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Abstract

Automatic pronunciation assessment (APA)
seeks to quantify a second language (L2)
learner's pronunciation proficiency in a
target language by offering timely and fine-
grained diagnostic feedback. Most existing
efforts on APA have predominantly
concentrated on highly constrained
reading-aloud tasks (where learners are
prompted to read a reference text aloud);
however, assessing pronunciation quality in

unscripted speech (or free-speaking
scenarios) remains relatively
underexplored. In light of this, we first
propose HiPPO, a hierarchical

pronunciation assessment model tailored
for spoken languages, which evaluates an
L2 learner’s oral proficiency at multiple
linguistic levels based solely on the speech
uttered by the learner. To improve the
overall accuracy of assessment, a
contrastive ordinal regularizer and a
curriculum learning strategy are introduced
for model training. The former aims to
generate score-discriminative features by
exploiting the ordinal nature of regression
targets, while the latter gradually ramps up
the training complexity to facilitate the
assessment task that takes unscripted
speech as input. Experiments conducted on
the Speechocean762 benchmark dataset
validates the feasibility and superiority of
our method in relation to several cutting-
edge baselines.

1 Introduction

Spurred by the global demand for foreign language
proficiency in both the workforce and academia,
computer-assisted pronunciation training (CAPT)
has gained significant attention, which facilitates
second-language (L2) Ilearners to practice
pronunciation skills with near-instant, instructive,
and potentially diagnostic feedback (Norris and

* Assessment in the Reading-aloud Scenario
Reference Text:
I like Europe. (Please read the reference text correctly)
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‘ ‘: B ' (I like Europe.)

The fluency score for your
scripted speech is 5.
(L2 Learner) (APA Model)
(a) Appling APA Model to the Scripted Speech

* Assessment in the Free-speaking Scenario
Reference Text (Optional):
Have you been to Europe? What would you do there?

) sttt B
% (I'd like to buy a bag.) S

Sorry, please read the ] '

reference text out loud.
(L2 Learner) (APA Model)

(b) Grafting APA Model to Evaluate Unscripted Speech

o &

ASR Trans

(Oh, the City of Music!)
You said “the city of music”. L

The fluency score is 3.
(L2 Learner) (HiPPO)

(c) Employing HiPPO to Evaluate Unscripted Speech

Figure 1: Outlines our motivations. (a) Existing
APA models are primarily tailored for read-aloud
tasks. (b) Directly applying APA models to free-
speaking scenarios struggles to quantify oral skills
based on speech signals. (c) HiPPO integrates a
speech recognizer to generate transcriptions from
the learner’s speech, effectively reformulating free-
speaking assessment as a task akin to read-aloud.

Davis, 2025; Moere and Downey, 2016). To meet
this pressing demand, CAPT systems have become
ubiquitous and appealing learning tools,
transitioning the conventional pedagogical
approach from teacher-led instruction to self-
directed learning (Rogerson-Revell, 2021; Chen
and Li, 2016; Singla et al., 2021).

Automatic pronunciation assessment (APA)
aims to evaluate L2 learners’ speaking proficiency
and provide fine-grained feedback on specific
pronunciation aspects pertaining to a target
language, figuring prominently in the field of
CAPT. Prior studies on APA have primarily drawn
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attention to highly constrained speaking tasks
(such as listening and then repeating words or
sentences). As exemplified in Figure 1(a), a de-
facto archetype system for APA is instantiated in
reading-aloud (or scripted) learning scenarios,
where an L2 learner is provided with a reference
text and instructed to pronounce it correctly.
Methods in this line of research typically rely on an
input reference text paired with the learner’s
speech to derive timestamps of linguistic units (i.e.,
phones or words) via an automatic speech
recognition (ASR) system, which are then used for
either pronunciation feature extraction (Gong et al.,
2022; Chao et al., 2022; Do et al., 2023; Yan et al.,
2024) or for neural modeling (Lin and Wang, 2021;
Wang et al., 2025). Albeit achieving competitive
performance in relation to inter-rater agreement
(Yan and Chen, 2024; Pei et al., 2024), scripted-
speech assessments fail to reflect learners’
speaking abilities in real-world communication. In
contrast, pronunciation assessment of spoken
languages introduces new challenges to CAPT, as
it attempts to quantify an L2 learner’s oral skills in
spontaneous speech or elicit authentic responses
through short questions (Zechner and Evanini,
2019; Kheir et al., 2023). Directly grafting existing
APA models to use cases of spoken language
assessment, however, confronts at least two major
issues. First, as shown in Figure 1(b), the utterances
of an L2 learner are produced in an unscripted
manner, which makes APA models struggle to
extract correct pronunciation features
encompassing time-alignment information (Shen
et al., 2021; Deng et al., 2020; Witt and Young,
2000). What is more, owing to the free-form nature
of unscripted speech, the desired APA models are
required to accommodate speech input of varying
lengths.

