
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 824–856

December 20-24, 2025 ©2025 Association for Computational Linguistics

Positional Bias in Long-Document Ranking: Impact, Assessment, and
Mitigation

Leonid Boytsov ∗†

Independent Researcher
Pittsburgh, USA

leo@boytsov.info

David Akinpelu †

Louisiana State University
Baton Rouge, USA

akinpeluakorede01@gmail.com

Nipun Katyal ‡ and Tianyi Lin ‡ and Fangwei Gao ‡ and Yutian Zhao ‡ and Jeffrey Huang ‡

Eric Nyberg
Carnegie Mellon University

Pittsburg, PA, USA

Abstract

We tested over 20 Transformer models for
ranking long documents (including recent
LongP models trained with FlashAttention and
RankGPT models “powered” by OpenAI and
Anthropic cloud APIs). We compared them
with the simple FirstP baseline, which applied
the same model to truncated input (up to 512
tokens). On MS MARCO, TREC DL, and Ro-
bust04 no long-document model outperformed
FirstP by more than 5% (on average). We hy-
pothesized that this lack of improvement is not
due to inherent model limitations, but due to
benchmark positional bias (most relevant pas-
sages tend to occur early in documents), which
is known to exist in MS MARCO. To confirm
this, we analyzed positional relevance distribu-
tions across four long-document corpora (with
six query sets) and observed the same early-
position bias. Surprisingly, we also found bias
in six BEIR collections, which are typically
categorized as short-document datasets. We
then introduced a new diagnostic dataset, MS
MARCO FarRelevant, where relevant spans
were deliberately placed beyond the first 512
tokens. On this dataset, many long-context
models—including RankGPT—performed at
random-baseline level, suggesting overfitting
to positional bias. We also experimented with
debiasing training data, but with limited suc-
cess. Our findings (1) highlight the need for
careful benchmark design in evaluating long-
context models for document ranking, (2) iden-
tify model types that are more robust to posi-
tional bias, and (3) motivate further work on
approaches to debias training data. We release
our code and data to support further research.

∗Work done outside the scope of Amazon employment.
†Equal contribution.
‡Work done while studying at Carnegie Mellon University.

1 Introduction

Various advances in Transformer architectures—
including sparse attention (Zaheer et al., 2020; Belt-
agy et al., 2020) and FlashAttention (Dao et al.,
2022)—have motivated a growing interest in long-
document ranking and retrieval. However, despite
the ability of these models to process substan-
tially more text, on popular retrieval benchmarks
the improvements by these models over simpler
truncation-based approaches remain surprisingly
modest (Dai and Callan, 2019; Gao and Callan,
2022; Boytsov et al., 2022; Coelho et al., 2024). A
widely used truncation-based FirstP baseline (Dai
and Callan, 2019)—where models score only the
first 512 tokens of each document—often performs
competitively or sometimes even better than long-
context counterparts (see, e.g., Table 1).

Despite anecdotal knowledge about the presence
of this phenomenon in the MS MARCO document-
retrieval collection among TREC Deep Learning
track participants and in some early reports (Hof-
stätter et al., 2020b, 2021a; Boytsov et al., 2022)
the available evidence has been scattered and in-
complete. In particular, despite the track’s five-
year history, none of the track’s overview papers
have mentioned this issue (Craswell et al., 2020,
2021a,b, 2022, 2023).

Moreover, it remains unclear whether these limi-
tations stem from model deficiencies or from char-
acteristics of the benchmarks themselves. In this
paper, we initially hypothesized that both factors—
model robustness and benchmark design—may be
responsible for the limited gains achieved by long-
document models over FirstP baselines. However,
our findings suggest that benchmark design, par-
ticularly positional relevance bias, is the dominant
factor.

824

Robust04 ClueWeb12 (WebTrack) TREC DL 2019-2021 (combined)

Figure 1: Positional relevance bias for three long-document collections (best viewed in color). We show a
distribution of first relevant passage positions (red bars) vs. relevant document lengths (blue bars). Lengths and
offsets are measured in the number of subword tokens (BERT-base tokenizer). See more results (including BEIR) in
Figures 7 and 8 in Appendix C.1.

To verify our research hypotheses, we first con-
ducted a large-scale, systematic study of over
20 Transformer-based ranking models (Devlin
et al., 2019; Vaswani et al., 2017) for long-
document retrieval. This was done using three
popular document collections—MS MARCO Doc-
uments v1/v2 (Craswell et al., 2021a) and Ro-
bust04 (Clarke et al., 2004)—along with diverse
query sets (both large and small), several Trans-
former backbones, and multiple training seeds. In
addition to locally trained models, we also assessed
a listwise LLM ranker RankGPT (Sun et al., 2023)
“powered” by OpenAI (OpenAI, 2023) and An-
thropic (Anthropic, 2024) cloud APIs.

Despite the increased context capacity of long-
document models, we found that none of them
consistently outperformed their FirstP baselines by
more than 5% on average. An ablation experiment
showed that limited gains over FirstP were not at-
tributable to the choice of a Transformer backbone
model (see Table 5).

Next, we estimated positional relevance bias
across five document collections and more than
six query sets. As can be seen from Fig. 1, in the
vast majority of cases, the first relevant passage oc-
curred within the initial 512 tokens. In contrast, the
distribution of relevant passage positions is more
uniform, with a pronounced long tail. This con-
firms that positional bias is substantial not only in
MS MARCO, but also in other TREC collections.
Surprisingly, we also found bias in several BEIR
collections (Thakur et al., 2021), which are typ-
ically categorized as short-document datasets (a
complete set of plots is provided in Fig. 7 and 8 of
Appendix § C.4).

Our initial exploration prompted two broad re-

search questions:

• RQ1: How robust are long-document models
to the positional bias of relevant passages?

• RQ2: To what extent has the research com-
munity advanced the state of long-document
ranking models? Specifically, do current ap-
proaches yield substantial improvements over
FirstP baselines? Considering that all existing
long-document models are at least 2× slower
than their respective FirstP counterparts (see
Figure 3, § B.2.2), it is reasonable to question
the practicality of such models and to consider
whether FirstP variants might be preferable in
real-world applications.

To answer these questions, we constructed a new
diagnostic synthetic collection MS MARCO Far-
Relevant where relevant passages were not present
among the first 512 tokens. On this dataset, many
long-context models—including RankGPT (Sun
et al., 2023)—failed to generalize and performed
at a random baseline level, suggesting overfitting
to positional bias. Poor performance of models on
MS MARCO FarRelevant prompted another impor-
tant question RQ3: Can debiasing of training data
mitigate model overfitting to positional bias? We
addressed this question by evaluating an existing
debiasing approach by Hofstätter et al. (2021a).

Our paper makes the following contributions:

• We re-examined the issue of positional rele-
vance bias, gathered extensive evidence con-
firming its presence in both long- and short-
document datasets, showed that it negatively
affects all models including recent LLM-
based rankers, and evaluated the robustness of

825

ranking models against this bias using a new
diagnostic dataset MS MARCO FarRelevant.

• Our work highlights the need for careful
benchmark design in evaluating long-context
models for document ranking, so that bench-
marks do not mask the benefits of long-
context models, and identify model types that
are more robust to positional bias;

• We performed an extensive reproduction study
of over 20 ranking models using established
benchmark collections for long-document re-
trieval and ranking: MS MARCO Documents
v1 and v2 (Craswell et al., 2021a) and Ro-
bust04 (Clarke et al., 2004);

• We experimented with an existing approach
to debiasing training data (Hofstätter et al.,
2021a) and motivated further research in this
area.

Our code and data are available.1

2 Related Work

Neural Ranking models have been a widely stud-
ied topic in recent years (Guo et al., 2019), though
the success of early approaches was debated (Lin,
2019). This changed with the introduction of
BERT, a bidirectional encoder-only Transformer
model (Devlin et al., 2019), which significantly out-
performed previous methods in both NLP (Devlin
et al., 2019) and information retrieval (IR) tasks
(Nogueira et al., 2019; Craswell et al., 2021a).

Several Transformer-based models, such as
ELECTRA (Clark et al., 2020) and DEBERTA (He
et al., 2021), have improved upon BERT through
different training strategies and datasets. How-
ever, due to their architectural similarities, we—
following Lin et al. (2021)—refer to these collec-
tively as BERT models.

Despite their strong performance, neural models
are vulnerable to distribution shifts, often relying
on superficial features and exhibiting various bi-
ases. They do not consistently outperform BM25
on out-of-domain data (Mokrii et al., 2021; Thakur
et al., 2021), can be misled by minor text modifi-
cations and distractor sentences (MacAvaney et al.,
2022), or reformulated queries (Penha et al., 2022).
They also struggle to effectively utilize informa-
tion located in the middle of long input contexts, in

1https://github.com/searchivarius/long_doc_
rank_model_analysis_v2/.

particular for retrieval-augmented generation (Liu
et al., 2024). Recent work showed that this can
be an intrinsic architectural artifact such that the
model gives disproportionately high attention to
tokens at the beginning or end of the input con-
text, regardless of their actual relevance, which
can be partially mitigated by re-calibration (Hsieh
et al., 2024). However, An et al. (2024) argue that
architectural biases can be exacerbated by insuffi-
cient explicit supervision during long-context train-
ing, which causes models to assume that important
information is concentrated near context-window
edges.

A related but distinct issue—positional rele-
vance bias—which this study attributes primar-
ily to the characteristics of supervised training
data, has been identified in information-retrieval
settings, particularly within the MS MARCO
document-retrieval collection (Hofstätter et al.,
2020b; Boytsov et al., 2022; Coelho et al., 2024).
Some studies have reported the strong perfor-
mance of FirstP baselines on long-document re-
trieval collections, interpreting this as evidence of
benchmark-induced positional bias (Boytsov et al.,
2022; Zhu et al., 2024; Rau et al., 2024). Note, how-
ever, that strong performance of FirstP baseline is
only indirect evidence, potentially resulting from
implementation bugs, suboptimal training methods,
or model-inherent biases.

The earliest study on this topic obtained direct
evidence of bias only for a small set of TREC DL
queries, without studying how bias affects model
performance (Hofstätter et al., 2020b). Boytsov
et al. (2022) tested a variety of long-document
ranking models (on MS MARCO and Robust04
datasets) and found them to be only marginally bet-
ter than the FirstP baseline, which they attributed
to positional relevance bias. Coelho et al. (2024)
found that two embedding models trained on MS
MARCO “dwell” in the beginning and are less
effective when relevant information is present else-
where in a document. These studies, however, (1)
had limited evidence that bias was attributable to
data, (2) did not evaluate key modern long-context
models, and (3) did not assess a debiasing strategy.

Because positional relevance bias can “obscure”
benefits of long-document ranking models, Rau
et al. (2024) proposed to compare these models
with RandP baselines, which score a randomly se-
lected passage. However, we believe this approach
is problematic for two reasons. First, since a RandP

826

https://github.com/searchivarius/long_doc_rank_model_analysis_v2/.
https://github.com/searchivarius/long_doc_rank_model_analysis_v2/.

model often fails to score an entire relevant passage,
it artificially underestimates a model’s accuracy,
making comparisons with RandP unfair. Second,
this approach does not address the core problem
of biased benchmarks, which still allow models to
exploit the shortcut of focusing only on the docu-
ment’s initial portion.

Interestingly, Rau et al. (2024) argue that po-
sitional bias is strong only in MS MARCO, but
not in Robust04. We believe this is because they
only compared FirstP and MaxP models in a zero-
shot setting (trained on MS MARCO and tested
on Robust04), whereas we fine-tuned all models
on Robust04 as well. The relatively strong perfor-
mance of MaxP compared to FirstP in their study
may be due to the generally stronger zero-shot per-
formance of MaxP models. We observe similarly
small gains over FirstP for both MS MARCO and
Robust04, and our passage-relevance analysis con-
firms that they have comparable levels of positional
bias. Thus, despite their widespread use, Robust04
and MS MARCO are not particularly useful for
benchmarking of long-document models.

To address the issue with existing benchmarks,
Zhu et al. (2024) proposed a LongEmbed bench-
mark with two synthetic tasks where relevant mini-
passages were scattered uniformly across docu-
ments with lengths varying from 256 to 32768
tokens. However, as discussed in §C.3, these syn-
thetic sets are quite unnatural and lack diversity.
Furthermore, Zhu et al. (2024) provide only small
query sets and no in-domain training data, making
it difficult to assess the upper performance bound
that models can achieve on this dataset. As an-
other important limitation Zhu et al. (2024), only
explored training-free extensions of positional en-
coding and did not investigate methods to debias
training data. In contrast, Hofstätter et al. (2021a)
proposed to debias training data using a simple yet
effective approach. However, they did not evaluate
it on challenging long-document datasets.

In this paper, we aim to provide stronger ev-
idence through collecting more comprehensive
statistics of relevant passages in documents, experi-
menting with a diverse set of models, and applying
the diagnostic synthetic set, which also demon-
strates models’ abilities to adapt to different posi-
tional biases.

Due to the quadratic complexity of the Trans-
former’s attention mechanism (Vaswani et al.,
2017; Bahdanau et al., 2015), early Transformer

models restricted input length to a maximum of
512 (subword) tokens. Until around 2022, two
main strategies were used to process long docu-
ments: (1) localizing attention and (2) splitting
documents into smaller, independently processed
chunks. Attention-localization methods apply a
limited-span (sliding window) attention and selec-
tive global attention. Given the vast number of such
approaches (see Tay et al. 2020), evaluating all of
them is impractical. Therefore, we focus on two
popular models: Longformer (Beltagy et al., 2020)
and BigBird (Zaheer et al., 2020). More recently, it
has also become feasible to train long-context mod-
els with an IO-efficient FlashAttention algorithm
without sparsifying attention (Dao et al., 2022).

In summary, methods to tackle longer docu-
ments are divided into LongP methods—where
longer document are “natively” supported and
SplitP methods—where a longer document can-
not be processed as a whole and needs to be pro-
cessed in chunks. The results of each chunk are
aggregated together using various aggregation tech-
niques, including computation of a maximum or
a weighted-sum prediction score (Yilmaz et al.,
2019; Dai and Callan, 2019; MacAvaney et al.,
2019). This includes MaxP (Dai and Callan, 2019),
AvgP, SumP (MacAvaney et al., 2019), as well as
PARADE Avg and PARADE Max models (MacA-
vaney et al., 2019). MaxP is an important baseline
that computes relevance scores for each chunk in-
dependently and takes their maximum.

Some SplitP approaches aggregate using simple
neural networks. This includes all CEDR (MacA-
vaney et al., 2019) models, the Neural Model 1
(Boytsov and Kolter, 2021), and the PARADE At-
tention model (Li et al., 2024). In contrast, PA-
RADE Transformer (Li et al., 2024) models’ aggre-
gator network is an additional Transformer model.
Due to space constraints, a detailed description of
document-splitting (SplitP) approaches is provided
in the Appendix § D.

The recent success of decoder-only models—
commonly known as LLMs—has led to a new gen-
eration of cross-encoding LongP models that na-
tively support longer contexts. First, a pre-trained
cross-encoding decoder-only model can be directly
fine-tuned on a ranking or embedding task (Ma
et al., 2023). Second, the RankGPT approach (Sun
et al., 2023) formulates document ranking as a
generation task: The model is prompted with a
list of documents and an instruction to generate

827

their ranking—an ability made possible through
instruction-tuning and/or alignment (Wei et al.,
2022; Ouyang et al., 2022). When the combined
length of concatenated documents exceeds the in-
put context size, RankGPT employs an overlapping
sliding window strategy, followed by aggregation
of the results.

3 Experiments

3.1 Data

Our primary datasets, used for both training and
evaluation, consist of several realistic collections
(along with their respective query sets) and syn-
thetic data. All datasets are in English. Document
and query statistics are provided in Appendix § C.1;
see Tables 7 and 8.

The realistic datasets include three long-
document collections: MS MARCO Documents
v1 and v2 (Bajaj et al., 2016; Craswell et al., 2020,
2021b), Robust04 (Voorhees, 2004), and several
short-document collections: MS MARCO Pas-
sages (v1) (Bajaj et al., 2016; Craswell et al., 2020,
2021b), and seven BEIR datasets (see § C.1). Sev-
eral BEIR datasets and the MS MARCO Docu-
ments collections include document titles, which
we prepend to the main document text. Follow-
ing Hofstätter et al. (2021a), we created a debi-
ased version of MS MARCO by randomly splitting
documents at word boundaries and concatenating
reordered segments (see Algorithm 1 in § A.1).

Our synthetic data consists of two subsets from
LongEmbed (Zhu et al., 2024) and our newly cre-
ated MS MARCO FarRelevant collection. All these
can be considered variants of the needle-in-the-
haystack test, where an informational “nugget” is
randomly embedded within unrelated text (Saad-
Falcon et al., 2024; Zhu et al., 2024; Liu et al.,
2024). We use two LongEmbed subsets: Nee-
dle and Passkey. Each subset has 800 question-
document pairs with document lengths varying
from approximately 256 to 32768 tokens.

