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Abstract 

Automatic pronunciation assessment (APA) 
seeks to quantify a second language (L2) 
learner's pronunciation proficiency in a 
target language by offering timely and fine-
grained diagnostic feedback. Most existing 
efforts on APA have predominantly 
concentrated on highly constrained 
reading-aloud tasks (where learners are 
prompted to read a reference text aloud); 
however, assessing pronunciation quality in 
unscripted speech (or free-speaking 
scenarios) remains relatively 
underexplored. In light of this, we first 
propose HiPPO, a hierarchical 
pronunciation assessment model tailored 
for spoken languages, which evaluates an 
L2 learner’s oral proficiency at multiple 
linguistic levels based solely on the speech 
uttered by the learner. To improve the 
overall accuracy of assessment, a 
contrastive ordinal regularizer and a 
curriculum learning strategy are introduced 
for model training. The former aims to 
generate score-discriminative features by 
exploiting the ordinal nature of regression 
targets, while the latter gradually ramps up 
the training complexity to facilitate the 
assessment task that takes unscripted 
speech as input. Experiments conducted on 
the Speechocean762 benchmark dataset 
validates the feasibility and superiority of 
our method in relation to several cutting-
edge baselines. 

1 Introduction 

Spurred by the global demand for foreign language 
proficiency in both the workforce and academia, 
computer-assisted pronunciation training (CAPT) 
has gained significant attention, which facilitates 
second-language (L2) learners to practice 
pronunciation skills with near-instant, instructive, 
and potentially diagnostic feedback (Norris and 

Davis, 2025; Moere and Downey, 2016). To meet 
this pressing demand, CAPT systems have become 
ubiquitous and appealing learning tools, 
transitioning the conventional pedagogical 
approach from teacher-led instruction to self-
directed learning (Rogerson-Revell, 2021; Chen 
and Li, 2016; Singla et al., 2021). 

Automatic pronunciation assessment (APA) 
aims to evaluate L2 learners’ speaking proficiency 
and provide fine-grained feedback on specific 
pronunciation aspects pertaining to a target 
language, figuring prominently in the field of 
CAPT. Prior studies on APA have primarily drawn 
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Figure 1: Outlines our motivations. (a) Existing 
APA models are primarily tailored for read-aloud 
tasks. (b) Directly applying APA models to free-
speaking scenarios struggles to quantify oral skills 
based on speech signals. (c) HiPPO integrates a 
speech recognizer to generate transcriptions from 
the learner’s speech, effectively reformulating free-
speaking assessment as a task akin to read-aloud. 
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attention to highly constrained speaking tasks 
(such as listening and then repeating words or 
sentences). As exemplified in Figure 1(a), a de-
facto archetype system for APA is instantiated in 
reading-aloud (or scripted) learning scenarios, 
where an L2 learner is provided with a reference 
text and instructed to pronounce it correctly. 
Methods in this line of research typically rely on an 
input reference text paired with the learner’s 
speech to derive timestamps of linguistic units (i.e., 
phones or words) via an automatic speech 
recognition (ASR) system, which are then used for 
either pronunciation feature extraction (Gong et al., 
2022; Chao et al., 2022; Do et al., 2023; Yan et al., 
2024) or for neural modeling (Lin and Wang, 2021; 
Wang et al., 2025). Albeit achieving competitive 
performance in relation to inter-rater agreement 
(Yan and Chen, 2024; Pei et al., 2024), scripted-
speech assessments fail to reflect learners’ 
speaking abilities in real-world communication. In 
contrast, pronunciation assessment of spoken 
languages introduces new challenges to CAPT, as 
it attempts to quantify an L2 learner’s oral skills in 
spontaneous speech or elicit authentic responses 
through short questions (Zechner and Evanini, 
2019; Kheir et al., 2023). Directly grafting existing 
APA models to use cases of spoken language 
assessment, however, confronts at least two major 
issues. First, as shown in Figure 1(b), the utterances 
of an L2 learner are produced in an unscripted 
manner, which makes APA models struggle to 
extract correct pronunciation features 
encompassing time-alignment information (Shen 
et al., 2021; Deng et al., 2020; Witt and Young, 
2000). What is more, owing to the free-form nature 
of unscripted speech, the desired APA models are 
required to accommodate speech input of varying 
lengths. 

Building on these observations, this paper 
presents HiPPO, a novel hierarchical pronunciation 
assessment model for spoken languages that 
evaluates L2 learners’ oral proficiency based on 
unscripted speech (or free-speaking scenarios) and 
provides analytical scores on various pronunciation 
aspects across multi-granular linguistic levels. 
Specifically, HiPPO strategically employs a speech 
foundation model along with a grapheme-to-
phoneme (G2P) converter to derive the most likely 
phone sequence produced by an L2 learner, thereby 
bringing the assessment task closer to its scripted-
speech counterpart, as illustrated in Figure 1(c). To 
overcome sequence length constraints and preserve 

articulatory traits across multi-granular linguistic 
units, HiPPO capitalizes on a tailor-made Conv-
LLaMA block to stack a hierarchical neural 
architecture, which augments the LLaMA block 
(Touvron et al., 2023) with a convolutional branch 
and rotary position encoding (Su et al., 2024). 
Moreover, during training, a contrastive ordinal 
regularizer is put forward to modulate feature 
distances through the absolute differences between 
regression targets. By exploiting the ordinal 
constraints, the proposed regularizer serves as a 
promising approach to generate score-
discriminative features, mitigating the detrimental 
effects of ASR errors on pronunciation assessments. 
We further introduce a simple yet effective 
curriculum learning strategy for HiPPO that 
progressively increases the training complexity, 
transforming the assessment tasks from the read-
aloud scenario to the free-speaking counterpart. An 
extensive set of experiments conducted on 
Speechocean762 benchmark dataset (Zhang et al., 
2021), consisting of both read-aloud and simulated 
free-speaking scenarios, demonstrates substantial 
and consistent performance gains of the proposed 
methods over several strong baselines. 