Building on these observations, this paper
presents HiPPO, a novel hierarchical pronunciation
assessment model for spoken languages that
evaluates 1.2 learners’ oral proficiency based on
unscripted speech (or free-speaking scenarios) and
provides analytical scores on various pronunciation
aspects across multi-granular linguistic levels.
Specifically, HiPPO strategically employs a speech
foundation model along with a grapheme-to-
phoneme (G2P) converter to derive the most likely
phone sequence produced by an L2 learner, thereby
bringing the assessment task closer to its scripted-
speech counterpart, as illustrated in Figure 1(c). To
overcome sequence length constraints and preserve
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articulatory traits across multi-granular linguistic
units, HiPPO capitalizes on a tailor-made Conv-
LLaMA block to stack a hierarchical neural
architecture, which augments the LLaMA block
(Touvron et al., 2023) with a convolutional branch
and rotary position encoding (Su et al., 2024).
Moreover, during training, a contrastive ordinal
regularizer is put forward to modulate feature
distances through the absolute differences between
regression targets. By exploiting the ordinal
constraints, the proposed regularizer serves as a
promising approach to  generate  score-
discriminative features, mitigating the detrimental
effects of ASR errors on pronunciation assessments.
We further introduce a simple yet effective
curriculum learning strategy for HiPPO that
progressively increases the training complexity,
transforming the assessment tasks from the read-
aloud scenario to the free-speaking counterpart. An
extensive set of experiments conducted on
Speechocean762 benchmark dataset (Zhang et al.,
2021), consisting of both read-aloud and simulated
free-speaking scenarios, demonstrates substantial
and consistent performance gains of the proposed
methods over several strong baselines.

In summary, our contributions are at least four-
fold: (1) to our knowledge, HiPPO is the first
attempt to assess oral skills for unscripted speech
with multi-faceted scores from phone to utterance
levels, opening a new avenue for CAPT; (2) we
propose a novel Transformer block, Conv-LLaMA
block, as the backbone of HiPPO, elaborately
designed to handle the free-from speech uttered by
L2 learners; (3) to alleviate the negative effects of
ASR errors, a contrastive ordinal regularizer is
proposed to reflect the ordinality of regression
targets within the feature space; and (4) a simple
yet effective curriculum learning strategy is
explored to boost the performance of pronunciation
assessment in the free-speaking scenario.

2 Methodology

This section sets out with a problem definition for
pronunciation assessments on unscripted speech
(or free-speaking scenarios) and then sheds light on
the proposed methods, encompassing the
assessment model, training objectives, and learning
strategy. Due to the space limit, the overview of
related work will be given in Appendix A.
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Figure 2: Processing flow of HiPPO for qualifying
the oral skills in unscripted speech.

2.1 Problem Definition

To assess speaking skills across different linguistic
granularities for unscripted speech, as illustrated in
Figure 2, we first employ a speech foundation
model' to transcribe a speech signal X produced by
an L2 learner into a sequence of M words w =
(Wi, wy,...,wy) and subsequently a G2P
converter® to generate the corresponding phonetic
transcription of N phones p = (p1, P2, -, Dn) »
where w and p collectively serve as a proxy for the
textual and phonetic realizations perceived by
human raters. Let G = {gP"", gWor?, g¥tt}
denotes the set of linguistic granularities, where
gPm, gWord and g“** mark the phone-, word-,
and utterance-level linguistic  granularities,
respectively. HiPPO is trained under a multi-task
learning paradigm to estimate a set of aspect score
sequences AY = {al,az, ...,af\’,g} for each
granularity g € G, where N; is the number of

pronunciation aspects.

! https://huggingface.co/openai/whisper-large-v3

2.2 Hierarchical Pronunciation Assessment

Model for Spoken Languages (HiPPO)

Figure 3 depicts the model architecture of HiPPO,
which encompasses three major modeling stages:
phone-, word-, and utterance-level modeling. In
each of these modeling stages, the corresponding
encoder is constructed with a newly proposed
Conv-LLaMA block. After obtaining the
representations of all pronunciation aspects, a
distinct regressor is used to generate the
pronunciation score of each aspect.

Pronunciation Feature Extraction. To portray
the pronunciation quality of X, we extract
connectionist temporal classification (CTC)-based
goodness pronunciation (GOP) features for each
phone in p, where the pronunciation quality is
measured as the likelihood ratio of all valid CTC
alignments of p to that of the deviated phonetic
transcripts (Cao et al.,, 2024). Compared to
previous studies on the GOP feature extraction
(Witt and Young, 2000; Hu et al., 2015; Shen et al.,
2021), the CTC-based method computes GOP
scores without explicit timestamps of phone
segments and inherently tackles alignment errors
by accounting for insertions and/or deletions in the
deviated phonetic transcriptions. Additionally, to
capture supra-segmental articulation cues and
mitigate the data-sparsity issue frequently
occurring in L2 speech corpora (Lo et al., 2024;
Banno and Matassoni, 2022), we leverage self-
supervised learning (SSL)-based features for
utterance-level pronunciation modeling. The SSL-

2 https://github.com/Kyubyong/g2p
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based features are extracted at the frame-level and
then aggregated to the utterance-level via simple
mean pooling over time (Chao et al., 2022; Kim et
al., 2022). A bit of terminology: the pronunciation
feature extraction of HiPPO produces a phone-
level pronunciation feature sequence XP € R%*N
and a projected SSL-based feature vector x5! €
R%u*1  where N is the length of the phone
sequence, and d, and d, represent the hidden
dimension of phone- and utterance-level modeling.
The processing flow summarized as follows:

XP = Lin, (E8°P), (1)

Xssl — Linssl([ewzv; ehu; ewlm]))’ (2)
where Ling (+) and Lingg () are linear projections,
and [;] is a concatenation operation. E8°P €
R**N refers to the CTC-based GOP features
extracted from a well-trained CTC-based ASR
model 3, while e"2V,el! and eW'm g R1024x1
are utterance-level SSL-feature vectors derived
from pre-trained acoustic models, viz. wav2vec-
2.0, Hubert, and WavLM, respectively.