MS MARCO FarRelevant was created by ran-
domly mixing relevant and non-relevant pas-
sages from the MS MARCO Passage collection
(Craswell et al., 2020) in such a way that (1) each
document contains exactly one relevant passage,
(2) this passage does not start before token 512,
and (3) less than 1% of documents have more than
1500 tokens (see an algorithm in Appendix § C.2).
It has about 0.5 million documents with an average
length of 1.1K tokens. Due to the MS MARCO

datasets’ non-commercial license, MS MARCO
FarRelevant has the same licensing restriction. In
Appendix § C.3, we present dataset examples and
argue that—while all these collections share the
limitation of not resembling natural documents—
MS MARCO FarRelevant offers greater diversity
and serves as a more suitable benchmark for evalu-
ating text retrieval systems.

Robust04 is another relatively small dataset con-
taining 0.5 million documents, comprising a mix
of news articles and government records, some
of which are quite lengthy. However, it includes
only a limited number of queries (250), making
it a challenging benchmark for training models in
low-data scenarios. Each query has a title and a
description. The title expresses a concise informa-
tion need, while the description provides a more
detailed request, often written in proper English
prose. We use Robust04 in a cross-validation set-
ting with folds created by Huston and Croft (2014)
and provided via IR-datasets (MacAvaney et al.,
2021).2

MS MARCO v1 was created from the MS
MARCO reading comprehension dataset (Bajaj
et al., 2016) and consists of two related collec-
tions: MS MARCO Passages and MS MARCO
Documents. MS MARCO v1 comes with large
query sets, which is particularly useful for training
and testing models in the big-data regime. These
query sets include question-like queries selected
from the Bing search engine logs (Craswell et al.,
2021b). Note that queries are not necessarily proper
English questions, e.g., “lyme disease symptoms
mood”, but they are answerable by a short passage
retrieved from a set of about 3.6M Web documents
(Bajaj et al., 2016). MS MARCO v1 test sets were
created in two stages. First, relevance judgments
were created for the passage variant of the dataset.
Then, document-level relevance labels were created
by transferring passage-level relevance to original
documents from which passages were extracted.

The MS MARCO v2 collection was created
for the TREC 2021 Deep Learning (DL) track
(Craswell et al., 2021b). It is an expanded ver-
sion of MS MARCO v1 and incorporates a subset
of sparse relevance judgments from MS MARCO
v1. In the training set, newly added documents lack
both positive and negative judgments, introducing
a bias where many relevant documents are mistak-

2In this setting we do not train Robust04 models from
scratch, but instead fine-tune models trained on the MS
MARCO Documents collection.

828

Retriever / Ranker MS MARCO TREC DL Robust04 Avg. gain
dev (2019-2021) title description over FirstP

MRR NDCG@10 NDCG@20

BM25 0.274 0.545 0.428 0.402 –
retriever (if different from BM25) 0.312 0.629 – – –

FirstP (BERT) 0.394 0.632 0.475 0.527 –
FirstP (Longformer) 0.404 0.643 0.483 0.540 –
FirstP (ELECTRA) 0.417 0.662 0.492 0.552 –
FirstP (DEBERTA) 0.415 0.672 0.534 0.596 –
FirstP (Big-Bird) 0.408 0.656 0.507 0.560 –
FirstP (JINA) 0.422 0.654 0.488 0.532 –
FirstP (MOSAIC) 0.423 0.643 0.453 0.538 –
FirstP (TinyLLAMA) 0.395 0.615 0.431 0.473 –
FirstP (E5-4K) zero-shot 0.380 0.641 0.438 0.429 –
FirstP RankGPT (GPT-4o-mini) – 0.708 – 0.562

AvgP 0.389 (−1.3%) 0.642 (+1.5%) 0.478 (+0.5%) 0.531 (+0.9%) +0.4%

MaxP 0.392 (−0.4%) 0.644a (+1.9%) 0.488a (+2.6%) 0.544a (+3.3%) +1.9%
MaxP (ELECTRA) 0.414 (−0.6%) 0.659 (−0.5%) 0.502 (+2.0%) 0.563 (+2.1%) +0.8%
MaxP (DEBERTA) 0.402a (−3.2%) 0.671 (−0.1%) 0.535 (+0.2%) 0.609a (+2.2%) -0.2%
SumP 0.390 (−1.0%) 0.639 (+1.0%) 0.486 (+2.2%) 0.538 (+2.1%) +1.1%

CEDR-DRMM 0.385a (−2.3%) 0.629 (−0.5%) 0.466 (−2.0%) 0.533 (+1.3%) -0.9%
CEDR-KNRM 0.379a (−3.8%) 0.630 (−0.3%) 0.483 (+1.7%) 0.535 (+1.7%) -0.2%
CEDR-PACRR 0.395 (+0.3%) 0.643a (+1.6%) 0.496a (+4.3%) 0.549a (+4.2%) +2.6%

Neural Model1 0.398 (+0.9%) 0.650a (+2.8%) 0.484 (+1.8%) 0.537 (+1.9%) +1.8%

PARADE Attn 0.416a (+5.5%) 0.652a (+3.1%) 0.503a (+5.7%) 0.556a (+5.6%) +5.0%
PARADE Attn (ELECTRA) 0.431a (+3.3%) 0.680a (+2.7%) 0.523a (+6.4%) 0.581a (+5.3%) +4.4%
PARADE Attn (DEBERTA) 0.422a (+1.6%) 0.688a (+2.4%) 0.549a (+2.9%) 0.615a (+3.2%) +2.5%
PARADE Avg 0.392 (−0.6%) 0.646a (+2.1%) 0.483 (+1.5%) 0.534 (+1.5%) +1.1%
PARADE Max 0.405a (+2.7%) 0.655a (+3.5%) 0.489a (+2.8%) 0.548a (+4.0%) +3.3%

PARADE Transf-RAND-L2 0.419a (+6.3%) 0.655a (+3.6%) 0.488a (+2.8%) 0.548a (+4.1%) +4.2%
PARADE Transf-RAND-L2 (ELECTRA) 0.433a (+3.9%) 0.670 (+1.2%) 0.523a (+6.3%) 0.574a (+3.9%) +3.8%
PARADE Transf-PRETR-L6 0.402a (+1.9%) 0.643 (+1.6%) 0.494a (+4.0%) 0.554a (+5.1%) +3.2%

LongP (Longformer) 0.412a (+1.9%) 0.668a (+3.9%) 0.500a (+3.6%) 0.568a (+5.1%) +3.6%
LongP (Big-Bird) 0.397a (−2.9%) 0.651 (−0.7%) 0.452a (−10.9%) 0.477a (−14.9%) -7.3%
LongP (JINA) 0.416a (−1.5%) 0.665a (+1.7%) 0.503a (+2.9%) 0.558a (+4.9%) +2.0%
LongP (MOSAIC) 0.421 (−0.4%) 0.664a (+3.3%) 0.456 (+0.6%) 0.570a (+6.0%) +2.4%
LongP (TinyLLAMA) 0.402a (+1.7%) 0.608 (−1.1%) 0.452a (+4.8%) 0.505a (+6.7%) +3.0%
LongP (E5-4K) zero-shot 0.353a (−7.1%) 0.649 (+1.3%) 0.439 (+0.1%) 0.434 (+1.1%) -1.1%
LongP RankGPT (GPT-4o-mini) – 0.706 (−0.3%) – 0.562 (+0.0%) -0.1%

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average
relative gain over FirstP baselines. Best numbers are in bold: Results are averaged over three seeds. Unless specified
explicitly, the backbone is BERT-base. Statistical significant differences with respect to this baseline are denoted using the
superscript a. p-value threshold is 0.01 for an MS MARCO development collection and 0.05 otherwise.

Table 1: Comparison between long-document models and respective FirstP (truncation) baselines. Results for MS
MARCO, TREC DL, and Robust04.

enly considered non-relevant. As a result, we do
not train on v2 data and only use it for testing.

Relevance labels in the training and develop-
ment sets are “sparse”: There is about one positive
example per query without explicit negatives. In
addition to sparse relevance judgments—separated
into training and development subsets—there is a
small number of (about 150) test queries from the
TREC Deep Learning (DL) track.

3.2 Setup

We focus on cross-encoding rankers, which process
queries concatenated with documents (Nogueira
and Cho, 2019). This includes various SplitP and
LongP models discussed in § 2 and in the Ap-
pendix § D. As a reference point, we also tested

a bi-encoder embedding E5-4K model, which has
strong performance on the LongEmbed benchmark
with context sizes under 4K tokens (Zhu et al.,
2024). E5-4K was tested only in zero-shot mode
(without fine-tuning)—as a ranking model. Ex-
cept for LongEmbed subsets Needle and Passkey,
a ranker is applied to a top-k set produced by a
retriever. Each LongEmbed subset contains only
800 documents, and we re-rank them all without
using a first-stage retriever.

Nearly all rankers are based on BERT models
(bidirectional encoder-only Transformer) with 100-
200M parameters (see Table 11). Additionally, we
evaluated two types of LLM rankers: (1) a fine-
tuned TinyLLAMA model, which delivers strong
performance relative to its compact size (Zhang

829

Figure 2: Zero-shot vs. fine-tuned performance on MS
MARCO FarRelevant. This figure shows results for a
representative set of models.

et al., 2024) and (2) generative black-box LLMs.
For (2), we used OpenAI’s GPT-4o-mini (OpenAI,
2023) and Anthropic’s Claude Haiku-3 (Anthropic,
2024), both of which support at least a 128K-token
input context.

Unless explicitly specified, the backbone Trans-
former model for SplitP methods is BERT-base
(Devlin et al., 2019). Although using other back-
bones such as ELECTRA (Clark et al., 2020) and
DEBERTA (He et al., 2021) can improve overall
accuracy, we observe larger gains compared to the
FirstP baseline when we use BERT-base (see § B.1
in the Appendix).

Except for E5 (Zhu et al., 2024) and RankGPT
(Sun et al., 2023), which were evaluated only in
zero-shot mode, we trained each model using three
seeds. Due to the high evaluation cost (more than
$1 per 1000 query-document pairs)3, we also did
not test RankGPT on some query sets, in particular,
we excluded the large MS MARCO development
set.

We measure effectiveness of the models using
the mean reciprocal rank (MRR), the normalized
discounted cumulative gain at rank k (NDCG@k)
(Järvelin and Kekäläinen, 2002), precision at rank
k (P@k), and the mean average precision (MAP).
To assess statistical significance, we averaged per-
query metric values across three seeds.

3.3 Results

Realistic Data. Our main experimental results
for MS MARCO, TREC DL 2019-2021, and Ro-
bust04 are presented in Table 1. There we show

3https://openai.com/api/pricing/

only a single aggregate number for all TREC DL
query sets, which is obtained by combining all the
queries and respective relevance judgments (i.e.,
we post an overall average rather than an average
over the mean values for 2019, 2020, and 2021).
More detailed results, including Anthropic-based
RankGPT, are available in Appendix B, specifi-
cally in Tables 9 and 10. Efficiency evaluation is
presented in § B.2.2 (see Fig. 3). In § B.1 we also
show that we can match or outperform key prior
results, which—we believe—boosts the trustwor-
thiness of our experiments.

We abbreviate names of some PARADE models:
Note that PARADE ATTN denotes a PARADE
Attention model. The PARADE TRANSF or
P. TRANSF prefix denotes PARADE Transformer
models where an aggregator Transformer can be
either trained from scratch (TRANSF-RAND-L2)
or initialized with a pretrained model (TRANSF-
PRETR-L6). L2 and L6 denote the number of
aggregating layers (two and six, respectively).4

From Table 1 and Fig. 3 we learn that the max-
imum average gain relative to respective FirstP
baselines is only 5% (when measured using MRR
or NDCG@k). Gains are much smaller for a
number of models, which sometimes even under-
perform their FirstP baselines on one or more
datasets. In particular, this is true for RankGPT
(Sun et al., 2023), CEDR-DRMM, CEDR-KNRM
(MacAvaney et al., 2019), JINA (Günther et al.,
2023), and MOSAIC (Portes et al., 2023).

We can also see that the LongP variant of the
Longformer model appears to have a relatively
strong performance, but so does the FirstP ver-
sion of Longformer. Thus, we think that a good
performance of Longformer on MS MARCO and
Robust04 collections can be largely explained by
better pretraining compared to the original BERT-
base model rather than by its ability to process long
contexts. Moreover, FirstP (ELECTRA) and FirstP
(DEBERTA) are even more accurate than FirstP
(Longformer) and perform comparably well to (or
better than) some chunk-and-aggregate document
models that use BERT-base as the backbone model.
This is a fair comparison aiming to demonstrate
that—on a typical test collection—the benefits of
long-context models are so small that comparable
benefits can be obtained by finding or training a
more effective FirstP model. FirstP models are

4Note, however, that TRANSF-PRETR-L2 has only four
attention heads.

830

https://openai.com/api/pricing/

Ranker MS MARCO TREC DL FarRelevant LongEmbed
dev (2019-2021) zero-shot transf. fine-tuned Needle Passkey

MRR NDCG@10 MRR MRR MRR MRR

BM25 0.274 0.545 0.207 0.207 0.305 0.339

Original MS MARCO training set

FirstP (ELECTRA) 0.417 0.662 0.019 0.089 0.205 0.235

MaxP (ELECTRA) 0.414 0.659 0.328 0.349 0.331 0.338
PARADE Attn (ELECTRA) 0.431 0.680 0.338 0.354 0.270 0.334
PARADE Transf-RAND-L2 (ELECTRA) 0.433 0.670 0.229 0.432 0.321 0.333
CEDR-KNRM 0.379 0.630 0.055 0.382 0.129 0.166

Debiased MS MARCO (Hofstätter et al., 2021a)

MaxP (ELECTRA) 0.377a (−9.1%) 0.665 (+0.8%) 0.321 (−2.1%) 0.349 0.316 (−4.6%) 0.325 (−3.9%)
PARADE Attn (ELECTRA) 0.390a (−9.4%) 0.653a (−3.9%) 0.326 (−3.6%) 0.354 0.251 (−7.1%) 0.330 (−1.0%)
PARADE Transf-RAND-L2 (ELECTRA) 0.410a (−5.4%) 0.677 (+1.0%) 0.328a (+43.5%) 0.432 0.259a (−19.4%) 0.331 (−0.7%)
CEDR-KNRM 0.269a (−29.0%) 0.503a (−20.2%) 0.202a (+268.8%) 0.382 0.121 (−5.8%) 0.181 (+8.6%)

Except FirstP we train each model using the original and the debiased MS MARCO. For each model trained on the debiased dataset, we
compute a gain (or loss) compared to the same model trained on the original training set. Statistical significance of the respective difference is
denoted using the superscript superscript a (p-value threshold is 0.05 for TREC DL and 0.01 for other collections). Best numbers are in bold:
Results are averaged over three seeds.

Table 2: Debiasing effectiveness. Performance of (selected) rankers trained on original and debiased MS MARCO.

more efficient during inference and can be pre-
trained on a larger number of tokens for the same
cost, so they may perform better (see Fig. 3 in
§ B.2.2).

Synthetic Data. Based on our analysis of posi-
tions of first relevant passages, we hypothesized
that limited benefits of long-context models are not
due to inability to process long contexts, but rather
due to a positional bias of relevant passages, which
tend to be among the first 512 document tokens
(see Figure 1 and Figure 7 in Appendix C.4). To
support this hypothesis, we carried out two sets
of experiments using MS MARCO FarRelevant,
where a relevant passage did not start until token
512. We carried out both a zero-shot experiment
(evaluation of the model trained on MS MARCO)
and a fine-tuning experiment using 50K in-domain
queries (from the MS MARCO FarRelevant).

Results for key models are shown in Fig. 2 and
more detailed results can be found in Table 4 of
the Appendix B. The FirstP models performed
roughly at the random-baseline level in both zero-
shot and fine-tuning modes (RQ1). Because of
this, our main baselines here are Longformer and
MaxP models. For models with ELECTRA and
DEBERTA backbones, we compare with MaxP
(ELECTRA) and MaxP (DEBERTA), respectively.
Otherwise, the baseline is MaxP (BERT).

Surprisingly, E5-4K performance is also at a
random-baseline level despite its competitive per-
formance on LongEmbed benchmark (Zhu et al.,
2024), MS MARCO, and Robust04 (see Table 1).

Both GPT-4o-mini and Claude Haiku-3 RankGPT
perform at the random-baseline level as well! As
a sanity check, and to verify if more accurate and
expensive LLMs could do better, we assessed per-
formance of GPT-4o for a sample of 100 queries.
The respective RankGPT (Sun et al., 2023) ranker
was still not better than a random baseline (RQ1).