In summary, our contributions are at least four-
fold: (1) to our knowledge, HiPPO is the first 
attempt to assess oral skills for unscripted speech 
with multi-faceted scores from phone to utterance 
levels, opening a new avenue for CAPT; (2) we 
propose a novel Transformer block, Conv-LLaMA 
block, as the backbone of HiPPO, elaborately 
designed to handle the free-from speech uttered by 
L2 learners; (3) to alleviate the negative effects of 
ASR errors, a contrastive ordinal regularizer is 
proposed to reflect the ordinality of regression 
targets within the feature space; and (4) a simple 
yet effective curriculum learning strategy is 
explored to boost the performance of pronunciation 
assessment in the free-speaking scenario. 

2 Methodology 

This section sets out with a problem definition for 
pronunciation assessments on unscripted speech 
(or free-speaking scenarios) and then sheds light on 
the proposed methods, encompassing the 
assessment model, training objectives, and learning 
strategy. Due to the space limit, the overview of 
related work will be given in Appendix A. 
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2.1 Problem Definition 

To assess speaking skills across different linguistic 
granularities for unscripted speech, as illustrated in 
Figure 2, we first employ a speech foundation 
model1 to transcribe a speech signal X produced by 
an L2 learner into a sequence of 𝑀  words 𝐰 =
(𝑤!, 𝑤", … , 𝑤#)  and subsequently a G2P 
converter2 to generate the corresponding phonetic 
transcription of 𝑁  phones 𝐩 = (𝑝!, 𝑝", … , 𝑝$) , 
where 𝐰 and 𝐩 collectively serve as a proxy for the 
textual and phonetic realizations perceived by 
human raters. Let G = {𝑔%&', 𝑔()*+ , 𝑔,--} 
denotes the set of linguistic granularities, where 
𝑔%&',  𝑔()*+  and 𝑔,--  mark the phone-, word-, 
and utterance-level linguistic granularities, 
respectively. HiPPO is trained under a multi-task 
learning paradigm to estimate a set of aspect score 
sequences A. = {𝐚!

., 𝐚"
., … , 𝐚$!

. }  for each 
granularity 𝑔 ∈ G , where 𝑁.  is the number of 
pronunciation aspects. 

 
1 https://huggingface.co/openai/whisper-large-v3 

2.2 Hierarchical Pronunciation Assessment 
Model for Spoken Languages (HiPPO) 

Figure 3 depicts the model architecture of HiPPO, 
which encompasses three major modeling stages: 
phone-, word-, and utterance-level modeling. In 
each of these modeling stages, the corresponding 
encoder is constructed with a newly proposed 
Conv-LLaMA block. After obtaining the 
representations of all pronunciation aspects, a 
distinct regressor is used to generate the 
pronunciation score of each aspect. 

Pronunciation Feature Extraction. To portray 
the pronunciation quality of X , we extract 
connectionist temporal classification (CTC)-based 
goodness pronunciation (GOP) features for each 
phone in 𝐩 , where the pronunciation quality is 
measured as the likelihood ratio of all valid CTC 
alignments of 𝐩 to that of the deviated phonetic 
transcripts (Cao et al., 2024). Compared to 
previous studies on the GOP feature extraction 
(Witt and Young, 2000; Hu et al., 2015; Shen et al., 
2021), the CTC-based method computes GOP 
scores without explicit timestamps of phone 
segments and inherently tackles alignment errors 
by accounting for insertions and/or deletions in the 
deviated phonetic transcriptions. Additionally, to 
capture supra-segmental articulation cues and 
mitigate the data-sparsity issue frequently 
occurring in L2 speech corpora (Lo et al., 2024; 
Bannò and Matassoni, 2022), we leverage self-
supervised learning (SSL)-based features for 
utterance-level pronunciation modeling. The SSL-

2 https://github.com/Kyubyong/g2p 

 
Figure 2: Processing flow of HiPPO for qualifying 
the oral skills in unscripted speech. 
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Figure 3: The overall architecture of the proposed hierarchical pronunciation assessment model (HiPPO). 
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based features are extracted at the frame-level and 
then aggregated to the utterance-level via simple 
mean pooling over time (Chao et al., 2022; Kim et 
al., 2022). A bit of terminology: the pronunciation 
feature extraction of HiPPO produces a phone-
level pronunciation feature sequence X/ ∈ ℝ+"×$ 
and a projected SSL-based feature vector 𝐱112 ∈
ℝ+#×! , where 𝑁  is the length of the phone 
sequence, and 𝑑/  and 𝑑3  represent the hidden 
dimension of phone- and utterance-level modeling. 
The processing flow summarized as follows: 

X! = Lin!(E"#!), (1) 

𝐱$$% = Lin$$%+,𝐞&'(; 𝐞)*; 𝐞&%+/0), (2) 

where Lin/(∙) and Lin112(∙) are linear projections, 
and [; ]  is a concatenation operation. E45/ ∈
ℝ6!×$  refers to the CTC-based GOP features 
extracted from a well-trained CTC-based ASR 
model 3 , while 𝐞7"8, 𝐞93, and	𝐞72: ∈ ℝ!;"6×! 
are utterance-level SSL-feature vectors derived 
from pre-trained acoustic models, viz. wav2vec-
2.0, Hubert, and WavLM, respectively. 