Convolution-augmented LL.aMA Block (Conv-
LLaMA). To model a pronunciation feature
sequence of arbitrary length and capture nuanced
articulation traits across linguistic units, we
introduce a Conv-LLaMA block to stack a
hierarchical assessment model, which enhances the
model component of LLaMA (Touvron et al., 2023)
with a convolutional branch and rotary position
encoding. As depicted in Figure 4, the proposed
block comprises two branches: one branch captures
supra-segmental articulation cues via a multi-head
self-attention (MHSA) module followed by a
swish-gated linear unit (SwiGLU) operation
(Touvron et al., 2023), while the other focuses on
capturing local pronunciation traits via a
convolutional neural network (CNN) module.
Subsequently, these two branches are combined via
a weighted average operation (Peng et al., 2022).
The proposed CNN module is equipped with two
key components, i.e., a point-wise convolution for
capturing information across feature dimensions
and a depth-wise convolution layer for extracting
local spatial patterns. On the other hand, the MHSA
module incorporates rotary position encoding
(RoPE), a relative position encoding method
developed for extrapolating feature sequence
lengths, which operates through channel-wise

? https://github.com/frank613/CTC-based-GOP.git
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Figure 4: A schematic illustration of the proposed
Conv-Llama block.

multiplication on the key and query vectors in the
multi-head self-attention layer (Su et al., 2024).

Hierarchical APA Modeling. For the phone-level
assessment, we first combine the pronunciation
features XP with the textual embeddings EF €
R**N in a point-wise manner, followed by a
phone encoder to obtain aspect representations HP:

HY = XP + EP, 3)
HP = PhnEnc(H}), ©

where EP is generated by passing phonetic
transcription p into a phone embedding layer, and
PhnEnc(-) is a stack of 3 Conv-LLaMA blocks.
Subsequently, a regressor is built on top of HP to
produce phone-level accuracy scores.

For word-level assessments, we begin by
deriving a word representation vector from its
constituent phones with a dedicated attention
pooling, implemented with a 1-D depth-wise
convolution layer, an MHA layer, and an average
operation. The word-level input features X" €
R%w*M are obtained by feeding XP and HP
through word-level attention pooling, and then
packing their pooled counterparts together via a
linear projection:

X% = AttPool,,, (XP), )

HY = AttPool,,, (HP), (6)

X% = Lin,, ([X%; H¥]), @)
where M denotes the length of transcribed word
sequence, and d,, symbolizes the hidden

dimension of word-level modeling*. Following the
integration of word-level textual embeddings E"
with X", a word encoder is employed to generate a

* For efficient parallel computation, a word-level
representation is duplicated to length of constituent phones.
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sequence of contextualized representations HY €
RdeM .

Hy = XY + EY, ®)
HY = WordEnc(Hy'), Q)

where E are obtained by mapping the transcribed
word sequence w through modernBERT (Warner
et al., 2024), and WordEnc(+) consists of 2 Conv-
LLaMA blocks. Consequently, three distinct 1-D
depth-wise convolution layers are performed on
top of H" to generate aspect representations (viz.
HYW: | HW2 | and HWYs ). The word-level
pronunciation scores (accuracy, stress, and total)
are generated by passing the aspect representations
into the corresponding regressors.

For the utterance-level assessments, we first
fuse H"1, H"2, and H"3 with a weighted average
operation to produce HW € R4W*M  After the
distinct forward propagation through 1-D depth-
wise convolution layers on XP, HP, and H", the
corresponding outputs are combined via a linear
projection, and then fed into an utterance encoder
to generate contextualized representations H":

HY = Merge(H"1, H"z, H"3), (10)
Hg = Lin, ([DC, (XP); DC,(HP); DC;(HM)]), (11)

HY = UttEnc(HY), (12)

where UttEnc(-) is a single Conv-LLaMA block,
and DC,(*), DC,(+), and DC5(*) are distinct 1-D
depth-wise convolution layers, each of which has a
kernel size of 3. Afterward, five separate attention
pooling layers are stacked on top of H" and then
integrated with the projected SSL-based feature
vector x5! via separate residual connections.
These aspect representation vectors are processed
by the corresponding regressors to derive the
utterance-level aspect scores (viz. accuracy,
fluency, completeness, prosody, and total).

2.3 Training Objectives

For the proposed model, we first consider a
weighted sum of mean squared error (MSE) losses
as the training objective, collected from multiple

aspects across granularities:
Ng—-1
g

1

Laps = ng x— Z Lo (13)
geG 9 k=0

where A, denotes adjustable parameter, Ny is

number of aspects at granularity g, and Lg,

represents the MSE loss computed for the k -th
aspect score sequence.

Score:1
Q\Zi Z.
N 0
Attract with N - .
) N - Score:2
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Zej=2 /
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@<~ (CTTTTT T T T B
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\ z; s Diversity Term (Lg) |
‘ N J
Figure 5: Illustration of contrastive ordinal

(CONO) regularizer, which preserves inter-score
discrepancies with diversity term £; and maintains
intra-score compactness via the tightness term £,.