Simple aggregation models including MaxP
and PARADE Attention had good zero-shot ac-
curacy, but benefited little from fine-tuning on MS
MARCO FarRelevant (RQ1).

In contrast, other long-document models had
poor zero-shot performance (sometimes at a ran-
dom baseline level), but outstripped respective
MaxP baselines by as much as 9.2%-27.7% after
fine-tuning, see Table 4 and Fig. 2 (RQ1 and RQ2).

With the exception of RankGPT (Sun et al.,
2023) on TREC DL 2019-2021, PARADE Trans-
former models were more effective than other mod-
els on standard collections, but their advantage was
small (a few %). In contrast, on MS MARCO
FarRelevant, PARADE Transformer (ELECTRA)
outperformed the next competitor Longformer by
8% and PARADE Max (ELECTRA)—an early
chunk-and-aggregate approach—by as much as
23.8%, thus showcasing substantial advances in
long-document ranking modeling and answering
RQ2.

Bias Mitigation. To address RQ3, we trained
four representative models on the debiased MS
MARCO and tested them on MS MARCO FarRele-
vant as well as Needle/Passkey subsets of LongEm-

831

bed (Zhu et al., 2024).5 We also tested four models
fine-tuned on MS MARCO FarRelevant on TREC
DL 2019-2021 query sets. Due to the substantial
NDCG@10 drop (0.1–0.15) observed for PARADE
Transformer and CEDR-KNRM, we concluded that
fine-tuning on purely synthetic data is not viable
and did not pursue it further.

According to Table 2, debiasing improved
the performance of CEDR-KNRM and PARADE
Transformer on MS MARCO FarRelevant. Yet,
it mostly caused performance degradation on the
original MS MARCO dataset and on LongEmbed
subsets. It did not benefit the MaxP and PARADE
Attention models, which were the most robust to
positional bias. We believe this result—along with
the strong performance of all models after fine-
tuning on MS MARCO FarRelevant—supports the
conclusion that the models are not inherently bi-
ased toward the start of the document (or at least
this is not a key factor). Instead, the primary cause
appears to be positional bias in the training data.

We further tested debiased models on short-
document collections: the MS MARCO Passage
collection and seven BEIR collections (Thakur
et al., 2021). According to Table 3 in Appendix A,
for three out of four models, debiasing has either a
positive or small negative effect (at most 1% degra-
dation). In particular, on the BEIR NQ subset, PA-
RADE Transformer and CEDR-KNRM improved
by 2.5% and 11%, respectively.

Despite the positive average improvement, we
also observe substantial degradation for several
datasets. For example, the effectiveness of CEDR-
KNRM decreases by 12.4% and 4.6% on SciFact
and SciDocs, respectively. One possible reason
is that short-document collections can have posi-
tional relevance bias as well (see Figure 8 in Ap-
pendix C.1). Thus, training on the original (biased)
MS MARCO collection teaches the model to rely
on a helpful shortcut—to focus more on the begin-
ning of a document—whereas training on debiased
data removes this beneficial behavior.

In summary, debiasing results are promising, but
they also suggest that mitigating positional bias
remains a challenging problem (RQ3).

Key Findings. We observe the following:

• We confirmed the presence of positional rele-
vance bias in both long- and short-document
datasets.

5(see Appendix § A.1.3 for model selection rationale)

• Not only did positional relevance bias dimin-
ish the benefits of processing longer document
contexts, but it also led to model overfitting
to the bias and performing poorly in a zero-
shot setting when the distribution of relevant
passages changes substantially.

• We found that debiasing training data had
mixed success: Although it improved the ef-
fectiveness of some models on some long-
document ranking tasks without substantial
degradation on short-document collections,
it degraded performance in several cases—
especially for MaxP and PARADE Atten-
tion models—which were already intrinsi-
cally more robust to positional relevance bias—
possibly because many short-document collec-
tions also have positional relevance bias.

• It is also worth highlighting the consistently
strong performance of PARADE models on
both standard long-document collections and
MS MARCO FarRelevant. The best PARADE
models substantially outperformed the best
LongP models in both zero-shot and fine-
tuning settings, although the specific models
leading in each setting may differ.

4 Conclusion

In this work, we revisited the problem of positional
relevance bias in long-document retrieval and pre-
sented extensive evidence of its widespread pres-
ence across existing benchmarks, including several
BEIR datasets (Thakur et al., 2021), which contain
relatively short documents. Using both real and
synthetic datasets—including our new diagnostic
dataset MS MARCO FarRelevant—we evaluated
the effectiveness of over 20 ranking models as well
as their robustness to positional relevance bias.

Our findings highlight the importance of a bench-
mark design that does not obscure the benefits of
long-context modeling. We identified model fami-
lies (i.e., PARADE Attention and MaxP) that are
more robust to positional bias, and confirmed the
strong performance of PARADE models (Li et al.,
2024), which remain competitive even against re-
cent long-context architectures.

Finally, our debiasing experiments yielded lim-
ited and inconsistent gains, motivating further re-
search into more effective mitigation strategies, in-
cluding combining debiasing with training on well-
designed synthetic data.

832

5 Limitations

Our paper has several limitations related primarily
to the choice of datasets, models, and strength of
evidence for positional relevance bias.

First of all, our evaluation uses only cross-
encoding ranking models. With the exception of
E5-4K model, which is used in the zero-shot rank-
ing mode, we do not train or evaluate bi-encoding
models (typically used to create query and docu-
ment embeddings for the first-stage retrieval). We
nonetheless believe that—given a large number
of proposals for long-document ranking—a repro-
duction and evaluation of cross-encoding long-
document rankers is a sufficiently important topic
that alone warrants a publication.

Moreover, we also use cross-encoding rankers as
a tool to detect and expose positional relevance bias.
In this regard, cross-encoders are easier to train us-
ing standard (rather than high-memory) GPUs with
a mini-batch size of one and gradient accumula-
tion. They also typically require only one epoch
to converge (only a few models need two or three
epochs). In contrast, bi-encoders are trained using
large batches with in-batch negatives for multiple
epochs (e.g., Karpukhin et al. (2020) report using
at least 40 epochs).

Second, the bulk of our ranking experiments
uses only two English document collections: MS
MARCO Documents v1 and v2 (Craswell et al.,
2021b) and Robust04 (Clarke et al., 2004). How-
ever, we have to restrict the choice of datasets to
make multi-seed evaluations of 20+ models fea-
sible. Thus, to corroborate the widespread pres-
ence of positional bias we used two additional
popular long-document collections: Gov2 (Allan
et al., 2008) and ClueWeb12 (Collins-Thompson
et al., 2013a) as well as seven BEIR datasets
(Thakur et al., 2021). For the study on the robust-
ness of models to positional bias and its mitiga-
tion, we used two additional synthetic collections:
MS MARCO FarRelevant and two subsets from
LongEmbed (Zhu et al., 2024) together with eight
short-document collections (see Table 3).

One could argue that the limited improvements
over FirstP baselines result from the models’ inabil-
ity to handle long contexts. To address this concern,
we trained and evaluated a diverse set of cross-
encoding ranking models, including both split-and-
aggregate models and models explicitly designed
for long input sequences. Additionally, we assessed
cloud-based RankGPT rankers, which have shown

strong performance in recent research (Sun et al.,
2023).

However, we can still test only a limited number
of models. In this regard, one might always argue
that there are untested architectures that would out-
perform FirstP baselines by a much larger margin.
To demonstrate that selected models can, in princi-
ple, benefit from long contexts and decisively out-
perform simple baselines such as FirstP and even
MaxP models, we trained and/or evaluated them on
a synthetic collection MS MARCO FarRelevant,
which can be seen as a challenging version of a
needle-in-the-haystack test.

Admittedly, this is still a limiting experiment, be-
cause synthetic collections—with documents com-
posed of randomly selected passages—do not rep-
resent complete and coherent documents. In § C.3
we discuss this limitation in detail; nevertheless,
we argue that MS MARCO FarRelevant is a more
suitable synthetic benchmark for evaluating text
retrieval systems compared to LongEmbed subsets
Needle and Passkey (Zhu et al., 2024).

In summary, we provided three types of evi-
dence of positional bias in relevant passages: strong
performance of FirstP models on standard collec-
tions, direct estimation of the distribution of rele-
vant passages using substring matching and LLM
relevance judges (Upadhyay et al., 2024), as well
as experimentation with the synthetic collection
MS MARCO FarRelevant where the distribution
of relevant passages was not skewed towards the
beginning of a document. Each experiment pro-
vided imperfect or limited evidence on its own, but
together they strongly support the existence of po-
sitional relevance bias.

While our analysis confirms a strong early-
position relevance bias across multiple retrieval
benchmarks, we acknowledge that this pattern may
not generalize to all domains. For example, prior
work has shown that in scientific abstracts, both the
first and the last sentences tend to be crucial (Ruch
et al., 2006). Investigating positional relevance pat-
terns in such domains is an important direction for
future work.

In our experiments with Robust04 and MS
MARCO, we truncated documents to a maximum
of 1431 BERT tokens. However, this constraint
did not hinder our ability to address key research
questions. As detailed in Appendix § B.2.1, using
larger inputs led to only marginal improvements.

833

References
James Allan, Javed A. Aslam, Virgil Pavlu, Evangelos

Kanoulas, and Ben Carterette. 2008. Million query
track 2008 overview. In TREC, volume 500-277
of NIST Special Publication. National Institute of
Standards and Technology (NIST).

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng,
Jian-Guang Lou, and Weizhu Chen. 2024. Make your
LLM fully utilize the context. In NeurIPS.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

Negar Arabzadeh and Charles LA Clarke. 2025. Bench-
marking llm-based relevance judgment methods.
arXiv preprint arXiv:2504.12558.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. MS MARCO: A human generated ma-
chine reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

Adam Berger and John Lafferty. 1999. Information re-
trieval as statistical translation. In Proceedings of the
22nd annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 222–229.

Alexander Bondarenko, Maik Fröbe, Meriem Be-
loucif, Lukas Gienapp, Yamen Ajjour, Alexander
Panchenko, Chris Biemann, Benno Stein, Henning
Wachsmuth, Martin Potthast, and Matthias Hagen.
2020. Overview of touché 2020: Argument retrieval
- extended abstract. In CLEF, volume 12260 of
Lecture Notes in Computer Science, pages 384–395.
Springer.

Vera Boteva, Demian Gholipour, Artem Sokolov, and
Stefan Riezler. 2016. A full-text learning to rank
dataset for medical information retrieval. In Ad-
vances in Information Retrieval: 38th European Con-
ference on IR Research, ECIR 2016, Padua, Italy,
March 20–23, 2016. Proceedings 38, pages 716–722.
Springer.

Leonid Boytsov and Zico Kolter. 2021. Exploring clas-
sic and neural lexical translation models for infor-
mation retrieval: Interpretability, effectiveness, and
efficiency benefits. In ECIR (1), volume 12656 of
Lecture Notes in Computer Science, pages 63–78.
Springer.

Leonid Boytsov, Tianyi Lin, Fangwei Gao, Yutian Zhao,
Jeffrey Huang, and Eric Nyberg. 2022. Understand-
ing performance of long-document ranking models
through comprehensive evaluation and leaderboard-
ing. CoRR, abs/2207.01262v1.

Leonid Boytsov and Bilegsaikhan Naidan. 2013. En-
gineering efficient and effective non-metric space
library. In International Conference on Similarity
Search and Applications, pages 280–293. Springer.

Leonid Boytsov and Eric Nyberg. 2020. Flexible re-
trieval with NMSLIB and FlexNeuART. In Proceed-
ings of Second Workshop for NLP Open Source Soft-
ware (NLP-OSS), pages 32–43.

Peter F. Brown, Stephen Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2):263–311.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In ICLR. OpenReview.net.

Charles L. A. Clarke, Nick Craswell, and Ian Soboroff.
2004. Overview of the TREC 2004 terabyte track.
In TREC, volume 500-261 of NIST Special Publica-
tion. National Institute of Standards and Technology
(NIST).

João Coelho, Bruno Martins, João Magalhães, Jamie
Callan, and Chenyan Xiong. 2024. Dwell in the
beginning: How language models embed long doc-
uments for dense retrieval. In ACL (Short Papers),
pages 370–377. Association for Computational Lin-
guistics.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug
Downey, and Daniel S Weld. 2020. Specter:
Document-level representation learning using
citation-informed transformers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2270–2282.

Kevyn Collins-Thompson, Paul N. Bennett, Fernando
Diaz, Charlie Clarke, and Ellen M. Voorhees. 2013a.
TREC 2013 web track overview. In TREC, volume
500-302 of NIST Special Publication. National Insti-
tute of Standards and Technology (NIST).

Kevyn Collins-Thompson, Paul N. Bennett, Fernando
Diaz, Charlie Clarke, and Ellen M. Voorhees. 2013b.
TREC 2013 web track overview. In TREC, volume
500-302 of NIST Special Publication. National Insti-
tute of Standards and Technology (NIST).

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
J. Mach. Learn. Res., 12:2493–2537.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and
Daniel Campos. 2021a. Overview of the TREC 2020
deep learning track. CoRR, abs/2102.07662.

834

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2207.01262v1
https://arxiv.org/abs/2207.01262v1
https://arxiv.org/abs/2207.01262v1
https://arxiv.org/abs/2207.01262v1

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Jimmy Lin. 2021b. Overview of the
TREC 2021 deep learning track.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, Jimmy Lin, Ellen M. Voorhees, and Ian
Soboroff. 2022. Overview of the TREC 2022 deep
learning track. In Proceedings of the Thirty-First Text
REtrieval Conference, TREC 2022, online, Novem-
ber 15-19, 2022, volume 500-338 of NIST Special
Publication. National Institute of Standards and Tech-
nology (NIST).

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M. Voorhees. 2020. Overview
of the TREC 2019 deep learning track. CoRR,
abs/2003.07820.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Hos-
sein A. Rahmani, Daniel Campos, Jimmy Lin,
Ellen M. Voorhees, and Ian Soboroff. 2023.
Overview of the TREC 2023 deep learning track.
In TREC, volume 500-xxx of NIST Special Publica-
tion. National Institute of Standards and Technology
(NIST).

Zhuyun Dai and Jamie Callan. 2019. Deeper text un-
derstanding for IR with contextual neural language
modeling. In SIGIR, pages 985–988. ACM.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
In NeurIPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. pages 4171–4186.

Thibault Formal, Carlos Lassance, Benjamin Pi-
wowarski, and Stéphane Clinchant. 2021. SPLADE
v2: Sparse lexical and expansion model for informa-
tion retrieval. CoRR, abs/2109.10086.

Chengzhen Fu, Enrui Hu, Letian Feng, Zhicheng Dou,
Yantao Jia, Lei Chen, Fan Yu, and Zhao Cao. 2022.
Leveraging multi-view inter-passage interactions for
neural document ranking. In Proceedings of the Fif-
teenth ACM International Conference on Web Search
and Data Mining, WSDM ’22, page 298–306, New
York, NY, USA. Association for Computing Machin-
ery.

Luyu Gao and Jamie Callan. 2022. Long document
re-ranking with modular re-ranker. In Proceedings
of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’22, page 2371–2376, New York, NY, USA.
Association for Computing Machinery.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce
Croft. 2016. A deep relevance matching model for
ad-hoc retrieval. In CIKM, pages 55–64. ACM.

Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang,
Qingyao Ai, Hamed Zamani, Chen Wu, W Bruce
Croft, and Xueqi Cheng. 2019. A deep look into
neural ranking models for information retrieval. In-
formation Processing & Management, page 102067.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2022. LongT5: Efficient text-to-text transformer for
long sequences. In Findings of the Association for
Computational Linguistics: NAACL 2022, pages 724–
736, Seattle, United States. Association for Compu-
tational Linguistics.

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaed-
dine Abdessalem, Tanguy Abel, Mohammad Kalim
Akram, Susana Guzman, Georgios Mastrapas, Saba
Sturua, Bo Wang, Maximilian Werk, Nan Wang,
and Han Xiao. 2023. Jina embeddings 2: 8192-
token general-purpose text embeddings for long doc-
uments.

Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisz-
tian Balog, Svein Erik Bratsberg, Alexander Kotov,
and Jamie Callan. 2017. Dbpedia-entity v2: A test
collection for entity search. In SIGIR, pages 1265–
1268. ACM.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing.

Sebastian Hofstätter, Aldo Lipani, Sophia Althammer,
Markus Zlabinger, and Allan Hanbury. 2021a. Mit-
igating the position bias of transformer models in
passage re-ranking. In ECIR (1), volume 12656 of
Lecture Notes in Computer Science, pages 238–253.
Springer.

Sebastian Hofstätter, Bhaskar Mitra, Hamed Zamani,
Nick Craswell, and Allan Hanbury. 2021b. Intra-
document cascading: Learning to select passages for
neural document ranking. In SIGIR, pages 1349–
1358. ACM.