Convolution-augmented LLaMA Block (Conv-
LLaMA). To model a pronunciation feature 
sequence of arbitrary length and capture nuanced 
articulation traits across linguistic units, we 
introduce a Conv-LLaMA block to stack a 
hierarchical assessment model, which enhances the 
model component of LLaMA (Touvron et al., 2023) 
with a convolutional branch and rotary position 
encoding. As depicted in Figure 4, the proposed 
block comprises two branches: one branch captures 
supra-segmental articulation cues via a multi-head 
self-attention (MHSA) module followed by a 
swish-gated linear unit (SwiGLU) operation 
(Touvron et al., 2023), while the other focuses on 
capturing local pronunciation traits via a 
convolutional neural network (CNN) module. 
Subsequently, these two branches are combined via 
a weighted average operation (Peng et al., 2022). 
The proposed CNN module is equipped with two 
key components, i.e., a point-wise convolution for 
capturing information across feature dimensions 
and a depth-wise convolution layer for extracting 
local spatial patterns. On the other hand, the MHSA 
module incorporates rotary position encoding 
(RoPE), a relative position encoding method 
developed for extrapolating feature sequence 
lengths, which operates through channel-wise 

 
3 https://github.com/frank613/CTC-based-GOP.git 

multiplication on the key and query vectors in the 
multi-head self-attention layer (Su et al., 2024). 

Hierarchical APA Modeling. For the phone-level 
assessment, we first combine the pronunciation 
features X/  with the textual embeddings E< ∈
ℝ+"×$  in a point-wise manner, followed by a 
phone encoder to obtain aspect representations H/: 

H,
! = X! + E!, (3) 

H! = PhnEnc+H,
!0, (4) 

where E/  is generated by passing phonetic 
transcription 𝐩 into a phone embedding layer, and 
PhnEnc(∙) is a stack of 3 Conv-LLaMA blocks. 
Subsequently, a regressor is built on top of H/ to 
produce phone-level accuracy scores. 

 For word-level assessments, we begin by 
deriving a word representation vector from its 
constituent phones with a dedicated attention 
pooling, implemented with a 1-D depth-wise 
convolution layer, an MHA layer, and an average 
operation. The word-level input features X7 ∈
ℝ+$×#  are obtained by feeding X/  and H/ 
through word-level attention pooling, and then 
packing their pooled counterparts together via a 
linear projection: 

X6& = AttPool&!(X
!), (5) 

H6& = AttPool&"(H
!), (6) 

X& = Lin&+,X6&; H6&/0, (7) 

where 𝑀  denotes the length of transcribed word 
sequence, and 𝑑7  symbolizes the hidden 
dimension of word-level modeling4. Following the 
integration of word-level textual embeddings E7 
with X7, a word encoder is employed to generate a 

4 For efficient parallel computation, a word-level 
representation is duplicated to length of constituent phones. 

 
Figure 4: A schematic illustration of the proposed 
Conv-Llama block. 
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sequence of contextualized representations H7 ∈
ℝ+$×#: 

H,& = X& + E&, (8) 

H& = WordEnc(H,&), (9) 

where E7 are obtained by mapping the transcribed 
word sequence 𝐰 through modernBERT (Warner 
et al., 2024), and WordEnc(∙) consists of 2 Conv-
LLaMA blocks. Consequently, three distinct 1-D 
depth-wise convolution layers are performed on 
top of H7 to generate aspect representations (viz. 
H7% , H7& , and H7' ). The word-level 
pronunciation scores (accuracy, stress, and total) 
are generated by passing the aspect representations 
into the corresponding regressors. 

For the utterance-level assessments, we first 
fuse H7%, H7&, and H7' with a weighted average 
operation to produce HJ7 ∈ ℝ+$×# . After the 
distinct forward propagation through 1-D depth-
wise convolution layers on X/ , H/ , and HJ7 , the 
corresponding outputs are combined via a linear 
projection, and then fed into an utterance encoder 
to generate contextualized representations H3: 

H>& = Merge(H&! , H&" , H&#), (10) 

H,* = Lin*([DC.(X!); DC'(H!); DC/(H>&)]), (11) 

H* = UttEnc(H,*), (12) 

where UttEnc(∙) is a single Conv-LLaMA block, 
and DC!(∙), DC"(∙), and DC=(∙) are distinct 1-D 
depth-wise convolution layers, each of which has a 
kernel size of 3. Afterward, five separate attention 
pooling layers are stacked on top of H3 and then 
integrated with the projected SSL-based feature 
vector 𝐱112  via separate residual connections. 
These aspect representation vectors are processed 
by the corresponding regressors to derive the 
utterance-level aspect scores (viz. accuracy, 
fluency, completeness, prosody, and total). 

2.3 Training Objectives 

For the proposed model, we first consider a 
weighted sum of mean squared error (MSE) losses 
as the training objective, collected from multiple 
aspects across granularities: 

ℒ010 =H𝜆2
2∈4

×
1
𝑁2

H ℒ2$

5%6.

78,

, (13) 

where 𝜆.  denotes adjustable parameter, 𝑁.  is 
number of aspects at granularity 𝑔 , and ℒ.( 
represents the MSE loss computed for the 𝑘 -th 
aspect score sequence. 