Constative Ordinal Regularizer. To mitigate the
detrimental effects of ASR errors on assessment
performance, we devise a contrastive ordinal
(CONO) regularizer to extract score-discriminative
features. As phone-level representations are
essential for constructing a hierarchical assessment
model, we first extract an utterance-level feature z
by averaging the outputs of the phone-level
encoder HP over time. For a training batch of L
utterances, the corresponding feature vectors are
aggregated to form a sequence Z = (Z4, Zy,...,Z1).
As depicted in Figure 5, the CONO regularizer
encourages the feature vectors Z to render the
ordinal relationship of the utterance-level accuracy
scores Y = (¥4,¥2,---,¥1) via the synergy of a
diversity term L, and a tightness term £;:

Leono = Aala + ALy, (14)

where 1; and A; are trade-off parameters. The
diversity term L; preserves inter-score
discrepancies by minimizing the negative distances
between score centroid vectors z., with a penalty:

R )N

i=1 i#j
where K is the number of score centers, and
penalty w;; = |y; — y;| signifies the absolute

, o (15)

2

Zc, — Z;

differences between the regression targets. The
score centroid vectors z.; and Zc; are computed

from Z by averaging all feature vectors whose
utterance-level accuracy scores are y; and y;,
respectively. The tightness term L, regulates intra-
score  compactness by  pulling feature
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Models Phone Scores Word Score (PCC) Utterance Score (PCC)
MSE! PCCT |AccuracyT TotalT |Accuracy? FluencyT ProsodyT Totall
Liu2023 - - . - - 0.795 - .

. 0.692 0.757 0.757 0.714
VanillaSSL - - - - (+£0.006)  (£0.010)  (£0.009)  (+0.006)

MultiPA _ _ 0.427 0.436 0.705 0.772 0.763 0.730
(£0.008)  (+£0.010) | (£0.009) (£0.010) (+0.016) (+0.006)

Parallel-TFR 0.240 0.330 0.416 0.417 0.717 0.797 0.791 0.741
(£0.003)  (£0.009) | (£0.016) (+0.019) | (£0.014) (£0.003) (£0.003) (0.010)

Parallel-LLaMA 0.237 0.345 0.426 0.428 0.726 0.799 0.791 0.748
(£0.001)  (£0.004) | (£0.012) (+0.011) | (£0.006)  (+0.006)  (£0.005)  (+0.004)

Hier-LLaMA 0.238 0.328 0.412 0.418 0.692 0.786 0.780 0.724
(£0.001)  (£0.008) | (£0.011) (+0.012) | (£0.012)  (+0.008)  (+0.006)  (0.008)

HiPPO 0.202 0.480 0.520 0.521 0.733 0.806 0.797 0.754
(£0.003)  (£0.013) | (£0.016) (£0.016) | (£0.006) (+0.003) (+0.002) (+0.006)

w/o CONO 0.213 0.448 0.513 0.516 0.720 0.797 0.791 0.743
(£0.004)  (£0.012) | (£0.007) (£0.007) | (£0.005) (£0.003) (£0.002)  (0.005)

w/o CL 0.241 0.331 0.404 0.404 0.698 0.790 0.785 0.728
(£0.002)  (£0.011) | (£0.012) (£0.014) | (£0.010) (£0.011) (£0.011) (£0.007)

Table 1: The performance evaluations of our model and all compared methods on Speechocean762 test set in

simulated free-speaking scenarios.

representations z; towards their score centroid
vectors Z,:
L

L
1
L, = ZZ“Zi ~ 2,
1=

The training objective of HiPPO is designed as a

(16)

linear combination of the pronunciation
assessment task Lypy, and the CONO
regularization Lqgpo:

L= Lypa+ AconoLconos (17)

where Acopno 1S a tunable hyperparameter.

2.4 Curriculum Learning

Drawing inspiration from education systems,
curriculum learning techniques improve model
performance by progressively escalating training
complexity from simple to hard (Bengio et al.,
2009; Castells et al., 2020; Vakil and Amiri, 2023).
The proposed curriculum training strategy starts
from assessing pronunciation in a reading-aloud
scenario Lyeqq , and gradually shifts towards
assessing pronunciation in the free-speaking
counterpart Lyee . In Lyeqq , the pronunciation
features are extracted from the learner’s speech
alongside the corresponding reference text, while
in Lf¢ the transcribed word sequence serve as an
alternative for pronunciation feature extraction. At
each training iteration t, HiPPO selects a task from
Lyeqq With a probability of 1 — P (1), or from the

5 https://github.com/bicheng1225/HIPPO/tree/main

Lfree With a probability of P(7), where P (1) =
7/T is a scheduling function, with T being the total
number of training iterations and T € [0,T]. The
training strategy at iteration 7 is defined by

(1= 1(®)Lreaa + 1D Lpree, (18)
with the indicator function I(7) given by
_( 1,learning hard task (w.p. P (1))
I = {0, learning easy task (w.p.1 — P(1))’ (19)

3 Experimental Settings

This section describes the benchmark dataset and
metrics used in this paper. Implementation details
and descriptions of comparative methods are
elaborated in Appendices B and C. Furthermore,
HiPPO and the experimental dataset are publicly
available to ensure the reproducibility of our work,
accelerate CAPT research, and facilitate
standardized evaluation”.