Sebastian Hofstätter, Markus Zlabinger, and Allan
Hanbury. 2020a. Interpretable & time-budget-
constrained contextualization for re-ranking. In
ECAI, volume 325 of Frontiers in Artificial Intel-
ligence and Applications, pages 513–520. IOS Press.

Sebastian Hofstätter, Markus Zlabinger, Mete Sertkan,
Michael Schröder, and Allan Hanbury. 2020b. Fine-
grained relevance annotations for multi-task docu-
ment ranking and question answering. In CIKM,
pages 3031–3038. ACM.

Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang Li,
Zifeng Wang, Long T. Le, Abhishek Kumar, James R.
Glass, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2024. Found in the middle:
Calibrating positional attention bias improves long
context utilization. In ACL (Findings), pages 14982–
14995. Association for Computational Linguistics.

835

https://trec.nist.gov/pubs/trec31/papers/Overview_deep.pdf
https://trec.nist.gov/pubs/trec31/papers/Overview_deep.pdf
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.18653/v1/2022.findings-naacl.55
http://arxiv.org/abs/2310.19923
http://arxiv.org/abs/2310.19923
http://arxiv.org/abs/2310.19923
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543

Kai Hui, Andrew Yates, Klaus Berberich, and Gerard
de Melo. 2018. Co-pacrr: A context-aware neural
IR model for ad-hoc retrieval. In WSDM, pages 279–
287. ACM.

Samuel Huston and W Bruce Croft. 2014. A compari-
son of retrieval models using term dependencies. In
Proceedings of the 23rd ACM International Confer-
ence on Conference on Information and Knowledge
Management, pages 111–120.

Nasreen Abdul Jaleel, James Allan, W. Bruce Croft,
Fernando Diaz, Leah S. Larkey, Xiaoyan Li, Mark D.
Smucker, and Courtney Wade. 2004. Umass at TREC
2004: Novelty and HARD. In TREC, volume 500-
261 of NIST Special Publication. National Institute
of Standards and Technology (NIST).

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumu-
lated gain-based evaluation of IR techniques. ACM
Trans. Inf. Syst., 20(4):422–446.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In EMNLP (1),
pages 6769–6781. Association for Computational
Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over BERT. In SIGIR, pages 39–48.
ACM.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–
466.

Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and
Yingfei Sun. 2024. PARADE: passage representation
aggregation for document reranking. ACM Trans. Inf.
Syst., 42(2):36:1–36:26.

Jimmy Lin. 2019. The neural hype and comparisons
against weak baselines. In ACM SIGIR Forum, vol-
ume 52, pages 40–51. ACM New York, NY, USA.

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021.
Pretrained Transformers for Text Ranking: BERT and
Beyond. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language
models use long contexts. Trans. Assoc. Comput.
Linguistics, 12:157–173.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and
Jimmy Lin. 2023. Fine-tuning llama for multi-stage
text retrieval. CoRR, abs/2310.08319.

Sean MacAvaney, Sergey Feldman, Nazli Goharian,
Doug Downey, and Arman Cohan. 2022. ABNIRML:
analyzing the behavior of neural IR models. Trans.
Assoc. Comput. Linguistics, 10:224–239.

Sean MacAvaney, Andrew Yates, Arman Cohan, and
Nazli Goharian. 2019. CEDR: contextualized em-
beddings for document ranking. In SIGIR, pages
1101–1104. ACM.

Sean MacAvaney, Andrew Yates, Sergey Feldman,
Doug Downey, Arman Cohan, and Nazli Goharian.
2021. Simplified data wrangling with ir-datasets. In
SIGIR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS, pages 3111–3119.

Iurii Mokrii, Leonid Boytsov, and Pavel Braslavski.
2021. A Systematic Evaluation of Transfer Learn-
ing and Pseudo-Labeling with BERT-Based Ranking
Models, page 2081–2085. Association for Computing
Machinery, New York, NY, USA.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2020. On the stability of fine-tuning
BERT: misconceptions, explanations, and strong
baselines. CoRR, abs/2006.04884.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage
re-ranking with BERT. CoRR, abs/1901.04085.

Rodrigo Nogueira and Jimmy Lin. 2019. From
doc2query to docTTTTTquery. MS MARCO pas-
sage retrieval task publication.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019. Document expansion by
query prediction. CoRR, abs/1904.08375.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

836

https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1145/3600088
https://doi.org/10.1145/3600088
https://doi.org/10.1145/3404835.3463093
https://doi.org/10.1145/3404835.3463093
https://doi.org/10.1145/3404835.3463093
https://doi.org/10.48550/ARXIV.2303.08774

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in neural information processing systems, pages
8026–8037.

Gustavo Penha, Arthur Câmara, and Claudia Hauff.
2022. Evaluating the robustness of retrieval pipelines
with query variation generators. In ECIR (1), volume
13185 of Lecture Notes in Computer Science, pages
397–412. Springer.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Jacob Portes, Alexander R Trott, Sam Havens, DANIEL
KING, Abhinav Venigalla, Moin Nadeem, Nikhil
Sardana, Daya Khudia, and Jonathan Frankle. 2023.
MosaicBERT: A bidirectional encoder optimized for
fast pretraining. In Thirty-seventh Conference on
Neural Information Processing Systems.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. Rocketqa: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In NAACL-HLT, pages
5835–5847. Association for Computational Linguis-
tics.

David Rau, Mostafa Dehghani, and Jaap Kamps. 2024.
Revisiting bag of words document representations
for efficient ranking with transformers. ACM Trans.
Inf. Syst., 42(5):114:1–114:27.

Stephen Robertson. 2004. Understanding inverse doc-
ument frequency: on theoretical arguments for IDF.
Journal of Documentation, 60(5):503–520.

Patrick Ruch, Imad Tbahriti, Julien Gobeill, and
Alan R. Aronson. 2006. Argumentative feedback: A
linguistically-motivated term expansion for informa-
tion retrieval. In ACL. The Association for Computer
Linguistics.

Alexander M Rush. 2018. The annotated transformer.
In Proceedings of workshop for NLP open source
software (NLP-OSS), pages 52–60.

Jon Saad-Falcon, Daniel Y. Fu, Simran Arora, Neel
Guha, and Christopher Ré. 2024. Benchmarking and
building long-context retrieval models with loco and
M2-BERT. CoRR, abs/2402.07440.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng
Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2023. Roformer: En-
hanced transformer with rotary position embedding.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is chatgpt good at search?
investigating large language models as re-ranking
agents. In EMNLP, pages 14918–14937. Association
for Computational Linguistics.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. 2020. Efficient transformers: A survey. CoRR,
abs/2009.06732.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In NeurIPS Datasets
and Benchmarks.

Shivani Upadhyay, Ronak Pradeep, Nandan Thakur,
Nick Craswell, and Jimmy Lin. 2024. UMBRELA:
umbrela is the (open-source reproduction of the) bing
relevance assessor. CoRR, abs/2406.06519.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Ellen Voorhees. 2004. Overview of the trec 2004 robust
retrieval track. In TREC.

Ellen Voorhees, Tasmeer Alam, Steven Bedrick, Dina
Demner-Fushman, William R Hersh, Kyle Lo, Kirk
Roberts, Ian Soboroff, and Lucy Lu Wang. 2021.
Trec-covid: constructing a pandemic information re-
trieval test collection. In ACM SIGIR Forum, vol-
ume 54, pages 1–12. ACM New York, NY, USA.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying
scientific claims. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7534–7550.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. In ICLR.
OpenReview.net.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

837

https://openreview.net/forum?id=5zipcfLC2Z
https://openreview.net/forum?id=5zipcfLC2Z
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864

Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing. ArXiv, abs/1910.03771.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. CoRR, abs/1609.08144.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan
Liu, and Russell Power. 2017. End-to-end neural
ad-hoc ranking with kernel pooling. In SIGIR, pages
55–64. ACM.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In ICLR. OpenReview.net.

Zhichao Xu. 2024. Rankmamba: Benchmarking
mamba’s document ranking performance in the era
of transformers. arXiv preprint arXiv:2403.18276.

Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei Yang,
Haotian Zhang, and Jimmy Lin. 2019. Apply-
ing BERT to document retrieval with birch. In
EMNLP/IJCNLP (3), pages 19–24. Association for
Computational Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tañón, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In NeurIPS.

George Zerveas, Navid Rekabsaz, Daniel Cohen, and
Carsten Eickhoff. 2021. Coder: An efficient
framework for improving retrieval through contex-
tualized document embedding reranking. ArXiv,
abs/2112.08766.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. CoRR, abs/2401.02385.

Xinyu Zhang, Andrew Yates, and Jimmy Lin. 2021.
Comparing score aggregation approaches for docu-
ment retrieval with pretrained transformers. In ECIR
(2), volume 12657 of Lecture Notes in Computer
Science, pages 150–163. Springer.

Dawei Zhu, Liang Wang, Nan Yang, Yifan Song, Wen-
hao Wu, Furu Wei, and Sujian Li. 2024. Longembed:
Extending embedding models for long context re-
trieval. pages 802–816.

Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma,
Suqi Cheng, Shuaiqiang Wang, Daiting Shi, Zhicong
Cheng, and Dawei Yin. 2021. Pre-trained language
model based ranking in baidu search. In KDD, pages
4014–4022. ACM.

Algorithm 1 Document debiasing via random
word-boundary rotation proposed by Hofstätter
et al. (2021a)
Require: Document text D
Ensure: Debiased document D′

1: Remove trailing whitespace from D and find
word-boundary positions B = {b1, . . . , bn}

2: Sample b⋆ ∼ Unif(B)
3: Dleft ← D[0:b⋆]
4: Dright ← D[b⋆:]
5: D′ ← concat(Dright, " ", Dleft)
6: return D′

A Experimental Addendum:
Training/Evaluation Setup, Ablations,
and Detailed Results

A.1 Detailed Training and Evaluation Setup
A.1.1 General Setup
Except for LongEmbed (Zhu et al., 2024), we ap-
plied a ranker to the output of the first-stage re-
trieval model, also known as a candidate generator.
However, each LongEmbed subset contains only
800 documents, and we re-rank them all without
using a first-stage retriever.

Depending on the experiment and the dataset,
we used different candidate generators. For MS
MARCO v1 (training and development sets) and
Robust04, we used a BM25 ranker (Robertson,
2004). Note that for MS MARCO v1, the ranker
was applied to documents expanded using the
doc2query approach (Nogueira and Lin, 2019).

For MS MARCO v2, we used a hybrid retriever
where candidate records were first produced using
a k-NN search and subsequently re-ranked using
a linear combination of BM25 scores and the co-
sine similarity between query and document em-
beddings. We also used k-NN search with neural
embeddings for TREC DL queries. Embeddings
were generated using ANCE (Xiong et al., 2021).

Depending on the collection we computed a sub-
set of the following metrics: the mean reciprocal
rank (MRR), the normalized discounted cumulative
gain at rank k (NDCG@k) (Järvelin and Kekäläi-
nen, 2002), the mean average precision (MAP),
and precision at rank (P@k), k ∈ {10, 20}. Due to

838

Ranker TREC DL NQ BEIR (without NQ)
(2019-2020) Touche COVID NFC DBP SciFact SciDocs average

NDCG@10 NDCG@10 NDCG@10

BM25 0.519 0.325 0.336 0.677 0.326 0.339 0.655 0.160 0.417

Original MS MARCO training set

MaxP (ELECTRA) 0.715 0.514 0.314 0.744 0.312 0.404 0.659 0.153 0.477
PARADE Attn (ELECTRA) 0.710 0.496 0.356 0.743 0.266 0.386 0.606 0.140 0.463
PARADE Transf-RAND-L2 (ELECTRA) 0.703 0.474 0.293 0.728 0.297 0.380 0.658 0.154 0.461
CEDR-KNRM 0.599 0.318 0.242 0.710 0.268 0.305 0.478 0.127 0.381

Debiased MS MARCO (Hofstätter et al., 2021a)

MaxP (ELECTRA) 0.716 (+0.1%) 0.516 (+0.6%) 0.309 0.742 0.296a 0.408 0.646 0.150 0.473 (−0.8%)
PARADE Attn (ELECTRA) 0.675a (−4.9%) 0.427a (−14.0%) 0.335 0.742 0.226a 0.353a 0.522a 0.122a 0.425 (−8.2%)
PARADE Transf-RAND-L2 (ELECTRA) 0.706 (+0.4%) 0.485a (+2.5%) 0.299 0.753a 0.288a 0.393a 0.643 0.153 0.465 (+0.9%)
CEDR-KNRM 0.604 (+0.7%) 0.353a (+11.0%) 0.231 0.683a 0.265 0.340a 0.419a 0.122a 0.377 (−1.0%)

We train each model using the original and the debiased MS MARCO. For each model trained on the debiased dataset, we compute a gain
(or loss) compared to the same model trained on the original training set. Statistical significance of the differences are denoted using the
superscript superscript a (except TREC DL and TREC COVID that have p-value threshold of 0.05, the p-value threshold is 0.01). Best
numbers are in bold: Results are averaged over three seeds.

Table 3: Debiasing impact on short-document collection performance. The table shows effectiveness of (selected)
rankers trained on original and debiased MS MARCO (and tested on short-document collections).

space constraints, we included results with MAP
and P@K only in the Appendix (see § B). Note
that for test sets with sparse labels (MS MARCO
development set and MS MARCO FarRelevant) we
computed only MRR.

All experiments were carried out using the
FlexNeuART framework (Boytsov and Nyberg,
2020), which employed Lucene and NMSLIB
(Boytsov and Naidan, 2013) to provide retrieval
capabilities. Deep learning support was provided
via PyTorch (Paszke et al., 2019) and HuggingFace
Transformers library (Wolf et al., 2019). The in-
structions to reproduce our key results are publicly
available.6

A.1.2 Model Training
A ranker was trained to distinguish between pos-
itive examples (known relevant documents) and
hard negative examples (documents not marked
as relevant) sampled from the set of top-k candi-
dates returned by the candidate generator. Based
on preliminary experiments, we chose k = 100 for
MS MARCO and MS MARCO FarRelevant. For
Robust04 we used k = 1000.

Each model was trained using three seeds. To
compute statistical significance, we averaged query-
specific metric values over these seeds. All models
except MOSAIC were trained using half-precision.
MOSAIC models were trained using full-precision.
MOSAIC training was unstable (even though we
used the full precision) and often resulted in close-

6https://github.com/searchivarius/long_doc_
rank_model_analysis_v2/

to-zero performance. For this reason we continued
training with more seeds until we obtained three
models with reasonable performance. This seed
selection strategy could potentially have biased (up)
MOSAIC results.

All MS MARCO models were trained from
scratch. Afterward, these models were fine-tuned
on Robust04. Note that except for the aggrega-
tor Transformers (see D.2 for architectural details)
and TinyLLAMA, we use a base, i.e., a 12-layer
Transformer (Vaswani et al., 2017) models. TinyL-
LAMA has 22 layers and about 1B parameters.

BERT-base is more practical than a 24-layer
BERT-large and performed on par with BERT-large
on MS MARCO Documents and Robust04 (Hof-
stätter et al., 2020a; Li et al., 2024). In our own
preliminary experiments, we observed that the 24-
layer BERT-large model performed much better on
the MS MARCO Passage collection, but we were
not able to outperform 12-layer BERT-base models
on the MS MARCO Documents collection. Note
that Longformer (Beltagy et al., 2020), BigBird
(Zaheer et al., 2020), DEBERTA-base (He et al.,
2021), JINA (Günther et al., 2023), and MOSAIC
(Portes et al., 2023) all have 12 layers, but a larger
embedding matrix compared to BERT-base.