 
Constative Ordinal Regularizer. To mitigate the 
detrimental effects of ASR errors on assessment 
performance, we devise a contrastive ordinal 
(CONO) regularizer to extract score-discriminative 
features. As phone-level representations are 
essential for constructing a hierarchical assessment 
model, we first extract an utterance-level feature 𝐳 
by averaging the outputs of the phone-level 
encoder H%  over time. For a training batch of 𝐿 
utterances, the corresponding feature vectors are 
aggregated to form a sequence Z = (𝐳!, 𝐳", . . . , 𝐳>).  

As depicted in Figure 5, the CONO regularizer 
encourages the feature vectors Z  to render the 
ordinal relationship of the utterance-level accuracy 
scores 𝐲 = (𝑦!, 𝑦", … , 𝑦>)  via the synergy of a 
diversity term ℒ+ and a tightness term ℒ-: 

ℒ9:5: = 𝜆;ℒ; + 𝜆<ℒ< , (14) 

where 𝜆+  and 𝜆-  are trade-off parameters. The 
diversity term ℒ+  preserves inter-score 
discrepancies by minimizing the negative distances 
between score centroid vectors 𝐳?) with a penalty: 

ℒ; = −
1

𝑀(𝑀 − 1)HH𝑤=> P𝐳?& − 𝐳?'P'
=@>

A

=8.

, (15) 

where 𝐾  is the number of score centers, and 
penalty 𝑤@A = |𝑦@ − 𝑦A|  signifies the absolute 
differences between the regression targets. The 
score centroid vectors 𝐳?)  and 𝐳?*  are computed 
from Z  by averaging all feature vectors whose 
utterance-level accuracy scores are 𝑦@  and 𝑦A , 
respectively. The tightness term ℒ- regulates intra- 
score compactness by pulling feature 

 

Figure 5: Illustration of contrastive ordinal 
(CONO) regularizer, which preserves inter-score 
discrepancies with diversity term ℒ; and maintains 
intra-score compactness via the tightness term ℒ<. 
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representations 𝐳@  towards their score centroid 
vectors 𝐳?): 

ℒ< =
1
𝐿HT𝐳𝑖 − 𝐳𝑐𝑖T'

B

=8.

. (16) 

The training objective of HiPPO is designed as a 
linear combination of the pronunciation 
assessment task ℒDED  and the CONO 
regularization ℒFG$G: 

ℒ =	ℒ010 + 𝜆9:5:ℒ9:5:, (17) 

where 𝜆FG$G is a tunable hyperparameter. 

2.4 Curriculum Learning 

Drawing inspiration from education systems, 
curriculum learning techniques improve model 
performance by progressively escalating training 
complexity from simple to hard (Bengio et al., 
2009; Castells et al., 2020; Vakil and Amiri, 2023). 
The proposed curriculum training strategy starts 
from assessing pronunciation in a reading-aloud 
scenario ℒ*HI+ , and gradually shifts towards 
assessing pronunciation in the free-speaking 
counterpart ℒJ*HH . In ℒ*HI+ , the pronunciation 
features are extracted from the learner’s speech 
alongside the corresponding reference text, while 
in ℒJ*HH the transcribed word sequence serve as an 
alternative for pronunciation feature extraction. At 
each training iteration 𝜏, HiPPO selects a task from 
ℒ*HI+ with a probability of 1 − 𝒫(𝜏), or from the 

 
5 https://github.com/bicheng1225/HIPPO/tree/main 

ℒJ*HH  with a probability of 𝒫(𝜏), where 𝒫(𝜏) =
𝜏 𝑇⁄  is a scheduling function, with 𝑇 being the total 
number of training iterations and 𝜏 ∈ [0, 𝑇]. The 
training strategy at iteration 𝜏 is defined by 

`1 − 𝕀(𝜏)aℒ*HI+ + 𝕀(𝜏)ℒJ*HH , (18) 

with the indicator function 𝕀(𝜏) given by 

𝕀(𝜏) = X
1, learning	hard	task	(𝑤. 𝑝.𝒫(𝜏))

0, learning	easy	task	(𝑤. 𝑝. 1 −𝒫(𝜏)). (19) 

3 Experimental Settings 

This section describes the benchmark dataset and 
metrics used in this paper. Implementation details 
and descriptions of comparative methods are 
elaborated in Appendices B and C. Furthermore, 
HiPPO and the experimental dataset are publicly 
available to ensure the reproducibility of our work, 
accelerate CAPT research, and facilitate 
standardized evaluation5. 

Benchmark Dataset. A series of experiments were 
carried out on the Speechocean762 dataset, a 
publicly available corpus specifically designed for 
CAPT research (Zhang et al., 2021). This dataset 
comprises 5,000 English-speaking recordings 
collected from 250 Mandarin L2 learners, with 
training and test sets of equal size, each containing 
2,500 utterances. Speechocean762 was collected in 
a reading-aloud scenario (reading reference texts 

Models Phone Scores Word Score (PCC) Utterance Score (PCC) 
MSE↓ PCC↑ Accuracy↑ Total↑ Accuracy↑ Fluency↑ Prosody↑ Total↑ 

Liu2023 - - - - - 0.795 - - 

VanillaSSL - - - - 0.692 
(±0.006) 

0.757 
(±0.010) 

0.757 
(±0.009) 

0.714 
(±0.006) 