Benchmark Dataset. A series of experiments were
carried out on the Speechocean762 dataset, a
publicly available corpus specifically designed for
CAPT research (Zhang et al., 2021). This dataset
comprises 5,000 English-speaking recordings
collected from 250 Mandarin L2 learners, with
training and test sets of equal size, each containing
2,500 utterances. Speechocean762 was collected in
a reading-aloud scenario (reading reference texts
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(a) Vanilla Model (b) Ly
(c) Lg (d) Lg + L
Figure 6: Visualization of utterance-level

representations Z, where the orange, blue, and
green points indicate accuracy scores of 4.0, 6.0,
and 8.0, respectively. The plots display feature
points for: (a) vanilla model, (b) vanilla model with
a modified diversity term L, where the penalty is
removed, (c) vanilla model with diversity term L,
and (d) vanilla model with CONO regularizer

LCONO'

aloud) with accessible reference texts and
corresponding canonical phones (phone-level
reference text). To simulate a free-speaking
scenario for possible use cases of spoken language
assessment, we exclude these reference texts from
the model input and rely instead on the ASR
transcribed words and their associated phones. The
detailed pronunciation score assignments for the

free-speaking scenario are provided in Appendix D.

Evaluation Metrics. 1) Pearson correlation
coefficient (PCC, T ) measures the linear
correlation between predicted and ground-truth
scores for disparate pronunciation aspects. 2) Mean
squared error (MSE, | ) evaluates score
discrepancy of the phone-level accuracy. The mean
and standard deviation are reported for both
metrics.

4 Experimental Results

Assessments in the Free-speaking Scenarios. At
the outset, we compare our HiPPO with several
current top-of-the-line APA models in the
simulated free-speaking scenarios. From the results
shown in Table 1, we make the following
observations. 1) Our HiPPO achieves better PCC
scores than all other competitive methods across

HiPPO W HiPPO w/o Lcowo

(a) Utterance-level Accuracy Scores

0.8
O 0.6
g 0al S 0.733 0.719 07
0.2 t t
(b) Word-level Accuracy Scores
0576
0.6 0514
S o5 |
& 0574
0.4 g2 0.31 0318
03 0339  o0sap..
(c) Phone-level Accuracy Scores
0.621
0.6 L
8 05 0.445
& 0 0621 0378 0392
. 0.48
oo L e e
. T T
0.00% 19.61% 22.75% 26.12%
WER%

Figure 7: A comparison of PCC scores for
pronunciation accuracy at the phone, word, and
utterance levels between HiPPO and HiPPO w/o
Lcono under varying word error rate (WER)
conditions. These WERs are calculated based on
the reference text and different input transcriptions
which are reference text and outputs of Whisper
models (viz., large-v3, medium-en, small-en).

different pronunciation aspects and linguistic
granularities. 2) As to the ASR-free models, both
VanillaSSL and Liu2023 are limited to utterance-
level assessment, lacking finer-grained aspect
scores at the phone or word level. Moreover,
Liu2023 outperforms VanillaSSL in assessing the
utterance-level fluency, where the gains stem from
the integration of frame-level phonetic information
via k-means clustering. Note also that effectively
using phonetic information to boost assessment
performance has been verified in prior work (Gong
et al., 2022). Subsequently, compared to MultiPA,
our method extracts pronunciation feature at the
phone-level and then qualifies pronunciation
aspects hierarchically across linguistic
granularities, resulting in superior assessment
performance. 3) In comparison among the variants
of HiPPO, Parallel-CTC and Parallel-LLaMA
outperform Hier-LL.aMA in most assessment tasks.
This observation suggests that, when pronunciation
features are extracted from the transcripts
containing ASR errors, the parallel design offers a
more flexible and robust neural architecture for
assessments in free-speaking scenarios compared
to the hierarchical one. Notably, HiPPO stands out
in assessment performance via the synergy of
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Models Phone Scores Word Score (PCC) Utterance Score (PCC)

MSE! PCCT |Accuracy? TotalT |AccuracyT FluencyT ProsodyT Totall

AzurePA - - 0.623 - 0.700 0.715 0.842 0.782

GOPT 0.085 0.612 0.533 0.549 0.714 0.753 0.760 0.742
(£0.001)  (£0.003) | (£0.004) (+0.002) | (£0.004) (+0.008) (+£0.006) (+0.005)

IM 0.078 0.656 0.598 0.617 0.760 0.828 0.827 0.796
(£0.001)  (£0.005) | (+0.005)  (+0.005) | (£0.004)  (+0.006)  (+0.008)  (40.005)

HiPAMA 0.084 0.616 0.575 0.591 0.730 0.749 0.751 0.754
(£0.001)  (£0.004) | (£0.004) (+0.004) | (£0.002) (+0.001) (£0.002) (+0.002)

HierTFR 0.081 0.644 0.622 0.634 0.735 0.801 0.795 0.764
(£0.000)  (£0.000) | (£0.002)  (+0.002) | (£0.008)  (+0.004)  (£0.002)  (40.002)

Parallel-TFR 0.078 0.650 0.575 0.589 0.754 0.816 0.806 0.772
(£0.001)  (£0.009) | (£0.018)  (+0.013) | (£0.011) (+0.006) (+£0.007) (+0.010)

Parallel-L LaMA 0.074 0.658 0.598 0.610 0.774 0.837 0.829 0.796
(£0.002)  (£0.007) | (£0.012)  (+0.009) | (£0.009) (+0.006) (+£0.004)  (&0.009)

Hier-LLaMA 0.082 0.656 0.622 0.634 0.789 0.844 0.832 0.811
(£0.002)  (£0.006) | (+0.006)  (+0.008) | (£0.006) (+0.003)  (£0.003)  (&0.005)

HiPPO* 0.080 0.657 0.630 0.643 0.791 0.845 0.837 0.816
(£0.001)  (£0.001) | (£0.009) (+0.009) | (£0.002) (+0.001) (+0.001) (+0.001)

Table 2: The performance evaluations of our model and all compared methods on Speechocean762 test set in
the read-aloud scenarios. HiPPO* refers to the model trained without curricular strategy and CONO

regularizer.