One training epoch consisted in iterating over all
queries and sampling one positive and one nega-
tive example with a subsequent computation of a
pairwise margin loss. We used the mini-batch size
one with gradient accumulation over 16 steps. The
learning rates are provided in the model configu-

839

https://github.com/searchivarius/long_doc_rank_model_analysis_v2/
https://github.com/searchivarius/long_doc_rank_model_analysis_v2/

Retriever / Ranker zero-shot fine-tuned
transferred

Random shuffling of top-100 0.052 0.052
Retriever (BM25) 0.207 0.207

FirstP (BERT) 0.016b 0.090b

FirstP (Longformer) 0.017b 0.091b

FirstP (ELECTRA) 0.019b 0.089b

FirstP (Big-Bird) 0.021b 0.089b

FirstP (JINA) 0.018b 0.088b

FirstP (MOSAIC) 0.018b 0.089b

FirstP (TinyLLAMA) 0.020b 0.079b

FirstP (E5-4K) 0.015ab –

AvgP 0.154ab (−48.1%) 0.365ab (+11.4%)

MaxP 0.297b 0.328b

MaxP (ELECTRA) 0.328b 0.349b

MaxP (DEBERTA) 0.298b 0.332b

SumP 0.211ab (−28.8%) 0.327b (−0.4%)

CEDR-DRMM 0.157ab (−47.3%) 0.372ab (+13.3%)

CEDR-KNRM 0.055ab (−81.5%) 0.382a (+16.4%)

CEDR-PACRR 0.209ab (−29.6%) 0.393a (+19.9%)

Neural Model1 0.085ab (−71.3%) 0.396a (+20.6%)

PARADE Attn 0.300b (+1.0%) 0.337b (+2.8%)

PARADE Attn (ELECTRA) 0.338b (+3.3%) 0.354b (+1.6%)

PARADE Attn (DEBERTA) 0.307b (+3.2%) 0.343b (+3.4%)

PARADE Avg 0.274ab (−7.6%) 0.322b (−1.7%)

PARADE Max 0.291b (−2.1%) 0.330b (+0.6%)

PARADE Transf-RAND-L2 0.243a (−18.2%) 0.419ab (+27.7%)

P. Transf-RAND-L2 (ELECTRA) 0.229a (−30.2%) 0.432ab (+23.8%)

PARADE Transf-PRETR-L6 0.267ab (−10.0%) 0.413a (+26.0%)

P. Transf-PRETR-LATEIR-L6 0.244a (−18.0%) 0.358ab (+9.2%)

LongP (Longformer) 0.233a (−21.7%) 0.399a (+21.7%)

LongP (Big-Bird) 0.126ab (−57.4%) 0.401a (+22.1%)

LongP (JINA) 0.069ab (−76.9%) 0.372ab (+13.4%)

LongP (MOSAIC) 0.120ab (−59.6%) 0.397a (+21.2%)

LongP (TinyLLAMA) 0.078ab (−73.6%) 0.397a (+21.1%)

LongP (E5-4K) 0.057ab (−80.7%) N/A (zero-shot only)
LongP RankGPT (GPT-4o-mini) 0.043b N/A (zero-shot only)
LongP RankGPT (Claude-3-haiku) 0.051b N/A (zero-shot only)

In each column we show a relative gain over models’ respective MaxP
baseline. For LongP models, the gain is over MaxP (BERT).
Statistically significant differences from a respective MaxP baseline
are denoted with the superscript a.
Statistical significant differences with respect to Longformer are de-
noted with the superscript b (p-value < 0.01).

Table 4: Comparison between long-document models
and respective FirstP (truncation) baselines. Results on
MS MARCO FarRelevant.

ration files (in the code repository).7 We used the
AdamW optimizer (Loshchilov and Hutter, 2017)
and a constant learning rate with a 20% linear
warm-up (Mosbach et al., 2020).

We have learned that—unlike neural retrievers—
cross-encoding rankers (Nogueira and Cho, 2019)
are relatively insensitive to learning rates, their
schedules, and the choice of loss functions. We
were sometimes able to achieve better results using
multiple negatives per query and a listwise margin
loss (or cross-entropy). However, the gains were

7https://github.com/searchivarius/long_doc_
rank_model_analysis_v2/.

small and not consistent compared to a simple pair-
wise margin loss used in our work (in fact, using
a listwise loss function sometimes led to overfit-
ting). Note again that this is different from neu-
ral retrievers where training is sometimes difficult
without using a listwise loss and/or batch-negatives
(Karpukhin et al., 2020; Xiong et al., 2021; Qu
et al., 2021; Zerveas et al., 2021; Formal et al.,
2021).

For MS MARCO, all models except PARADE-
Transf-Pretr-LATEIR-L6 and PARADE-Transf-
RAND-L2 were trained for one epoch: Further
training did not improve (and sometimes degraded)
accuracy. However, PARADE-Transf-RAND-L2
and PARADE-Transf-Pretr-LATEIR-L6 required
two-to-three epochs to reach the maximum accu-
racy. For training with the debiased MS MARCO,
we used only one epoch. In the case of Robust04,
each model was fine-tuned for 100 epochs, but all
epochs were short, so the overall training and eval-
uation time was comparable to that of fine-tuning
on MS MARCO for a single epoch.

Except 1B-parameter TinyLLAMA (Zhang et al.,
2024), each model has about 100M parameters (see
Table 11 for details). Despite training and testing
20+ models with three seeds, we estimate to have
spent only about 6400 GPU hours for our main
experiments. 96% of the time we used NVIDIA
A10 (or similarly-powerful) RTX 3090 GPUs and
4% of the time we used NVIDIA A6000.

We believe this is roughly equivalent to pre-
training a single 1B-parameter TinyLLAMA model
with a next-token prediction objective, which re-
quired about 3400 GPU hours using a more pow-
erful NVIDIA A100. This, in turn, this is only a
tiny fraction of compute required to train LLAMA2
models (2% compared to a 7B LLAMA2 model).8

From our experience, models trained on MS
MARCO v2 performed worse on TREC 2021
queries compared to models trained on MS
MARCO v1. This may indicate that models im-
plicitly learned to distinguish between original MS
MARCO v1 documents and newly added ones
(which did not have positive judgements in the
training sets). As a result, these models are bi-
ased and tend to rank newly added documents
poorly even when they are considered to be rel-
evant by NIST assessors. For this reason, we used
MS MARCO v2 data only in a zero-shot transfer

8https://github.com/microsoft/Llama-2-Onnx/
blob/main/MODEL-CARD-META-LLAMA-2.md

840

https://github.com/searchivarius/long_doc_rank_model_analysis_v2/.
https://github.com/searchivarius/long_doc_rank_model_analysis_v2/.
https://github.com/microsoft/Llama-2-Onnx/blob/main/MODEL-CARD-META-LLAMA-2.md
https://github.com/microsoft/Llama-2-Onnx/blob/main/MODEL-CARD-META-LLAMA-2.md

Model MS MARCO TREC DL Robust04
dev 2019 2020 2021 title description

MRR NDCG@10 NDCG@20

BM25 0.274 0.548 0.538 0.549 0.428 0.402

Prior work (FirstP, MaxP), Zhang et al. (Zhang et al., 2021)

FirstP (BERT) – – – – 0.449 0.510
MaxP (BERT) – – – – 0.477 (+6.2%) 0.530 (+3.9%)
MaxP (ELECTRA) – – – – 0.523 0.574

Prior work (PARADE) Li et al. (Li et al., 2024)

PARADE Attn (ELECTRA) – – – – 0.527 0.587
PARADE Max (ELECTRA) – 0.679 0.613 – 0.544 0.602
PARADE Transf-RAND (ELECTRA) – 0.650 0.601 – 0.566 0.613

Our results

FirstP (BERT) 0.394 0.631 0.598 0.660 0.475 0.527
MaxP (BERT) 0.392 (−0.4%) 0.648 (+2.6%) 0.615 (+2.8%) 0.665 (+0.8%) 0.488a (+2.6%) 0.544a (+3.3%)
PARADE Attn 0.416a (+5.5%) 0.647 (+2.5%) 0.626a (+4.6%) 0.677 (+2.5%) 0.503a (+5.7%) 0.556a (+5.6%)

FirstP (ELECTRA) 0.417 0.652 0.642 0.686 0.492 0.552
MaxP (ELECTRA) 0.414 (−0.6%) 0.659 (+1.0%) 0.630 (−1.9%) 0.683 (−0.5%) 0.502 (+2.0%) 0.563 (+2.1%)
PARADE Attn (ELECTRA) 0.431a (+3.3%) 0.675a (+3.5%) 0.653 (+1.8%) 0.705 (+2.8%) 0.523a (+6.4%) 0.581a (+5.3%)

FirstP (DEBERTA) 0.415 0.675 0.629 0.702 0.534 0.596
MaxP (DEBERTA) 0.402 (−3.2%) 0.679 (+0.6%) 0.620 (−1.4%) 0.705 (+0.4%) 0.535 (+0.2%) 0.609 (+2.2%)
PARADE Attn (DEBERTA) 0.422a (+1.6%) 0.685 (+1.4%) 0.659a (+4.8%) 0.713 (+1.4%) 0.549a (+2.9%) 0.615a (+3.2%)

FirstP (Longformer) 0.404 0.657 0.616 0.654 0.483 0.540
LongP (Longformer) 0.412a (+1.9%) 0.676a (+2.9%) 0.628 (+2.0%) 0.693a (+6.0%) 0.500a (+3.6%) 0.568a (+5.1%)

FirstP (Big-Bird) 0.408 0.663 0.620 0.679 0.507 0.560
LongP (Big-Bird) 0.397a (−2.9%) 0.655 (−1.1%) 0.618 (−0.3%) 0.675 (−0.5%) 0.452a (−10.9%) 0.477a (−14.9%)

FirstP (JINA) 0.422 0.658 0.618 0.679 0.488 0.532
LongP (JINA) 0.416a (−1.5%) 0.670a (+1.8%) 0.632 (+2.1%) 0.689 (+1.4%) 0.503a (+2.9%) 0.558a (+4.9%)

FirstP (MOSAIC) 0.423 0.654 0.607 0.662 0.453 0.538
LongP (MOSAIC) 0.421 (−0.4%) 0.660 (+0.9%) 0.630a (+3.7%) 0.694a (+4.9%) 0.456 (+0.6%) 0.570a (+6.0%)

In each column we show a relative gain over model’s respective FirstP baseline: The last column shows the average relative gain over FirstP.
Best numbers are in bold: Our results are averaged over three seeds. Prior-art seed strategy is unknown.
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is 0.01 for an
MS MARCO development collection and 0.05 otherwise.

Table 5: Comparison between long-document models and respective FirstP (truncation) baselines for several
backbone Transformer models as well as comparison to prior art. Results for MS MARCO, TREC DL, and
Robust04.

mode. To this end, ranking models trained on MS
MARCO v1 were evaluated using TREC DL 2021
queries.

A.1.3 Miscellaneous Notes

To enable efficient training and evaluation of the
large number of models, both Robust04 and origi-
nal MS MARCO documents were truncated to have
at most 1431 BERT tokens. Thus, for SplitP ap-
proaches, queries were padded to 32 BERT tokens
and long documents were split into at most three
chunks, each containing 477 document tokens.
However, for training on debiased MS MARCO,
the truncation threshold was much higher: 8109
tokens.

In § B.2.1 (see Table 6) we show that for
our top-performing model PARADE Attention (Li
et al., 2024) using a larger number of chunks only
marginally improves outcomes. Depending on a
dataset, the highest accuracy is achieved using ei-

ther three or four chunks.
We evaluated over 20 models, but we had to

exclude two LongT5 variants (Guo et al., 2022)
and RoFormer (with ROPE embeddings) (Su et al.,
2024) due to poor convergence and/or crashes.
Specifically, even after 10 epochs of training
LongT5 models were ≈ 10% less accurate than
BERT-base FirstP trained for one epoch. Given
the uncertainty regarding the possible convergence
of models as well as the need to train these for
three epochs, we had to abandon this experiment
as overly expensive. RoFormer models were fail-
ing due to CUDA errors when the context length
exceeded 512: We were not able to resolve this
issue.

For bias-mitigation experiments, for several rea-
sons, we used only a subset of models. First, we
had to exclude all LongP models since none of
them supported a context longer than 8192 tokens.
In contrast, we trained our chunk-and-aggregate

841

Retriever / Ranker MS MARCO TREC DL Robust04 Avg. gain
dev (2019-2021) title description Over FirstP

MRR NDCG@10 NDCG@20

BM25 0.274 0.545 0.428 0.402 –

Retriever (if different from BM25) 0.312 0.629 – – –

PARADE Attn (1 chunk) 0.401 0.637 0.476 0.527 –
PARADE Attn (2 chunks) 0.408a (+1.8%) 0.653a (+2.7%) 0.499a (+4.9%) 0.544a (+3.3%) +3.2%
PARADE Attn (3 chunks) 0.406a (+1.3%) 0.648a (+1.7%) 0.505a (+6.1%) 0.557a (+5.7%) +3.7%
PARADE Attn (4 chunks) 0.412a (+2.9%) 0.654a (+2.7%) 0.504a (+5.9%) 0.558a (+5.9%) +4.3%
PARADE Attn (5 chunks) 0.409a (+2.0%) 0.652a (+2.4%) 0.502a (+5.6%) 0.556a (+5.5%) +3.9%
PARADE Attn (6 chunks) 0.411a (+2.4%) 0.653a (+2.6%) 0.504a (+5.9%) 0.554a (+5.2%) +4.0%

Table 6: Effectiveness of the PARADE Attention model for different input truncation thresholds. Results for MS
MARCO, TREC DL, and Robust04.

models on documents limited to 8109 tokens and
then extrapolated their use to rank documents up to
32768 tokens long.

Second, we chose representative models with
vastly different generalization properties. MaxP
and PARADE Attention models performed well
on MS MARCO FarRelevant in the zero-shot set-
ting, but did not benefit much from in-domain
fine-tuning. PARADE Transformer MRR dropped
from 0.433 to 0.229 in the zero-shot setting, but
increased up to 0.432 after in-domain fine-tuning.
CEDR-KNRM also benefited a lot from fine-tuning
on MS MARCO FarRelevant, but its zero-shot per-
formance was at the level of the random-baseline.

B Additional Experimental Results

This section presents supplementary experimental
results. In particular, we compute additional effec-
tiveness metrics for MS MARCO, TREC DL, and
Robust04. MS MARCO and TREC DL results are
shown in Table 9. Results for Robust04 datasets
are presented in Table 10. Evaluation results for
rankers trained on the debiased MS MARCO and
tested on short-document collections are shown in
Table 3. Furthermore, we provide detailed results
for MS MARCO FarRelevant in Table 4.

To justify the use of BERT-base (Devlin et al.,
2019) as the main model backbone, we carry out
an ablation study in § B.1. Moreover, in this sec-
tion we also compare our results to prior art, with
the objective to boost trustworthiness of our exper-
iments.

This is followed by a miscellaneous ablations
subsection (§ B.2), where we carry out an efficiency
evaluation and assess if truncating input to at most
1431 BERT tokens affected our experimental out-
comes.

B.1 Backbone Selection for SplitP Models and
Prior Art Comparison

B.1.1 Choice of a Backbone

To understand if using BERT-base as a back-
bone model for various SplitP (i.e., chunk-and-
aggregate) approaches diminished models’ ability
to process and understand long contexts, we car-
ried out a focused comparison of several backbone
models, including ELECTRA (Clark et al., 2020)
and DEBERTA (He et al., 2021).

To this end, we used two methods: PARADE
(Li et al., 2024) Attention and MaxP. PARADE
Attention model achieved the largest average gain
over FirstP in our main experiments (see Table 1),
whereas MaxP models were extensively bench-
marked in the past (Li et al., 2024; Dai and Callan,
2019; Zhang et al., 2021).

Although prior work found ELECTRA to be
a better backbone model in terms of absolute ac-
curacy (Li et al., 2024; Zhang et al., 2021), we
found no systematic evaluation of the relationship
between a backbone model and gains achievable
over FirstP.

Results in Tables 1 and 5 confirm the overall su-
periority of both ELECTRA and DEBERTA over
BERT-base. In that, DEBERTA models are nearly
always more effective compared to ELECTRA
models with biggest differences on Robust04. How-
ever, their relative effectiveness with respect to
their respective FirstP baselines does not exceed
that of BERT-base.

The same is true for LongP models. Except
Longformer, they performed equally or worse com-
pared to FirstP on 8 test sets out of 18. Moreover,
all LongP models achieved lower average gains
over FirstP (see the last column in Table 1). We
conclude that to measure capabilities of chunk-and-

842

aggregate or long-context models to understand
and incorporate long documents, it appears to be
beneficial to use BERT-base instead of ELECTRA
or DEBERTA.

Finally, we would like to note that on standard
benchmarks Big-Bird’s (Zaheer et al., 2020) FirstP
version always outperformed its LongP version
(sometimes by as much as 10-15%), which seems
to be puzzling. We noticed, however, that for
shorter inputs, the model turns off sparse atten-
tion and prints the respective warning. Thus, we
hypothesize that it is the use of sparse attention that
causes this degradation. In contrast, the sparse at-
tention implementation of the Longformer (Beltagy
et al., 2020) does not exhibit such a degradation (al-
though with Longformer, not all attention is sparse:
query-to-document attention is full). Although Big-
Bird underperforms on standard benchmarks, after
fine-tuning, it still matches the Longformer accu-
racy on MS MARCO FarRelevant (see Table 4).

B.1.2 Comparison to Prior Art
We also use Table 5 to compare with prior art. We
generally reproduce prior art, in particular, exper-
iments by Li et al. 2024, who invented PARADE
models. Our ELECTRA-based models achieve
higher NDCG@10 on TREC DL 2019-2020 and
PARADE Attention models come very close, but
they are about 3-5% worse compared to their PA-
RADE Transformer on Robust04. At the same time,
our DEBERTA-based PARADE Attention model
achieves similar NDCG@20 scores.