MultiPA - - 0.427 
(±0.008) 

0.436 
(±0.010) 

0.705 
(±0.009) 

0.772 
(±0.010) 

0.763 
(±0.016) 

0.730 
(±0.006) 

Parallel-TFR 0.240 
(±0.003) 

0.330 
(±0.009) 

0.416 
(±0.016) 

0.417 
(±0.019) 

0.717 
(±0.014) 

0.797 
(±0.003) 

0.791 
(±0.003) 

0.741 
(±0.010) 

Parallel-LLaMA 0.237 
(±0.001) 

0.345 
(±0.004) 

0.426 
(±0.012) 

0.428 
(±0.011) 

0.726 
(±0.006) 

0.799 
(±0.006) 

0.791 
(±0.005) 

0.748 
(±0.004) 

Hier-LLaMA 0.238 
(±0.001) 

0.328 
(±0.008) 

0.412 
(±0.011) 

0.418 
(±0.012) 

0.692 
(±0.012) 

0.786 
(±0.008) 

0.780 
(±0.006) 

0.724 
(±0.008) 

HiPPO 0.202 
(±0.003) 

0.480 
(±0.013) 

0.520 
(±0.016) 

0.521 
(±0.016) 

0.733 
(±0.006) 

0.806 
(±0.003) 

0.797 
(±0.002) 

0.754 
(±0.006) 

w/o CONO 0.213 
(±0.004) 

0.448 
(±0.012) 

0.513 
(±0.007) 

0.516 
(±0.007) 

0.720 
(±0.005) 

0.797 
(±0.003) 

0.791 
(±0.002) 

0.743 
(±0.005) 

w/o CL 0.241 
(±0.002) 

0.331 
(±0.011) 

0.404 
(±0.012) 

0.404 
(±0.014) 

0.698 
(±0.010) 

0.790 
(±0.011) 

0.785 
(±0.011) 

0.728 
(±0.007) 

Table 1: The performance evaluations of our model and all compared methods on Speechocean762 test set in 
simulated free-speaking scenarios.  
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aloud) with accessible reference texts and 
corresponding canonical phones (phone-level 
reference text). To simulate a free-speaking 
scenario for possible use cases of spoken language 
assessment, we exclude these reference texts from 
the model input and rely instead on the ASR 
transcribed words and their associated phones. The 
detailed pronunciation score assignments for the 
free-speaking scenario are provided in Appendix D.  

Evaluation Metrics. 1) Pearson correlation 
coefficient (PCC, ↑ ) measures the linear 
correlation between predicted and ground-truth 
scores for disparate pronunciation aspects. 2) Mean 
squared error (MSE, ↓ ) evaluates score 
discrepancy of the phone-level accuracy. The mean 
and standard deviation are reported for both 
metrics. 

4 Experimental Results 

Assessments in the Free-speaking Scenarios. At 
the outset, we compare our HiPPO with several 
current top-of-the-line APA models in the 
simulated free-speaking scenarios. From the results 
shown in Table 1, we make the following 
observations. 1) Our HiPPO achieves better PCC 
scores than all other competitive methods across 

different pronunciation aspects and linguistic 
granularities. 2) As to the ASR-free models, both 
VanillaSSL and Liu2023 are limited to utterance-
level assessment, lacking finer-grained aspect 
scores at the phone or word level. Moreover, 
Liu2023 outperforms VanillaSSL in assessing the 
utterance-level fluency, where the gains stem from 
the integration of frame-level phonetic information 
via k-means clustering. Note also that effectively 
using phonetic information to boost assessment 
performance has been verified in prior work (Gong 
et al., 2022). Subsequently, compared to MultiPA, 
our method extracts pronunciation feature at the 
phone-level and then qualifies pronunciation 
aspects hierarchically across linguistic 
granularities, resulting in superior assessment 
performance. 3) In comparison among the variants 
of HiPPO, Parallel-CTC and Parallel-LLaMA 
outperform Hier-LLaMA in most assessment tasks. 
This observation suggests that, when pronunciation 
features are extracted from the transcripts 
containing ASR errors, the parallel design offers a 
more flexible and robust neural architecture for 
assessments in free-speaking scenarios compared 
to the hierarchical one. Notably, HiPPO stands out 
in assessment performance via the synergy of 

 
Figure 6: Visualization of utterance-level 
representations Z , where the orange, blue, and 
green points indicate accuracy scores of 4.0, 6.0, 
and 8.0, respectively. The plots display feature 
points for: (a) vanilla model, (b) vanilla model with 
a modified diversity term ℒ;( where the penalty is 
removed, (c) vanilla model with diversity term ℒ;, 
and (d) vanilla model with CONO regularizer 
ℒ9:5:.  
 

(a) Vanilla Model

(d) ℒ! + ℒ"

(b) ℒ!!

(c) ℒ!

Figure 7: A comparison of PCC scores for 
pronunciation accuracy at the phone, word, and 
utterance levels between HiPPO and HiPPO w/o 
ℒ9CDC  under varying word error rate (WER) 
conditions. These WERs are calculated based on 
the reference text and different input transcriptions 
which are reference text and outputs of Whisper 
models (viz., large-v3, medium-en, small-en).
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CONO regularizer and curriculum learning 
strategy. 