CONO
strategy.

regularizer and curriculum learning

Ablation Studies in Free-speaking Scenarios. As
shown in the last two columns of Table 1, we ablate
HiPPO with following settings: removing the
CONO regularizer (w/o CONO) and substituting
the curriculum learning strategy with training on a
combined dataset of reading-aloud and free-
speaking scenarios (w/o CL). From these ablation
studies we can observe that both the CONO
regularizer and the curriculum strategy are crucial
to HiIPPO. Removing either one of them leads to a
decline in performance across several aspects and
granularities. Second, the curriculum learning
strategy makes a substantial contribution to the
performance. Training HiPPO with the combined
dataset, in contrast, results in lower performance
across all assessment tasks.

Qualitive Analysis on the CONO Regularizer in
the Free-speaking Scenarios. In Figure 6, we
qualitatively examine the effectiveness of the
additional training regularizer on the proposed
hierarchical model. As depicted in Figure 6, the
feature points in these subfigures display ordinal
relationships, which are sorted by their utterance-
level scores, with blue points being located
between red points and green points. This result
can be attributed to the aggregation of
representations Z from the  phone-level
representations, which are highly correlated with

the utterance-level accuracy score (Yan et al.,
2024). By comparing Figures 6(b) with 6(c), it is
evident that both diversity terms (£, and £,;) can
capture subtle differences between utterance-level
scores, where feature points are clustered by their
respective accuracy scores. The integration of
ordinal penalty, as shown in Figure 6(c), further
facilitates a clearer scattering of feature
representations, with blue and green points more
distinctly spread out. Finally, the impact of the
tightness term L, is verified in Figure 6(d), where
the feature points exhibit tighter clustering in
comparison with other subfigures.

Effectiveness of CONO Regularizer across
Different ASR Word Error Rate Settings. Figure
7 examines the effectiveness of CONO regularizer
Lcono for the assessment accuracy at different
granularities across various ASR word error rates
(WERs), by comparing the HiPPO and its ablated
version (HiPPO w/o CONO). Notably, in this set of
experiments, our models were trained on the
reference text and transcripts generated by
whisper-large-v3 (achieving a WER of 19.6%) via
proposed curricular learning strategy. First, with
reference text as the input transcript, the
assessment performance of both models seems
comparable across granularities (phone, word, and
utterance levels). Second, at the utterance-level
assessment, the PCC scores of these two models
appear relatively immune to WER degradation. A
possible reason is that utilization of SSL-based
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features in utterance-level modeling, as the SSL
models are often pre-trained on complex acoustic
environments. Finally, the benefits of the CONO
regularizer are more prominent at finer-grained
linguistic levels. Specifically, the performance
degrades substantially at the phone and word levels;
however, the performance of HiPPO exhibits a
more attenuated decline in comparison to other
variants, which highlights the robustness of the
proposed regularizer to ASR errors.

Assessments in the Read-aloud Scenario. In
Table 2, the proposed HiPPO is evaluated in a read-
aloud setting, where reference texts are employed
in training and test. The main findings are
presented as follows. 1) HiPPO markedly
outperforms other methods in most pronunciation
aspects. Notably, in contrast to prior studies, i.e.,
parallel models (GOPT and 3M) and hierarchical
ones (HiPAMA and HierTFR), our model assesses
pronunciation quality without explicit phone-level
timestamps and achieves superior performance
across various pronunciation aspects. 2) AzurePA
stands out at the assessment of utterance-level
prosody, whereas its performance on the other
pronunciation aspects trails behind that of the other
methods. These inferior results probably stem from
that AzurePA is a commercial system that might
has not been finetuned on Speechocean762. 3) As
to the comparison between the variants of HiPPO
(Parallel-LLaMA, Parallel-TFR, and Hier-
LLaMA), Hier-LLaMA  attains  superior
performance in most pronunciation aspects,
particularly at the word and utterance levels, with a
slight sacrifice in performance at the phone-level.
These results are in line with the findings from
previous studies (Do et al., 2023; Chao et al., 2023).
By comparing HiPPO with Hier-LLaMA, we can
verify that the proposed Conv-LLaMA block
brings consistent improvements to pronunciation
assessments.

5 Conclusion

In this paper, we have proposed a mnovel
hierarchical pronunciation assessment model
(dubbed HiPPO) for the spoken languages. To
address arbitrarily long pronunciation feature
sequences and capturing articulation traits across
various linguistic granularities, we designed a
Conv-LLaMA block for the proposed model. A
contrastive ordinal regularizer is put forward to
enhance robustness against ASR errors. Moreover,

we explored a simple yet effective curriculum
learning strategy for the spoken language
assessment. Extensive experimental results
validate the feasibility and effectiveness of the
proposed methods, obtaining superior assessment
performance compared to several state-of-the-art
methods in both reading-aloud and stimulated free-
speaking scenarios. In future work, we plan to
explore more robust assessment models under
various word error rate conditions for unscripted
pronunciation assessments.

