlterRep is more reliable than
INLP at all layers (for subject-verb agreement, these methods’ relative performances varied on GPT2).
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Figure 12: Results on Indirect Object Identification (IOI) task. Completeness, selectivity, and reliability for
interventions using the I0I task and the GPT2 model.
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