Ablation Studies in Free-speaking Scenarios. As 
shown in the last two columns of Table 1, we ablate 
HiPPO with following settings: removing the 
CONO regularizer (w/o CONO) and substituting 
the curriculum learning strategy with training on a 
combined dataset of reading-aloud and free-
speaking scenarios (w/o CL). From these ablation 
studies we can observe that both the CONO 
regularizer and the curriculum strategy are crucial 
to HiPPO. Removing either one of them leads to a 
decline in performance across several aspects and 
granularities. Second, the curriculum learning 
strategy makes a substantial contribution to the 
performance. Training HiPPO with the combined 
dataset, in contrast, results in lower performance 
across all assessment tasks. 

Qualitive Analysis on the CONO Regularizer in 
the Free-speaking Scenarios. In Figure 6, we 
qualitatively examine the effectiveness of the 
additional training regularizer on the proposed 
hierarchical model. As depicted in Figure 6, the 
feature points in these subfigures display ordinal 
relationships, which are sorted by their utterance-
level scores, with blue points being located 
between red points and green points. This result 
can be attributed to the aggregation of 
representations Z  from the phone-level 
representations, which are highly correlated with 

the utterance-level accuracy score (Yan et al., 
2024). By comparing Figures 6(b) with 6(c), it is 
evident that both diversity terms (ℒ;( and ℒ;) can 
capture subtle differences between utterance-level 
scores, where feature points are clustered by their 
respective accuracy scores. The integration of 
ordinal penalty, as shown in Figure 6(c), further 
facilitates a clearer scattering of feature 
representations, with blue and green points more 
distinctly spread out. Finally, the impact of the 
tightness term ℒ- is verified in Figure 6(d), where 
the feature points exhibit tighter clustering in 
comparison with other subfigures. 

Effectiveness of CONO Regularizer across 
Different ASR Word Error Rate Settings. Figure 
7 examines the effectiveness of CONO regularizer 
ℒF)')  for the assessment accuracy at different 
granularities across various ASR word error rates 
(WERs), by comparing the HiPPO and its ablated 
version (HiPPO w/o CONO). Notably, in this set of 
experiments, our models were trained on the 
reference text and transcripts generated by 
whisper-large-v3 (achieving a WER of 19.6%) via 
proposed curricular learning strategy. First, with 
reference text as the input transcript, the 
assessment performance of both models seems 
comparable across granularities (phone, word, and 
utterance levels). Second, at the utterance-level 
assessment, the PCC scores of these two models 
appear relatively immune to WER degradation. A 
possible reason is that utilization of SSL-based 

Models Phone Scores Word Score (PCC) Utterance Score (PCC) 
MSE↓ PCC↑ Accuracy↑ Total↑ Accuracy↑ Fluency↑ Prosody↑ Total↑ 

AzurePA - - 0.623 - 0.700 0.715 0.842 0.782 

GOPT 0.085 
(±0.001) 

0.612 
(±0.003) 

0.533 
(±0.004) 

0.549 
(±0.002) 

0.714 
(±0.004) 

0.753 
(±0.008) 

0.760 
(±0.006) 

0.742 
(±0.005) 

3M 0.078 
(±0.001) 

0.656 
(±0.005) 

0.598 
(±0.005) 

0.617 
(±0.005) 

0.760 
(±0.004) 

0.828 
(±0.006) 

0.827 
(±0.008) 

0.796 
(±0.005) 

HiPAMA 0.084 
(±0.001) 

0.616 
(±0.004) 

0.575 
(±0.004) 

0.591 
(±0.004) 

0.730 
(±0.002) 

0.749 
(±0.001) 

0.751 
(±0.002) 

0.754 
(±0.002) 

HierTFR 0.081 
(±0.000) 

0.644 
(±0.000) 

0.622 
(±0.002) 

0.634 
(±0.002) 

0.735 
(±0.008) 

0.801 
(±0.004) 

0.795 
(±0.002) 

0.764 
(±0.002) 

Parallel-TFR 0.078 
(±0.001) 

0.650 
(±0.009) 

0.575 
(±0.018) 

0.589 
(±0.013) 

0.754 
(±0.011) 

0.816 
(±0.006) 

0.806 
(±0.007) 

0.772 
(±0.010) 

Parallel-LLaMA 0.074 
(±0.002) 

0.658 
(±0.007) 

0.598 
(±0.012) 

0.610 
(±0.009) 

0.774 
(±0.009) 

0.837 
(±0.006) 

0.829 
(±0.004) 

0.796 
(±0.009) 

Hier-LLaMA 0.082 
(±0.002) 

0.656 
(±0.006) 

0.622 
(±0.006) 

0.634 
(±0.008) 

0.789 
(±0.006) 

0.844 
(±0.003) 

0.832 
(±0.003) 

0.811 
(±0.005) 

HiPPO* 0.080 
(±0.001) 

0.657 
(±0.001) 

0.630 
(±0.009) 

0.643 
(±0.009) 

0.791 
(±0.002) 

0.845 
(±0.001) 

0.837 
(±0.001) 

0.816 
(±0.001) 

Table 2: The performance evaluations of our model and all compared methods on Speechocean762 test set in 
the read-aloud scenarios. HiPPO* refers to the model trained without curricular strategy and CONO 
regularizer. 
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features in utterance-level modeling, as the SSL 
models are often pre-trained on complex acoustic 
environments. Finally, the benefits of the CONO 
regularizer are more prominent at finer-grained 
linguistic levels. Specifically, the performance 
degrades substantially at the phone and word levels; 
however, the performance of HiPPO exhibits a 
more attenuated decline in comparison to other 
variants, which highlights the robustness of the 
proposed regularizer to ASR errors. 