Note that one should not expect identical results
due to differences in training regimes and candidate
generators. In particular, in the case of Robust04,
Li et al. 2024 used RM3, which is BM25 with
pseudo-relevance feedback (Jaleel et al., 2004). On
Robust04, it is more effective than BM25 (Robert-
son, 2004), which we used as the first-stage re-
triever.

Another important comparison point is Robust04
results by Zhang et al. 2021 who were able to re-
produce original MaxP results by Dai and Callan
(2019), who used BERT-base as a backbone. In ad-
dition, they experimented with ELECTRA models
“pre-finetuned” on MS MARCO. When compar-
ing results for the BERT-base backbone, Zhang
et al. (2021) have the maximum relative gain of
6.6% compared to ours 3.3%. However, in absolute
terms we got higher NDCG@20 for both FirstP
and MaxP. Their MaxP (ELECTRA) has compara-
ble performance to ours on TREC DL 2019-2020,

but it is 2-4% better on Robust04. In turn, our
MaxP (DEBERTA) is better by 2-6%. Although
we do not always match prior art using the same
backbone models, we generally match or outper-
form prior results, which, we believe, boosts the
trustworthiness of our experiments.

Figure 3: Efficiency of long-document models vs re-
spective (truncation) FirstP baselines. The figure shows
an average relative gain (in %) vs. relative increase in
run-time compared to respective FirstP baselines on
MS MARCO, TREC DL 2019-2021, and Robust04
(for a representative subset of models). Except LongP
RankGPT, LongP models truncate documents to be at
most 1431 tokens. There is no truncation for RankGPT.

B.2 Miscellaneous Ablations

B.2.1 Varying the Number of Chunks

To understand if truncating input to at most 1431
BERT tokens biased our experimental outcomes,
we carried out an ablation study where one of the
top-performing models was trained and evaluated
using inputs of varying maximum lengths. To this
end, we used PARADE Attention with the number
of input chunks varying from one to six. For each
setting, the same number of chunks was used dur-
ing training and evaluation, i.e., we had to carry
out six experiments. Similar to our main experi-
ments, we trained each model using three seeds.
We carried out this ablation experiment using our
MS MARCO and Robust04 datasets.

The results are presented in Table 6. We can
see that—depending on the dataset—three or four
input chunks are optimal. However, compared to
using three chunks, the additional gains over the
FirstP baseline are at most 0.6% when averaged
over all test sets.

843

Gao and Callan 2022 carried out a similar abla-
tion using ClueWeb09. Increasing the number of
input chunks from three to six lead to only about
2.3% relative improvement in NDCG@20. How-
ever, even this modest gain could have been slightly
inflated due to model not being trained directly on
shorter inputs. Indeed, truncation of an input for
a six-chunk model to one chunk is potentially less
effective than training and evaluating the model
using one-chunk data.

B.2.2 Efficiency Evaluation
We conducted an efficiency evaluation because
long-document models, despite their potential to
capture more context, often incur substantial com-
putational overhead compared to their FirstP coun-
terparts, raising questions about their practical util-
ity.

From the efficiency-effectiveness plot in Fig. 3,
we can see that, indeed, all long-document mod-
els are at least 2× slower than respective FirstP
baselines. The biggest average gain of merely 5%
is achieved by the PARADE Attn model (with a
BERT-base backbone) at the cost of being 2.5×
slower than its FirstP baseline.

All LongP models are even slower and show
less improvement. Given such small benefits at the
cost of a substantial slow-down, one could ques-
tion practicality of such models and suggest using
FirstP variants instead.

C Additional Dataset Details

C.1 Summary Dataset Statistics
Summary query and dataset statistics are shown in
Tables 7 and 8. In the case of BEIR, we use seven
subsets, which include:

• Natural Questions (Kwiatkowski et al., 2019);

• Touché 2020 (Bondarenko et al., 2020);

• TREC COVID (Voorhees et al., 2021);

• NFCorpus (Boteva et al., 2016);

• DBPedia-Entity-v2 (Hasibi et al., 2017);

• SciFact (Wadden et al., 2020);

• SciDocs (Cohan et al., 2020).

Please, note that in the case of MS MARCO Far-
Relevant, we created about 500K training and 7K
testing queries, but to reduce experimentation cost

of queries avg. # of
BERT tokens

avg. # of
positive
judgments

MS MARCO doc. v1

MS MARCO doc. train 352K 7 1
MS MARCO doc. dev 5193 7 1
TREC DL 2019 43 7 153.4
TREC DL 2020 45 7.4 39.3

MS MARCO v2

TREC DL 2021 57 9.8 143.9

Robust04

title 250 3.6 69.6
description 250 18.7 69.6

MS MARCO FarRelevant

train 50K 7.0 1
test 1K 7.0 1

LongEmbed

Needle 800 13.0 1
Passkey 800 9.7 1

MS MARCO pass. v1

TREC DL 2019 43 7 95.4
TREC DL 2020 54 7.2 66.8

BEIR

Natural Questions 3452 9.9 1.2
Touche 49 19 7.9
TREC COVID 50 493.5 16
NFCorpus (NFC) 323 38.2 5
DBP 400 38.2 6.5
SciFact 300 1.1 20.8
SciDocs 1000 4.9 13.1

Table 7: Query Statistics

data set # of documents average # of
BERT tokens
per document

Long-document collections

MS MARCO doc. v1 3.2M 1.4K
MS MARCO doc. v2 12M 2K
Robust04 0.5M 0.6K
MS MARCO FarRelevant 0.53M 1.1K
Needle (LongEmbed) 0.8K variable-length
Passkey (LongEmbed) 0.8K variable-length

Short-document collections

MS MARCO pass. v1 8.8M 75

Short-document collections: BEIR subset

Natural Questions 2.7M 107
Touche 382.5K 382
TREC COVID 171.3K 243
NFCorpus (NFC) 3.6K 355
DBP 4.6M 71
SciFact 5.2K 335
SciDocs 25.7K 234

LONGEMBED subsets each have 16 subsets of documents whose
lengths vary from (approximately) 256 to 32768 tokens.

Table 8: Document Statistics

844

Model MS MARCO TREC DL
dev 2019-2021

MRR NDCG@10 P@10 MAP

BM25 0.274 0.545 0.636 0.282
Retriever 0.312 0.629 0.720 0.321

FirstP (BERT) 0.394 0.632 0.712 0.311
FirstP (Longformer) 0.404 0.643 0.722 0.317
FirstP (ELECTRA) 0.417 0.662 0.734 0.320
FirstP (DEBERTA) 0.415 0.672 0.741 0.327
FirstP (Big-Bird) 0.408 0.656 0.727 0.321
FirstP (JINA) 0.422 0.654 0.728 0.320
FirstP (MOSAIC) 0.423 0.643 0.726 0.316
FirstP (TinyLLAMA) 0.395 0.615 0.692 0.301
FirstP (E5) 0.380 0.641 0.722 0.317
FirstP RankGPT (OpenAI) – 0.708 0.790 0.352
FirstP RankGPT (Anthropic) – 0.703 0.776 0.347

AvgP 0.389 (−1.3%) 0.642 (+1.5%) 0.717 (+0.7%) 0.317a (+2.0%)

MaxP 0.392 (−0.4%) 0.644a (+1.9%) 0.723 (+1.5%) 0.322a (+3.7%)
MaxP (ELECTRA) 0.414 (−0.6%) 0.659 (−0.5%) 0.745 (+1.5%) 0.326 (+2.1%)
MaxP (DEBERTA) 0.402a (−3.2%) 0.671 (−0.1%) 0.746 (+0.7%) 0.335a (+2.5%)
SumP 0.390 (−1.0%) 0.639 (+1.0%) 0.715 (+0.4%) 0.319a (+2.6%)

CEDR-DRMM 0.385a (−2.3%) 0.629 (−0.5%) 0.708 (−0.5%) 0.313 (+0.6%)
CEDR-KNRM 0.379a (−3.8%) 0.630 (−0.3%) 0.711 (−0.1%) 0.313 (+0.8%)
CEDR-PACRR 0.395 (+0.3%) 0.643a (+1.6%) 0.719 (+0.9%) 0.320a (+2.9%)

Neural Model1 0.398 (+0.9%) 0.650a (+2.8%) 0.723a (+1.5%) 0.323a (+3.9%)

PARADE Attn 0.416a (+5.5%) 0.652a (+3.1%) 0.728a (+2.2%) 0.324a (+4.2%)
PARADE Attn (ELECTRA) 0.431a (+3.3%) 0.680a (+2.7%) 0.763a (+3.9%) 0.335a (+4.9%)
PARADE Attn (DEBERTA) 0.422a (+1.6%) 0.688a (+2.4%) 0.763a (+3.0%) 0.339a (+3.9%)

PARADE Avg 0.392 (−0.6%) 0.646a (+2.1%) 0.715 (+0.4%) 0.317a (+2.1%)
PARADE Max 0.405a (+2.7%) 0.655a (+3.5%) 0.733a (+2.9%) 0.324a (+4.1%)

PARADE Transf-RAND-L2 0.419a (+6.3%) 0.655a (+3.6%) 0.734a (+3.1%) 0.326a (+5.0%)
PAR. Transf-RAND-L2 (ELECTRA) 0.433a (+3.9%) 0.670 (+1.2%) 0.747 (+1.8%) 0.327 (+2.2%)
PARADE Transf-PRETR-L6 0.402a (+1.9%) 0.643 (+1.6%) 0.717 (+0.8%) 0.322a (+3.6%)
PARADE Transf-PRETR-LATEIR-L6 0.398 (+1.1%) 0.626 (−0.9%) 0.707 (−0.7%) 0.307 (−1.1%)

LongP (Longformer) 0.412a (+1.9%) 0.668a (+3.9%) 0.752a (+4.1%) 0.333a (+5.1%)
LongP (Big-Bird) 0.397a (−2.9%) 0.651 (−0.7%) 0.726 (−0.2%) 0.322 (+0.3%)
LongP (JINA) 0.416a (−1.5%) 0.665a (+1.7%) 0.742a (+2.0%) 0.328a (+2.4%)
LongP (MOSAIC) 0.421 (−0.4%) 0.664a (+3.3%) 0.740a (+1.9%) 0.327a (+3.7%)
LongP (TinyLLAMA) 0.402a (+1.7%) 0.608 (−1.1%) 0.692 (+0.0%) 0.306 (+1.6%)
LongP (E5) 0.353a (−7.1%) 0.649 (+1.3%) 0.724 (+0.3%) 0.323 (+1.8%)
LongP RankGPT (OpenAI) – 0.706 (−0.3%) 0.783 (−1.0%) 0.350 (−0.7%)
LongP RankGPT (Anthropic) – 0.707 (+0.5%) 0.780 (+0.5%) 0.348 (+0.4%)

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average
relative gain of FirstP. Best numbers are in bold: Results are averaged over three seeds. Unless specified explicitly, the
backbone is BERT-base.
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold
is 0.01 for an MS MARCO development collection and 0.05 otherwise.
E5-models were used only in the zero-shot model, i.e., without fine-tuning.

Table 9: Comparison between long-document models and respective FirstP (truncation) baselines. Results for MS
MARCO and TREC DL.

845

we ended up using only 50K and 1K queries, re-
spectively.

C.2 MS MARCO FarRelevant Creation
Algorithm

The algorithm iterates over the set of relevant pas-
sages in the original MS MARCO Passages collec-
tion. Each iteration is as follows:

1. Assume that Ct is the number of tokens in the
selected relevant passage. Select randomly a
document length Dmax between 512+Ct and
1431;

2. Using rejection sampling, obtain K1 non-
relevant passages such that their total length is
≥ 512, but the length of K1− 1 first passages
is < 512.

3. Using the same approach, sample another
K2 non-relevant passages such that the total
length of K1 +K2 − 1 non-relevant passages
is at most Dmax − Ct, but the total length of
K1 +K2 passages is ≥ Dmax − Ct.

4. Randomly mix these K2 non-relevant pas-
sages with a single relevant passage.

5. Finally, append the resulting string to the con-
catenation of the first K1 non-relevant pas-
sages.

Initially, we planned to limit documents to have at
most 1431 tokens. However, step 3 in the above
algorithm has a bug: It samples one extra non-
relevant passage. As a result, only about 5% of
generated documents have more than 1431 tokens
and less than 1% have more than 1500.

C.3 Comparison of FarRelevant and
Synthetic Data from LongEmbed

Our synthetic data consists of two subsets (Needle
and Passkey) from the LongEmbed collection (Zhu
et al., 2024) and our newly created MS MARCO
FarRelevant dataset. All these datasets can be seen
a variant of a needle-in-the-haystack benchmark
(Saad-Falcon et al., 2024; Zhu et al., 2024). They
share a common limitation: the resulting docu-
ments are constructed by combining pieces of text
in a purely mechanical fashion and do not repre-
sent natural documents. In this section, we describe
Needle and Passkey in more detail and compare

them to our proposed collection MS MARCO Far-
Relevant, which—we believe—offers several prac-
tical advantages despite also being synthetic.

The Needle subset was created by taking a single
document (a Paul Graham essay on taste9), truncat-
ing it to generate 16 text pieces of varying lengths
(from 256 to 32,768 tokens), and inserting a sin-
gle answer-bearing sentence at a random location.
An example query-document pair can be found in
Figure 4. While this design ensures precise control
over document length, it introduces several prob-
lems:

1. Extremely low document diversity: All ex-
amples are truncated variants of the same orig-
inal text, which severely limits the variability
in document style and content.

2. Artificial signal separation: The inserted an-
swer sentence differs substantially from the
background text, making it easy for models to
identify it.

The Passkey subset is similar in structure and
also uses length-bucketed documents, but instead
of a single sentence, it inserts a three-sentence
passkey definition into a synthetic background con-
text (see Figure 5). The background is even less
natural than Needle’s subset background, being
composed of unrelated or nonsensical declarative
statements (e.g., “The sky is blue. The sun is yel-
low. Here we go. There and back again.”). This
leads to even greater distributional mismatch be-
tween signal and context.

Critically, both Needle and Passkey were de-
signed primarily to test answer extraction or re-
trieval of small, highly localized answer-bearing
spans. They are not well suited to studying re-
trieval or ranking of entire passages or documents,
especially when relevance is more distributed or
contextual.

Our MS MARCO FarRelevant (see Figure 6 for
an example) is designed to be textually similar to
MS MARCO Documents but with different posi-
tional biases for relevant passages. We believe it
offers a more robust testbed for long-context doc-
ument ranking. While it is also synthetic in con-
struction, it avoids many of the pitfalls noted above.
Each document is created by concatenating multi-
ple passages, which are typically meaningful and
complete, only one of which is relevant to the query.