6 Limitations

Spoken language assessment gauges language
competence  across three  sub-dimensions:
pronunciation (fluency and delivery), language use
(vocabulary and grammar), and topic development
(content and discourse). In this paper, however,
HiPPO focuses exclusively on pronunciation
assessment within the broader context of spoken
language evaluation. The following are several
limitations of HiPPO in real-world applications:

Transcriptions Containing ASR  Errors.
Although speech foundation models have achieved
near-human accuracy on public benchmark
datasets, transcribing non-native English speech
remains challenging. In our experiments, the word
error rate (WER) for Speechocean762, transcribed
using Whisper-large-v3, is 19.22% for the training
set and 17.49% for the test set. Examining the
performance of HiPPO through the lens of different
WER conditions, we observed a significant
degradation when ASR errors were severe, even
with the proposed CONO regularizer.

Lack of Accent Diversity. The used dataset merely
contains Mandarin L2 learners, hindering the
generalizability of the proposed model and could
be untenable when assessing the L2 learners with
diverse accents.

The Lack of Interpretability. The model of the
proposed method simply trains to mimic expert’s
annotations  without resorting to manual
assessment rubrics or other external knowledge,
making it not straightforward to provide reasonable
explanations for the assessment performance.

Ethics Statement

We hereby acknowledge that all of the co-authors
of this work compile with the provided ACL Code
of Ethics and honor the code of conduct. Our
experimental corpus, Speechocean762, is widely

818



used and publicly available. We think there are no
potential risks for this work.
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A Related Work

Automatic Pronunciation Assessment (APA)
quantifies L2 learners' pronunciation proficiency in
a target language, offering either analytic scores
(continuous numerical values for specific aspects)
or an overall score (discrete categorical values for
speaking competence). We categorize the related
APA works into the following two groups for
discussion, differentiated by their reliance on
reference text.

Scripted-speech Assessment. The developments
of scripted-speech assessment are typically
designed in read-aloud learning scenarios, where
an L2 learner is provided with a reference text and
instructed to pronounce it verbatim. Early efforts in
scripted speech assessment predominantly focused
on single-aspect assessment, which predicted
proficiency scores at specific linguistic levels with
various sets of hand-crafted features by separate
scoring modules, such as phone-level accuracy
(Witt and Young, 2000), word-level stress (Ferrer
et. al, 2015), and utterance-level fluency
(Coutinho et. al, 2016). Furthermore, the
commonly used hand-crafted features were derived
from the reference text in conjunction with the
learner's speech via an ASR model (hybrid DNN-
HMM system), where the extracted pronunciation
features included acoustic features, confidence
scores of recognized linguistic units, time-
alignment information, and statistical measures,
but were not limited to these (Miilller et al., 2009;
Franco et al., 2010). To provide comprehensive
pronunciation feedback for language learners, a
flurry of recent work has advocated multi-aspect
and multi-granular pronunciation assessment,
which evaluates pronunciation proficiency across
multiple linguistic levels (viz. phoneme, word, and
utterance), with diverse aspects (e.g., accuracy,
fluency, and completeness) with a unified model.
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Drawing on this research trend, various neural
models capitalizing on hand-crafted features and/or
self-supervised features have been extensively
investigated in existing literature, including
parallel (Gong et al., 2022; Chao et al., 2022),
hierarchical (Do et al., 2023, Yan et al., 2024), and
linguistic-decoupled structures (Pei et al., 2024).

Unscripted-speech  Assessment. Unscripted-
speech assessment is an emerging research field
and has gained increasing attention in recent years,
as it attempts to qualify learners’ speaking abilities
in real-world communication. The corresponding
developments target free-speaking scenarios, in
which an L2 learner receives a reference text (with
short questions) and is expected to respond or share
opinions grounded in their personal experiences.
Based on the free-form and spontaneous speech
inputs, the assessment models then qualify oral
skills and provide instructive feedback at various
linguistic levels. As one of the initial attempts, Liu
et al. (2023) proposed an ASR-free method which
leveraged a pre-trained self-supervised learning
(SSL) model (viz., wav2vec2.0) to estimate
fluency scores for L2 learners without resorting to
the reference texts (or ASR transcriptions). Their
method extracted frame-level acoustic features
with a self-supervised learning (SSL) model and
generated phonology features by assigning
proximity phone labels (cluster index) to each
frame via K-means clustering. To assess word-
level speaking skills, a pioneering effort, Chen et al.
(2024) proposed MultiPA which extracted
pronunciation features at word-level with two
speech recognizers and employed a bottom-up
neural structure to examine the learner’s
pronunciation skills at both word and utterance
levels. Specifically, one recognizer employs a
high-performing ASR model (whisper-large-v3) to
approximate the ground-truth word sequence,
while the other utilizes an ASR model trained with
native speaker speech (whisper-medium-en) to
emulate how a native speaker would process the
learner's speech. Compared to previous works, our
model assesses oral skills from phone-level to
utterance-level by working in tandem with a speech
recognizer and a G2P converter. Furthermore, to
mitigate the detrimental effects of ASR errors, we
proposed the extract score-discriminative features
by leveraging the contrastive ordinal regularizer.



B Implementation Details

This section illustrates the implementation details
of our experiments, and we plan to make our source
code and datasets publicly accessible after the
reviewing process.