Assessments in the Read-aloud Scenario. In 
Table 2, the proposed HiPPO is evaluated in a read-
aloud setting, where reference texts are employed 
in training and test. The main findings are 
presented as follows. 1) HiPPO markedly 
outperforms other methods in most pronunciation 
aspects. Notably, in contrast to prior studies, i.e., 
parallel models (GOPT and 3M) and hierarchical 
ones (HiPAMA and HierTFR), our model assesses 
pronunciation quality without explicit phone-level 
timestamps and achieves superior performance 
across various pronunciation aspects. 2) AzurePA 
stands out at the assessment of utterance-level 
prosody, whereas its performance on the other 
pronunciation aspects trails behind that of the other 
methods. These inferior results probably stem from 
that AzurePA is a commercial system that might 
has not been finetuned on Speechocean762. 3) As 
to the comparison between the variants of HiPPO 
(Parallel-LLaMA, Parallel-TFR, and Hier-
LLaMA), Hier-LLaMA attains superior 
performance in most pronunciation aspects, 
particularly at the word and utterance levels, with a 
slight sacrifice in performance at the phone-level. 
These results are in line with the findings from 
previous studies (Do et al., 2023; Chao et al., 2023). 
By comparing HiPPO with Hier-LLaMA, we can 
verify that the proposed Conv-LLaMA block 
brings consistent improvements to pronunciation 
assessments. 

5 Conclusion 

In this paper, we have proposed a novel 
hierarchical pronunciation assessment model 
(dubbed HiPPO) for the spoken languages. To 
address arbitrarily long pronunciation feature 
sequences and capturing articulation traits across 
various linguistic granularities, we designed a 
Conv-LLaMA block for the proposed model. A 
contrastive ordinal regularizer is put forward to 
enhance robustness against ASR errors. Moreover, 

we explored a simple yet effective curriculum 
learning strategy for the spoken language 
assessment. Extensive experimental results 
validate the feasibility and effectiveness of the 
proposed methods, obtaining superior assessment 
performance compared to several state-of-the-art 
methods in both reading-aloud and stimulated free-
speaking scenarios. In future work, we plan to 
explore more robust assessment models under 
various word error rate conditions for unscripted 
pronunciation assessments. 

6 Limitations 

Spoken language assessment gauges language 
competence across three sub-dimensions: 
pronunciation (fluency and delivery), language use 
(vocabulary and grammar), and topic development 
(content and discourse). In this paper, however, 
HiPPO focuses exclusively on pronunciation 
assessment within the broader context of spoken 
language evaluation. The following are several 
limitations of HiPPO in real-world applications: 

Transcriptions Containing ASR Errors. 
Although speech foundation models have achieved 
near-human accuracy on public benchmark 
datasets, transcribing non-native English speech 
remains challenging. In our experiments, the word 
error rate (WER) for Speechocean762, transcribed 
using Whisper-large-v3, is 19.22% for the training 
set and 17.49% for the test set. Examining the 
performance of HiPPO through the lens of different 
WER conditions, we observed a significant 
degradation when ASR errors were severe, even 
with the proposed CONO regularizer. 

Lack of Accent Diversity. The used dataset merely 
contains Mandarin L2 learners, hindering the 
generalizability of the proposed model and could 
be untenable when assessing the L2 learners with 
diverse accents. 

The Lack of Interpretability. The model of the 
proposed method simply trains to mimic expert’s 
annotations without resorting to manual 
assessment rubrics or other external knowledge, 
making it not straightforward to provide reasonable 
explanations for the assessment performance. 

Ethics Statement 
We hereby acknowledge that all of the co-authors 
of this work compile with the provided ACL Code 
of Ethics and honor the code of conduct. Our 
experimental corpus, Speechocean762, is widely 
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used and publicly available. We think there are no 
potential risks for this work. 
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A Related Work 

Automatic Pronunciation Assessment (APA) 
quantifies L2 learners' pronunciation proficiency in 
a target language, offering either analytic scores 
(continuous numerical values for specific aspects) 
or an overall score (discrete categorical values for 
speaking competence). We categorize the related 
APA works into the following two groups for 
discussion, differentiated by their reliance on 
reference text. 

Scripted-speech Assessment. The developments 
of scripted-speech assessment are typically 
designed in read-aloud learning scenarios, where 
an L2 learner is provided with a reference text and 
instructed to pronounce it verbatim. Early efforts in 
scripted speech assessment predominantly focused 
on single-aspect assessment, which predicted 
proficiency scores at specific linguistic levels with 
various sets of hand-crafted features by separate 
scoring modules, such as phone-level accuracy 
(Witt and Young, 2000), word-level stress (Ferrer 
et. al., 2015), and utterance-level fluency 
(Coutinho et. al., 2016). Furthermore, the 
commonly used hand-crafted features were derived 
from the reference text in conjunction with the 
learner's speech via an ASR model (hybrid DNN-
HMM system), where the extracted pronunciation 
features included acoustic features, confidence 
scores of recognized linguistic units, time-
alignment information, and statistical measures, 
but were not limited to these (Mülller et al., 2009; 
Franco et al., 2010). To provide comprehensive 
pronunciation feedback for language learners, a 
flurry of recent work has advocated multi-aspect 
and multi-granular pronunciation assessment, 
which evaluates pronunciation proficiency across 
multiple linguistic levels (viz. phoneme, word, and 
utterance), with diverse aspects (e.g., accuracy, 
fluency, and completeness) with a unified model. 