9https://www.paulgraham.com/goodtaste.html

846

https://www.paulgraham.com/goodtaste.html

Model NDCG@20 P@20 MAP NDCG@20 P@20 MAP

Retriever (BM25) 0.428 0.365 0.255 0.402 0.334 0.240

FirstP (BERT) 0.475 0.405 0.277 0.527 0.447 0.303
FirstP (Longformer) 0.483 0.413 0.277 0.540 0.454 0.307
FirstP (ELECTRA) 0.492 0.424 0.294 0.552 0.465 0.320
FirstP (DEBERTA) 0.534 0.459 0.319 0.596 0.503 0.350
FirstP (Big-Bird) 0.507 0.435 0.300 0.560 0.473 0.325
FirstP (JINA) 0.488 0.421 0.287 0.532 0.450 0.305
FirstP (MOSAIC) 0.453 0.390 0.266 0.538 0.455 0.310
FirstP (TinyLLAMA) 0.431 0.370 0.246 0.473 0.398 0.262
FirstP (E5-4K) 0.438 0.371 0.247 0.429 0.355 0.234
FirstP RankGPT (OpenAI) – – – 0.562 0.456 0.280
FirstP RankGPT (Anthropic) – – – 0.541 0.446 0.268

AvgP 0.478 (+0.5%) 0.411 (+1.6%) 0.292a (+5.4%) 0.531 (+0.9%) 0.451 (+1.0%) 0.324a (+6.7%)

MaxP 0.488a (+2.6%) 0.425a (+5.1%) 0.306a (+10.6%) 0.544a (+3.3%) 0.467a (+4.5%) 0.338a (+11.5%)
MaxP (ELECTRA) 0.502 (+2.0%) 0.441a (+3.9%) 0.319a (+8.3%) 0.563 (+2.1%) 0.483a (+4.0%) 0.350a (+9.3%)
MaxP (DEBERTA) 0.535 (+0.2%) 0.464 (+1.2%) 0.340a (+6.7%) 0.609a (+2.2%) 0.519a (+3.2%) 0.378a (+7.9%)
SumP 0.486 (+2.2%) 0.418a (+3.4%) 0.305a (+10.2%) 0.538 (+2.1%) 0.461a (+3.1%) 0.337a (+11.1%)

CEDR-DRMM 0.466 (−2.0%) 0.403 (−0.4%) 0.287a (+3.8%) 0.533 (+1.3%) 0.458a (+2.5%) 0.326a (+7.6%)
CEDR-KNRM 0.483 (+1.7%) 0.413 (+1.9%) 0.291a (+5.1%) 0.535 (+1.7%) 0.456 (+2.0%) 0.324a (+6.8%)
CEDR-PACRR 0.496a (+4.3%) 0.426a (+5.3%) 0.307a (+11.0%) 0.549a (+4.2%) 0.466a (+4.4%) 0.337a (+11.2%)

Neural Model1 0.484 (+1.8%) 0.417a (+3.1%) 0.298a (+7.7%) 0.537 (+1.9%) 0.459a (+2.6%) 0.330a (+8.8%)

PARADE Attn 0.503a (+5.7%) 0.433a (+6.9%) 0.311a (+12.4%) 0.556a (+5.6%) 0.476a (+6.5%) 0.344a (+13.3%)
PARADE Attn (ELECTRA) 0.523a (+6.4%) 0.456a (+7.4%) 0.329a (+11.7%) 0.581a (+5.3%) 0.495a (+6.5%) 0.358a (+11.9%)
PARADE Attn (DEBERTA) 0.549a (+2.9%) 0.475a (+3.6%) 0.346a (+8.7%) 0.615a (+3.2%) 0.522a (+3.8%) 0.383a (+9.4%)
PARADE Avg 0.483 (+1.5%) 0.412 (+1.8%) 0.291a (+5.2%) 0.534 (+1.5%) 0.457 (+2.4%) 0.318a (+4.7%)
PARADE Max 0.489a (+2.8%) 0.420a (+3.8%) 0.306a (+10.8%) 0.548a (+4.0%) 0.470a (+5.3%) 0.337a (+11.0%)

PARADE Transf-RAND-L2 0.488a (+2.8%) 0.423a (+4.6%) 0.303a (+9.7%) 0.548a (+4.1%) 0.469a (+5.0%) 0.338a (+11.6%)
PARADE Transf-RAND-L2
(ELECTRA) 0.523a (+6.3%) 0.454a (+6.9%) 0.330a (+12.2%) 0.574a (+3.9%) 0.488a (+5.0%) 0.354a (+10.6%)

PARADE Transf-PRETR-L6 0.494a (+4.0%) 0.426a (+5.3%) 0.308a (+11.5%) 0.554a (+5.1%) 0.474a (+6.1%) 0.346a (+14.1%)
PAR. Transf-PRETR-LATEIR-L6 0.450a (−5.2%) 0.389a (−3.9%) 0.277 (+0.3%) 0.501a (−4.9%) 0.423a (−5.3%) 0.302 (−0.5%)

LongP (Longformer) 0.500a (+3.6%) 0.435a (+5.3%) 0.309a (+11.5%) 0.568a (+5.1%) 0.482a (+6.1%) 0.347a (+12.9%)
LongP (Big-Bird) 0.452a (−10.9%) 0.389a (−10.7%) 0.274a (−8.8%) 0.477a (−14.9%) 0.400a (−15.5%) 0.279a (−14.2%)
LongP (JINA) 0.503a (+2.9%) 0.434a (+3.1%) 0.309a (+7.5%) 0.558a (+4.9%) 0.473a (+5.2%) 0.335a (+9.7%)
LongP (MOSAIC) 0.456 (+0.6%) 0.393 (+0.8%) 0.280a (+5.3%) 0.570a (+6.0%) 0.484a (+6.3%) 0.350a (+13.0%)
LongP (TinyLLAMA) 0.452a (+4.8%) 0.396a (+6.9%) 0.267a (+8.7%) 0.505a (+6.7%) 0.428a (+7.6%) 0.297a (+13.3%)
LongP (E5-4K) 0.439 (+0.1%) 0.375 (+1.0%) 0.250 (+1.3%) 0.434 (+1.1%) 0.360 (+1.6%) 0.241a (+2.9%)
LongP RankGPT (OpenAI) – – – 0.562 (+0.0%) 0.456 (−0.0%) 0.281 (+0.3%)
LongP RankGPT (Anthropic) – – – 0.538 (−0.6%) 0.445 (−0.2%) 0.268 (−0.0%)

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average relative gain
of FirstP. Best numbers are in bold: Results are averaged over three seeds. Unless specified explicitly, the backbone is BERT-base.
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is 0.05.
E5-models were used only in the zero-shot model, i.e., without fine-tuning.

Table 10: Comparison between long-document models and respective FirstP (truncation) baselines. Results for
Robust04.

847

Aaron Swartz created a scraped feed of the essays page. November 2021(This essay is derived from
a talk at the Cambridge Union.)When I was a kid, I’d have said there wasn’t. My father told me so.
Some people like some things, and other people like other things, and who’s to say who’s right?It
seemed so obvious that there was no such thing as good taste that it was only through indirect evidence
that I realized my father was wrong. And that’s what I’m going to give you here: a proof by reductio
ad absurdum. If we start from the premise that there’s no such thing as good taste, we end up with
conclusions that are obviously false, and therefore the premise must be wrong. We’d better start by
saying what good taste is. There’s a narrow sense in which it refers to aesthetic judgements and a
broader one in which it refers to preferences of any kind. The strongest proof would be to show that
taste exists in the narrowest sense, so I’m going to talk about taste in art. You have better taste than
me if the art you like is better than the art I like. If there’s no such thing as good taste, then there’s
no such thing as good art. Because if there is such a thing as good art, it’s easy to tell which of two
people has better taste. Show them a lot of works by artists they’ve never seen before and ask them
to choose the best, and whoever chooses the better art has better taste. So if you want to discard the
concept of good taste, you also have to discard the concept of good art. And that means you have to
discard the possibility of people being good at making it. Which means there’s no way for artists to be
good at their jobs. And not just visual artists, but anyone who is in any sense an artist. You can’t have
good actors, or novelists, or composers, or dancers either. You can have popular novelists, but not good
ones. We don’t realize how far we’d have to go if we discarded the concept of good taste, because we
don’t even debate the most obvious cases. But it doesn’t just mean we can’t say which of two famous
painters is better. It means we can’t say that any painter is better than a randomly chosen eight year old.
That was how I realized my father was wrong. I started studying painting. And it was just like other
kinds of work I’d done: you could do it well, or badly, and if you tried hard, you could get better at it.
And it was obvious that Leonardo and Bellini were much better at it than me. That gap between us was
not imaginary. They were so good. And if they could be good, then art could be good, and there was
such a thing as good taste after all. Now that I’ve explained how to show there is such a thing as good
taste, I should also explain why people think there isn’t. There are two reasons. One is that there’s
always so much disagreement about taste. Most people’s response to art is a tangle of unexamined
impulses. Is the artist famous? Is the subject attractive? Is this the sort of art they’re supposed to like?
Is it hanging in a famous museum, or reproduced in a big, expensive book? In practice most people’s
response to art is dominated by such extraneous factors.
The Terracotta Army is a collection of terracotta sculptures depicting the armies of Qin Shi
Huang, the first Emperor of China.
And the people who do claim to have good taste are so often mistaken. The paintings admired by
the so-called experts in one generation are often so different from those admired a few generations
later. It’s easy to conclude there’s nothing real there at all. It’s only when you isolate this force, for
example by trying to paint and comparing your work to Bellini’s, that you can see that it does in fact
exist. The other reason people doubt that art can be good is that there doesn’t seem to be any room in
the art for this goodness. The argument goes like this. Imagine several people looking at a work of art
and judging how good it is. If being good art really is a property of objects, it should be in the object
somehow. But it doesn’t seem to be; it seems to be something happening in the heads of each of the
observers. And if they disagree, how do

Figure 4: A sample relevant document for the Needle collection. The query/question is: “What is the Terracotta
Army?”. The answer-bearing sentence is marked by bold font.

848

The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is
green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is green. The
sky is blue. The sun is yellow. Here we go. There and back again. The grass is green. The sky is blue.
The sun is yellow. Here we go. There and back again. The grass is green. The sky is blue. The sun is
yellow. Here we go. There and back again. The grass is green. The sky is blue. The sun is yellow.
Here we go. There and back again. The grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again. The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again. The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is
green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is green. The
sky is blue. The sun is yellow. Here we go. There and back again. The grass is green. The sky is blue.
The sun is yellow. Here we go. There and back again. The grass is green. The sky is blue. The sun is
yellow. Here we go. There and back again. The grass is green. The sky is blue. The sun is yellow.
Here we go. There and back again. The grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again. The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again. The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is
green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is green. The
sky is blue. The sun is yellow. Here we go. There and back again. The grass is green. The sky is blue.
The sun is yellow. Here we go. There and back again. The grass is green. The sky is blue. The sun is
yellow. Here we go. There and back again. The grass is green. The sky is blue. The sun is yellow.
Here we go. There and back again. The grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again. The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again. The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is
green.
Jimmy Moses’s pass key is 39566. Remember it. 39566 is the pass key for Jimmy Moses.
The sky is blue. The sun is yellow. Here we go. There and back again. The grass is green. The sky
is blue. The sun is yellow. Here we go. There and back again. The grass is green. The sky is blue.
The sun is yellow. Here we go. There and back again. The grass is green. The sky is blue. The sun is
yellow. Here we go. There and back again. The grass is green. The sky is blue. The sun is yellow.
Here we go. There and back again. The grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again. The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again. The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is
green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is green. The
sky is blue. The sun is yellow. Here we go. There and back again. The grass

Figure 5: A sample relevant document for the Passkey collection. The query/question is: “what is the passkey for
Jimmy Moses?”. The answer-bearing sentence is marked by bold font.

849

Andhra Pradesh Airports make an easy access for tourists visiting the state. This huge state has many
airports, which serves the needs of both tourists and residents commuting to different parts in its large
expanse. However, Hyderabad Airport is the major as well as the only international airport of Andhra
Pradesh. Hyderabad, a major IT hub of India, boasts of the sixth busiest airport in India. Keeping the
rush of passengers in mind, the Government is planning to establish another airport in Hyderabad.
In contrast, traditional English Longbow shooters step into the bow, exerting force with both the
bow arm and the string hand arm simultaneously, especially when using bows having draw weights
from 100 lbs to over 175 lbs. Heavily stacked traditional bows (recurves, long bows, and the like)
are released immediately upon reaching full draw at maximum weight, whereas compound bows
reach their maximum weight around the last inch and a half, dropping holding weight significantly
at full draw. The Oreo Biscuit was first developed and produced by the National Biscuit Company
(today known as Nabisco) in 1912 at its Chelsea, Manhattan factory in the current-day Chelsea Market
complex, located on Ninth Avenue between 15th and 16th Streets. Today, this same block of Ninth
Avenue is known as Oreo Way..
It’s possible to take a day trip to the Bahamas by ferry. In some cases, less than it would cost to fly. The
high-speed Balearia Bahamas Express travels from Fort Lauderdale to the city of Freeport on Grand
Bahama, one of many Bahamian islands with British roots.It’s roughly the distance from Philadelphia
to New York.Prepare for a long day.n some cases, less than it would cost to fly. The high-speed Balearia
Bahamas Express travels from Fort Lauderdale to the city of Freeport on Grand Bahama, one of many
Bahamian islands with British roots. It’s roughly the distance from Philadelphia to New York.
I was 17 when I took Bactrim for a UTI, I was a month away from turning 18 and was given this
because another antibiotic would have more side effects I was told. I took it for 5 days and became
horribly sick from a nasty cold and was told to stop Bactrim and to take Z Pac instead for 5 days.
Cases When Medicare Does NOT Automatically Start for You Medicare will NOT automatically start
when you turn 65 if you’re not receiving Social Security Benefits or Railroad Retirement Benefits for
at least 4 months prior to your 65th birthday. You wanted to know how you can feel on your belly
that you’re pregnant. And actually this a pretty hard thing to do.There are better ways to find out if
you’re pregnant or not. For example, if you ever miss a period, the best thing to do is to take a home
pregnancy test, because that’s the first sign of pregnancy.And if it’s positive, ...here are better ways to
find out if you’re pregnant or not. For example, if you ever miss a period, the best thing to do is to take
a home pregnancy test, because that’s the first sign of pregnancy.
1 Whisk light soy sauce, dark soy sauce, red wine vinegar, chili oil, ginger, sugar, garlic, and green
onion together in a bowl; pour into a sealable container, seal, and refrigerate 1 hour. See how to make a
simple sweet-and-sour peach sauce. See how easy and delicious it is to make horseradish sauce from
scratch.
Here you’ll find a number of Kentucky facts including the state history at a glance; Kentucky state facts
such as the location of the state capital, city populations, geography and natural resources; Information
on Kentucky’ government, symbols and traditions; and even a list of famous Kentuckians.
Confidence votes 193. Replacing a car window usually cost around $300 give or take based upon
where you live, what options your car glass needs and what type of car you drive. Additionally, you
can save money if you can repair your car glass instead of completely replacing it. However, if the
window is completely shattered this will not be an option.
Flying time from Chicago, IL to Cairo, Egypt. The total flight duration from Chicago, IL to
Cairo, Egypt is 12 hours, 47 minutes. This assumes an average flight speed for a commercial
airliner of 500 mph, which is equivalent to 805 km/h or 434 knots. It also adds an extra 30
minutes for take-off and landing. Your exact time may vary depending on wind speeds.

Figure 6: A sample relevant document for the MS MARCO FarRelevant collection. The query/question is: “how
long is the flight from chicago to cairo”. The answer-bearing passage is marked by bold font.

850

The remaining passages serve as distractors but are
independently coherent. Although these documents
do not exist in the wild, they are much more diverse
in content and style than those in Needle or Passkey
despite being typically much shorter. Furthermore,
each individual passage is semantically complete
and belongs to a real corpus, namely, MS MARCO
Passages.

Crucially, one may argue that it is natural for the
models to fail on randomly concatenated passages
because they do not represent a complete “natural”
document (this criticism applies to the synthetic
subsets of LongEmbed as well). Although this is
possible for LongP methods—where longer docu-
ment lengths are “natively” supported by models—
nearly all models in our study are SplitP models,
which chunk documents and process each chunk
separately. Hence, these models do not “care”
whether the full document is coherent or not. Fur-
thermore, the strong performance of all the ranking
models after fine-tuning on MS MARCO FarRel-
evant demonstrates that models do not inherently
fail on unnatural documents.

C.4 Positional Bias Identification

To assess positional bias, we used a combination
of approximate string matching and LLM-based
judging, which was recently shown to highly corre-
late with human judgments (Upadhyay et al., 2024;
Arabzadeh and Clarke, 2025). The resulting distri-
butions can be found in Figures 7 and 8.

Approximate string matching was used for MS
MARCO training and development (dev) sets, both
of which have sparse labels. Although initially
MS MARCO Passages were exact substrings of
MS MARCO Documents, document and passage
texts were collected at different times. This led to
some content divergence (Craswell et al., 2021a),
which made exact mapping impossible in most
cases. There were prior attempts to recover ini-
tial positions, but only with a limited success (see
a discussion below).

Our approximate string matching combines
approximate substring matching with longest-
substring matching and incorporates efficiency
heuristics to identify initial candidate sets. Can-
didate sets were constructed using two approaches:
selecting all relevant passages and documents (for a
given query) and retrieving top-5 documents using
relevant passages as queries. To assess reliability,
we manually inspected a subset of the matched pas-

sages and found the procedure to be sufficiently
accurate. We then applied this approach to two sets
of queries:

• A set of all 5193 queries from the devevelop-
ment set;

• A random and uniform sample of 5000 train-
ing queries.

In both cases, we were able to find matches for
about 85% of the queries.

For queries sets with “dense” relevance
judgments—produced by TREC NIST assessors—
we used an LLM judge. This included TREC
2019, 2020, 2021 TREC DL queries (Craswell
et al., 2021b), Robust04 (Clarke et al., 2004), Gov2
with 2007, 2008 Million Query Track queries (Al-
lan et al., 2008), and ClueWeb12 with 2012 and
2013 Web Track queries (Collins-Thompson et al.,
2013b). We also used an LLM judge for BEIR
datasets (Thakur et al., 2021).

In contrast, Hofstätter et al. (2020b) employed
crowd-workers to identify the distribution of rel-
evance chunks. They found similar evidence of
the relevance position bias, but their study was lim-
ited only to the TREC DL 2019 query set. For
sparsely-judged training queries, Hofstätter et al.
(2020b) used matching on answer words—rather
than passage text itself—and were able to match
only 32% of the passages. In particular, (Coelho
et al., 2024) used exact matching and found only
about one thousand matching passages. Both of
these attempts match only a small-to-modest frac-
tion of passages while being subject to biases. Fi-
nally, MS MARCO v2 authors (Craswell et al.,
2021b) provided explicit mappings of relevant pas-
sages inside documents, but how these mappings
were obtained was not disclosed.