Training Hyperparameters. Our implementation
follows previous studies (Gong et al., 2022; Chao
et al., 2022), employing the Adam optimizer, with
a learning rate of 0.001, and a batch size of 25. To
stabilize the training process, the aspect scores at
both the utterance and word levels are normalized
to match the scale of the phone-level score, ranging
from 0 to 2. We conducted 5 independent trials,
with each trial running for 100 epochs and using a
different random seed to reduce the impact of
randomness. The evaluation metrics are reported as
the average of the best-performing epochs across
these trials, selected based on the minimum phone-
level MSE values.

Model Configurations. In the Conv-LLaMA
block, the multi-head self-attention (MHSA)
module is configured with 1 head and 24 hidden
units for different granularities (dp, = dy, = dy =
24). The attention pooling mechanisms at the word
and utterance levels share the same configuration,
which use a single-layer multi-head attention
mechanism with 3 heads and 24 hidden units.
Furthermore, in each modeling stage, the
regressors for various pronunciation aspects are
implemented as feed-forward networks, each
consisting of two linear transforms with a non-
linear activation in between, and the second
transform of each projects the hidden dimension to
a single scalar output.

C Comparative Methods

We compare HiPPO with several top-of-the-line
methods in both simulated free-speaking and read-
aloud scenarios.

Comparative Models for Simulated Free-
speaking Assessment. First, for the free-speaking
scenario, we compare three categories of methods.
1) ASR-free methods: VanillaSSL (Chen et al.,
2024) qualifies utterance-level pronunciation
aspects by fine-tuning a pre-trained self-supervised
learning (SSL) model (viz., wav2vec2.0); similarly,
Liu et al. (2023), based on a SSL-based acoustic

model, first extracts frame-level SSL features,
subsequently assigning phonetic information to
each frame with k-means clustering and then
evaluating utterance-level pronunciation aspects
via a simple mean pooling mechanism. 2) ASR-
based method: MultiPA (Chen et al., 2024) extracts
pronunciation features based on two speech
recognizers and constructs an assessment model to
qualify oral skills at word and utterance levels. 3)
Variants of HiPPO: Parallel-CTC, Parallel-LLaMA,
and Hier-LLaMA adopt the same inputs as HiPPO
(i.e., XP and x%), while exploring different neural
architectures. Parallel-CTC and Parallel-LLaMA
adopt a parallel architecture, with the former using
Transformer blocks and the latter stacking of
LLaMA blocks. Hier-LLaMA replaces the Conv-
LLaMA blocks of HiPPO with standard LLaMA
blocks.

Comparative  Models for  Read-aloud
Assessment. For read-aloud scenario, we first
report the performance of Azure Pronunciation
Assessment (AzurePA) service (Wang et al,
2025b), followed by a comparison with several
APA models. 1) Parallel neural structure: GOPT
(Gong et al., 2022) adopts pronunciation features
derived from phone-level timestamps and models
the pronunciation aspects with Transformer blocks;
3M (Chao et al., 2022) extends GOPT by
incorporating acoustic features, i.e., phone duration
statistics and SSL-based features, and phonology
features, i.e., vowel and consonant embeddings. 2)
Hierarchical neural structure: HIPAMA (Do et al.,
2023) is a language hierarchy-aware APA model
equipped with the trait attention mechanisms;
HierTFR (Yan et al., 2024) stacked a hierarchical
neural structure via Transformer blocks and
proposed mask prediction to strengthen the
relationships across granularities for model
initialization.

D Score Assignments for Speechocean762
Corpus in the Simulated Free-speaking
Scenario

Speechocean762 was curated in a read-aloud
learning scenario, where human annotators
provided pronunciation scores at the utterance,
word, and phone levels. These scores were
assigned based on the reference text (for scoring
utterance-level and word units) and the
corresponding canonical phone sequence (for
scoring  phone  units). To  reorganize
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Speechocean762 in the simulated free-speaking

scenario, we first use a speech foundation model

(whisper-large-v3) to transcribe the learners’

speech and convert the transcriptions into the

corresponding phone sequences via a G2P
converter (g2pE). Next, for each recording, we
align the ASR transcription to reference text and
the converted phone sequence to canonical phone
sequence, respectively. Based on the resulting
alignments, we first assigned pronunciation scores
from human annotators to correctly recognized
segments (i.e., including phone and word units).

For subsequent score assignments, we handled

ASR errors at both levels (viz., word and phone

levels) as follows:

* Deletion Errors: Ignored due to there are no
corresponding segments in the transcribed
words (or converted phones).

» Substitution Errors: Assigned scores based on
aligned segments, as most substitution error
cases reflect subtle acoustic differences.

 Insertion Errors: Assigned a score of zero.

Figure 8 presents the alignment process for a

sample recording. Note that insertion errors are

retained, owing to the maintenance of phone-to-
word mappings for developing hierarchical neural
structure. Figure 8(c) highlights how the score
assignment process maintains phone-to-word
relationships for converted phones (i.e., the
mapping of phone segments p, and p; to word G).
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Figure 8: Illustration of score assignments for
Speechocean762 in simulated free-speaking
scenarios. For a sample recording, we demonstrate
the assignment process: (a) shows the reference
text and an ASR transcription, along with their
respective canonical and G2P converted phone
sequences; (b) alignment of ASR transcription to
reference text for human scoring; (c) alignment of
G2P outputs to canonical phones for pronunciation
scoring.