To avoid potential positional biases in LLM-
judging, we divided each document into non-
overlapping chunks and judged each chunk sep-
arately. Chunking preserved sentence boundary
while ensuring each chunk size was close to 256
tokens in length for long-document collections and
128 tokens for BEIR collections (Thakur et al.,
2021).

For efficiency reasons, we only considered at
most 36 chunks (about 9K tokens) and 500-2000
positive query-document pairs per query set. A
chunk was considered to be relevant if it received
a positive grade from an LLM-judge. The LLM-

851

MS MARCO train MS MARCO dev TREC DL 2019-2021 (combined)

Gov2 (1MQ) ClueWeb12 (WebTrack) Robust04

Figure 7: Illustration of positional relevance bias for four long-document collections and six query sets. We show a
distribution of first relevant passage positions (red bars) vs. relevant document lengths (blue bars). Positions and
lengths are measured in the number of subword tokens (BERT-base tokenizer). Best viewed in color.

Natural Questions (NQ) Touche TREC COVID

NFCorpus (NFC) SciFact SciDocs

Figure 8: Illustration of positional relevance bias for six BEIR collections, all of which are typically categorized as
short-document datasets. We show a distribution of first relevant passage positions (red bars) vs. relevant document
lengths (blue bars). Positions and lengths are measured in the number of subword tokens (BERT-base tokenizer).
Best viewed in color.

852

judge was a GPT4-mini-based UMBRELA (Ope-
nAI, 2023; Upadhyay et al., 2024).

For most collections, there was only a small frac-
tion of documents where the LLM-judge found
no relevant query-document pairs. Among long-
document datasets, one exception was the Gov2
collection with 2007, 2008 Million Query Track
queries where this happened in about 30% of the
cases.

Despite this uncertainty, Gov2 still had a sub-
stantial positional bias with about 57% of the cases
where the first chunk was deemed to be relevant
(see Fig. 7). Among BEIR datasets, five datasets
also had a prominent positional bias (see Fig. 8).
However, we are less confident about the NFCor-
pus, where we found no relevant chunks for nearly
50% of the query-document pairs.

Model family # of
params.

PARADE Transformer 132-148M
Longformer 149M
BigBird 127M
JINA 137M
MOSAIC 137M
DEBERTA-based models 184M
TinyLLAMA-based models 1034M
Other BERT- and ELECTRA-based models ≈110 M

Table 11: Number of model parameters (we do not
include models behind cloud APIs)

D Ranking with Cross-Encoding
Long-Document Models

In this section, we describe long-document cross-
encoding models in more details. With an excep-
tion of TinyLLAMA (Zhang et al., 2024) all mod-
els employ relatively small bidirectional encoder-
only Transformers (Vaswani et al., 2017) with 100-
200M parameters in total (see Table 11). TinyL-
LAMA is a so-called LLM-ranker: a “causal”
decoder-only Transformer that has about 1B pa-
rameters. Moreover, we focus exclusively on
pure Transformer architectures, leaving hybrid ap-
proaches such as RankMamba (Xu, 2024) for fu-
ture work.

We assume that an input text is split into small
chunks of texts called tokens. Although tokens can
be complete English words, Transformer models
usually split text into sub-word units (Wu et al.,
2016).

The length of a document d—denoted as |d|—
is measured in the number of tokens. Because

neural networks cannot operate directly on text, a
sequence of tokens t1t2 . . . tn is first converted to
a sequences of d-dimensional embedding vectors
w1w2 . . . wn by an embedding network. These em-
beddings are context-independent, i.e., each token
is always mapped to the same vector (Collobert
et al., 2011; Mikolov et al., 2013).

For a detailed description of Transformer mod-
els, please see the annotated Transformer guide
(Rush, 2018) as well as the recent survey by Lin
et al. (Lin, 2019), which focuses on the use of
BERT-style cross-encoding models for ranking and
retrieval. For this paper, it is necessary to know
only the following basic facts:

• BERT is an encoder-only model, which con-
verts a sequence of tokens t1t2 . . . tn to a se-
quence of d-dimensional vectors w1w2 . . . wn.
These vectors—which are token representa-
tions from the last model layer—are com-
monly referred to as contextualized token em-
beddings (Peters et al., 2018);

• BERT operates on word pieces (Wu et al.,
2016) rather than on complete words;

• The vocabulary includes two special tokens:
[CLS] (an aggregator) and [SEP] (a separa-
tor);

• Using a pooled representation of token vectors
w1w2 . . . wn, a linear layer is used to produce
a ranking score. A nearly universal pooling
approach in cross-encoding rankers is to use
the vector of the [CLS] token, i.e., w1. How-
ever, we learned that some models (e.g., JINA
(Günther et al., 2023)) converge well only with
mean pooling, i.e., they use 1

n

∑n
i=1wi.

A “vanilla” BERT ranker—dubbed as
monoBERT by Lin (2019)—uses a single
fully-connect layer F as a prediction head, which
converts the last-layer representation of the [CLS]
token (i.e., a contextualized embedding of [CLS])
into a scalar (Nogueira and Cho, 2019). It makes
a prediction based on the following sequence of
tokens: [CLS] q [SEP] d [SEP], where q is a
query and d is a document.

An alternative approach is to aggregate con-
textualized embeddings of regular tokens using a
shallow neural network (MacAvaney et al., 2019;
Boytsov and Kolter, 2021; Khattab and Zaharia,
2020), optionally combining these embeddings
with the contextualized embedding of [CLS].

853

This was first proposed by MacAvaney et al.
(2019) who also found that incorporating [CLS]
improved performance. However, Boytsov and
Kolter (2021) proposed a shallow aggregating net-
work that did not use the output of the [CLS] token
and achieved the same accuracy on MS MARCO
datasets, thus questioning the necessity of using
[CLS] for aggregation.

Replacing the standard BERT model in the
vanilla BERT ranker with a BERT variant that “na-
tively” supports longer documents is conceptually
the simplest way to handle long documents. We
collectively refer to these models as LongP models.
For many older BERT models with limited context
size, long documents and queries still need to be
split or truncated so that the total number of tokens
does not exceed 512. In the FirstP mode, we pro-
cess only the first chunk and ignore the truncated
text. In the SplitP mode, each chunk is processed
separately and the results are aggregated. In the
remaining of this section, we discuss LongP and
SplitP approaches in detail. We conclude the dis-
cussion with a description of several miscellaneous
models, most of which we were unable to imple-
ment due to incomplete information or missing
code.

D.1 LongP models

In our work, we benchmark both sparse-attention
and full-attention models. Sparse attention LongP
models include two popular variants: Longformer
(Beltagy et al., 2020) and Big-Bird (Zaheer et al.,
2020). In this setting, we use the same approach to
score documents as with the vanilla BERT ranker,
namely, concatenating queries with documents and
making a prediction based on the contextualized
embedding of the [CLS] token (Nogueira and Cho,
2019). Both Big-Bird and Longformer use a com-
bination of the local, “scattered” (our terminology),
and global attention. The local attention utilizes a
sliding window of a constant length where each to-
ken attends to each other token within this window.
In the case of the global attention, certain tokens
can attend to all other tokens and vice-versa, In
Big-Bird, only special tokens such as [CLS] can
attend globally. In Longformer, the user have to
select such tokens explicitly. Following Beltagy
et al. (Beltagy et al., 2020), who applied this tech-
nique to question-answering, we designate global
attention only for query tokens. Unlike the global
attention, the scattered attention is limited to re-

stricted sub-sets of tokens, but these subsets do not
necessarily have locality. In Big-Bird, the scattered
attention uses randomly selected tokens, whereas
Longformer uses a dilated sliding-window atten-
tion with layer- and head-specific dilation.

Full-attention models include JINABert (Gün-
ther et al., 2023), TinyLLAMA (Zhang et al., 2024),
and MosaicBERT (Portes et al., 2023), henceforth,
simply JINA, TinyLLAMA and MOSAIC. All
these models use a recently proposed FlashAtten-
tion (Dao et al., 2022) to efficiently process long-
contexts as well as special positional embeddings
that can generalize to document lengths not seen
during training. In particular, JINA and MOSAIC
use AliBi (Press et al., 2022), while TinyLLAM
uses ROPE embeddings (Su et al., 2023). JINA
and MOSAIC are bidirectional encoder-only Trans-
former model whereas TinyLLAMA is a unidi-
rectional (sometimes called causal) decoder-only
Transformer model (Vaswani et al., 2017).

Beyond architectural variations, models also
vary in their pretraining strategies. MOSAIC re-
lies primarily on the masked language (MLM) ob-
jective without next sentence prediction (NSP).
JINA uses this approach as a first step and fine-
tuning on retrieval and classification tasks with
mean-pooled representations as a second step (fol-
lowing a RoBERTa pretraining strategy (Liu et al.,
2019)). TinyLLAMA was trained using an autore-
gressive language modeling objective (Zhang et al.,
2024). We found that JINA lost an ability to ef-
fectively pool on the [CLS] token and we used
mean-pooling instead. We also use mean pooling
for TinyLLAMA. For MOSAIC we used pooling
on [CLS].

D.2 SplitP models

SplitP models differ in partitioning and aggregation
approaches. Documents can be split into either
disjoint or overlapping chunks. In the first case,
documents are split in a greedy fashion so that each
document chunk—except possibly the last one—is
exactly 512 tokens long (after being concatenated
with a (padded) query and three special tokens).
Because we pad queries to be 32 tokens long, each
document chunk contains at most 512− 32− 3 =
477 tokens.

In the second case, we use a sliding window ap-
proach with a window size and stride that are not
tied to the maximum length of BERT input. Be-
cause our primary focus is accuracy and we aim

854

to understand the limits of long-document models,
we exclude from evaluation several SplitP mod-
els, which achieve better efficiency-effectiveness
trade-offs by pre-selecting certain document parts
and feeding only selected parts into a BERT ranker.
This includes, but is not limited to, papers by Hof-
stätter et al. (2021b); Zou et al. (2021).

Greedy partitioning into disjoint chunks
CEDR models (MacAvaney et al., 2019) and the
Neural Model 1 (Boytsov and Kolter, 2021) use the
first method, which involves:

• tokenizing the document d;

• greedily splitting a tokenized document d into
m disjoint chunks: d = d1d2 . . . dm;

• generating m token sequences [CLS] q [SEP]
di [SEP] by concatenating the query with doc-
ument chunks;

• processing each sequence with a BERT model
to generate contextualized embeddings for
regular tokens as well as for [CLS].

The outcome of this procedure is m [CLS]-vectors
clsi and n contextualized vectors w1w2 . . . wn (one
for each document token ti) that are aggregated in
a model-specific way.

MacAvaney et al. (2019) use contextualized em-
beddings as a direct replacement of context-free
embeddings in the following neural architectures:
KNRM (Xiong et al., 2017), PACRR (Hui et al.,
2018), and DRMM (Guo et al., 2016). To boost
performance, they incorporate [CLS] -vectors in a
model-specific way. We call the respective mod-
els as CEDR-KNRM, CEDR-PACRR, and CEDR-
DRMM.

They also proposed an extension of the vanilla
BERT ranker that makes a prediction using the
average [CLS] token: 1

m

∑m
i=1 clsi by passing it

through a linear projection layer. We call this
method AvgP.

The Neural Model 1 (Boytsov and Kolter, 2021)
uses the same greedy partitioning approach as
CEDR, but a different aggregator network, which
does not use the embeddings of the [CLS] token.
This network is a neural parametrization of the
classic Model 1 (Berger and Lafferty, 1999; Brown
et al., 1993).

Sliding window approach The BERT
MaxP/SumP (Dai and Callan, 2019) and

PARADE (Li et al., 2024) models use a sliding
window approach. Assume w is the size of the
window and s is the stride. Then the processing
can be summarized as follows:

• tokenizing, the document d into sub-words
t1t2 . . . tn ;

• splitting a tokenized document d into
m possibly overlapping chunks di =
ti·sti·s+1 . . . ti·s+w−1, where s is a stride and
w is a window size. Trailing chunks may have
fewer than w tokens.

• generating m token sequences [CLS] q [SEP]
di [SEP] by concatenating the query with doc-
ument chunks;

• processing each sequence with a BERT model
to generate a last-layer output for each se-
quence [CLS] token.

The outcome of this procedure is m [CLS]-vectors
clsi, which are subsequently aggregated in a model-
specific way. Note that PARADE and MaxP/SumP
models do not use contextualized embeddings of
regular tokens.

BERT MaxP/SumP These models use a lin-
ear layer F to produce m chunk-relevance scores
F (clsi). Document scores are computed as
maxmi=1 F (clsi) and

∑m
i=1 F (clsi) for MaxP and

SumP models, respectively (Dai and Callan, 2019).

PARADE These models (Li et al., 2024) can
be divided into two groups. The first group in-
cludes PARADE average, PARADE max, and PA-
RADE attention models, which all use simple ap-
proaches to produce an aggregated representation
of m [CLS]-vectors clsi. To compute a document-
relevance score these aggregated representations
are passed through a linear layer F .

In particular, PARADE average and PARADE
max combine clsi using averaging and the element-
wise maximum operation, respectively, to gener-
ate aggregated representation of m [CLS] tokens
clsi.10 The PARADE attention model uses a learn-
able attention (Bahdanau et al., 2015) vector C
to compute a scalar weight wi of each clsi as

10Note that both PARADE average and AvgP vanilla ranker
use the same approach to aggregate contextualized embed-
dings of [CLS] tokens, but they differ in their approach
to select document chunks. In particular, AvgP uses non-
overlapping chunks while PARADE average relies on the
sliding window approach.

855

follows: w1w2 . . . wm = softmax(C · cls1, C ·
cls2, . . . , C ·clsm). These weights are used to com-
pute the aggregated representation as

∑m
i=1wiclsi

PARADE Transformer models aggregates
[CLS]-vectors clsi using an additional transformer
model AggregTransf(), i.e., an aggregator
model. The input of the aggregator Transformer is a
sequence of clsi vectors prepended with a learnable
vector C, which plays a role of a [CLS] embedding
for AggregTransf(). Optionally, one can use
learnable positional embedding vectors together
with C and {clsi}. The last-layer representation of
the first vector is passed through a linear layer F
to produce a relevance score:

F (AggregTransf(C, cls1, cls2, . . . , clsm)[0])
(1)

An aggregator Transformer can be either pre-
trained or randomly initialized. In the case of a
pretrained transformer, we completely discard the
embedding layer. Furthermore, if the dimensional-
ity of clsi vectors is different from the dimension-
ality of input embeddings in AggregTransf , we
project clsi using a linear transformation.

Miscellaneous models We attempted to imple-
ment additional state-of-the-art models (Gao and
Callan, 2022; Fu et al., 2022). Gao and Callan (Gao
and Callan, 2022) introduced a late-interaction
model MORES+, which is a modular long doc-
ument reranker that uses a sequence-to-sequence
transformer in a non-auto-regressive mode. In
MORES+ document chunks are first encoded us-
ing the encoder-only Transformer model. Then
they use a modified decoder Transformer for joint
query-to-all-document-chunk cross-attention: This
modification changes a causal Transformer into an
encoder-only bidirectional Transformer model. As
of the moment of writing, the MORES+ model
holds the first position on a competitive MS
MARCO document leaderboard.11. However, the
authors provide only incomplete implementation
which does not fully match the description in the
paper (i.e., crucial details are missing). We reimple-
mented this model to the best of our understanding,
but our implementation failed to outperform even
BM25.

Inspired by this approach, we managed to im-
plement a late-interaction variant of the PARADE

11https://microsoft.github.io/
MSMARCO-Document-Ranking-Submissions/
leaderboard/

model, which we denoted as PARADE-LATEIR.
Similar to the original PARADE model, it splits
documents into overlapping chunks. However, it
then encodes chunks and queries independently.
Next, it uses an interaction Transformer to (1) mix
these representations, and (2) combine output using
an aggregator Transformer. In total, the model uses
three backbone encoder-only Transformers: All of
these Transformers are initialized using pretrained
models.

Fu et al. (2022) proposed a multi-view
interactions-based ranking model (MIR). They im-
plement inter-passage interactions via a multi-view
attention mechanism, which enables information
propagation at token, sentence, and passage levels.
Due to the computational complexity, they restrict
these interactions to a set of salient/pivot tokens.
However, the paper does not provide enough de-
tails regarding the choices of these tokens. There is
no software available and authors did not respond
to our clarification requests. Thus, this model is
also excluded from our evaluation.

856

https://microsoft.github.io/MSMARCO-Document-Ranking-Submissions/leaderboard/
https://microsoft.github.io/MSMARCO-Document-Ranking-Submissions/leaderboard/
https://microsoft.github.io/MSMARCO-Document-Ranking-Submissions/leaderboard/