Drawing on this research trend, various neural 
models capitalizing on hand-crafted features and/or 
self-supervised features have been extensively 
investigated in existing literature, including 
parallel (Gong et al., 2022; Chao et al., 2022), 
hierarchical (Do et al., 2023, Yan et al., 2024), and 
linguistic-decoupled structures (Pei et al., 2024). 

Unscripted-speech Assessment. Unscripted-
speech assessment is an emerging research field 
and has gained increasing attention in recent years, 
as it attempts to qualify learners’ speaking abilities 
in real-world communication. The corresponding 
developments target free-speaking scenarios, in 
which an L2 learner receives a reference text (with 
short questions) and is expected to respond or share 
opinions grounded in their personal experiences. 
Based on the free-form and spontaneous speech 
inputs, the assessment models then qualify oral 
skills and provide instructive feedback at various 
linguistic levels. As one of the initial attempts, Liu 
et al. (2023) proposed an ASR-free method which 
leveraged a pre-trained self-supervised learning 
(SSL) model (viz., wav2vec2.0) to estimate 
fluency scores for L2 learners without resorting to 
the reference texts (or ASR transcriptions). Their 
method extracted frame-level acoustic features 
with a self-supervised learning (SSL) model and 
generated phonology features by assigning 
proximity phone labels (cluster index) to each 
frame via K-means clustering. To assess word-
level speaking skills, a pioneering effort, Chen et al. 
(2024) proposed MultiPA which extracted 
pronunciation features at word-level with two 
speech recognizers and employed a bottom-up 
neural structure to examine the learner’s 
pronunciation skills at both word and utterance 
levels. Specifically, one recognizer employs a 
high-performing ASR model (whisper-large-v3) to 
approximate the ground-truth word sequence, 
while the other utilizes an ASR model trained with 
native speaker speech (whisper-medium-en) to 
emulate how a native speaker would process the 
learner's speech. Compared to previous works, our 
model assesses oral skills from phone-level to 
utterance-level by working in tandem with a speech 
recognizer and a G2P converter. Furthermore, to 
mitigate the detrimental effects of ASR errors, we 
proposed the extract score-discriminative features 
by leveraging the contrastive ordinal regularizer. 
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B Implementation Details 

This section illustrates the implementation details 
of our experiments, and we plan to make our source 
code and datasets publicly accessible after the 
reviewing process. 

Training Hyperparameters. Our implementation 
follows previous studies (Gong et al., 2022; Chao 
et al., 2022), employing the Adam optimizer, with 
a learning rate of 0.001, and a batch size of 25. To 
stabilize the training process, the aspect scores at 
both the utterance and word levels are normalized 
to match the scale of the phone-level score, ranging 
from 0 to 2.  We conducted 5 independent trials, 
with each trial running for 100 epochs and using a 
different random seed to reduce the impact of 
randomness. The evaluation metrics are reported as 
the average of the best-performing epochs across 
these trials, selected based on the minimum phone-
level MSE values. 

Model Configurations. In the Conv-LLaMA 
block, the multi-head self-attention (MHSA) 
module is configured with 1 head and 24 hidden 
units for different granularities (𝑑/ = 𝑑7 = 𝑑3 =
24). The attention pooling mechanisms at the word 
and utterance levels share the same configuration, 
which use a single-layer multi-head attention 
mechanism with 3 heads and 24 hidden units. 
Furthermore, in each modeling stage, the 
regressors for various pronunciation aspects are 
implemented as feed-forward networks, each 
consisting of two linear transforms with a non-
linear activation in between, and the second 
transform of each projects the hidden dimension to 
a single scalar output. 

C Comparative Methods 

We compare HiPPO with several top-of-the-line 
methods in both simulated free-speaking and read-
aloud scenarios. 

Comparative Models for Simulated Free-
speaking Assessment. First, for the free-speaking 
scenario, we compare three categories of methods. 
1) ASR-free methods: VanillaSSL (Chen et al., 
2024) qualifies utterance-level pronunciation 
aspects by fine-tuning a pre-trained self-supervised 
learning (SSL) model (viz., wav2vec2.0); similarly, 
Liu et al. (2023), based on a SSL-based acoustic 

model, first extracts frame-level SSL features, 
subsequently assigning phonetic information to 
each frame with k-means clustering and then 
evaluating utterance-level pronunciation aspects 
via a simple mean pooling mechanism. 2) ASR-
based method: MultiPA (Chen et al., 2024) extracts 
pronunciation features based on two speech 
recognizers and constructs an assessment model to 
qualify oral skills at word and utterance levels. 3) 
Variants of HiPPO: Parallel-CTC, Parallel-LLaMA, 
and Hier-LLaMA adopt the same inputs as HiPPO 
(i.e., X!  and 𝐱112), while exploring different neural 
architectures. Parallel-CTC and Parallel-LLaMA 
adopt a parallel architecture, with the former using 
Transformer blocks and the latter stacking of 
LLaMA blocks. Hier-LLaMA replaces the Conv-
LLaMA blocks of HiPPO with standard LLaMA 
blocks. 

Comparative Models for Read-aloud 
Assessment. For read-aloud scenario, we first 
report the performance of Azure Pronunciation 
Assessment (AzurePA) service (Wang et al., 
2025b), followed by a comparison with several 
APA models. 1) Parallel neural structure: GOPT 
(Gong et al., 2022) adopts pronunciation features 
derived from phone-level timestamps and models 
the pronunciation aspects with Transformer blocks; 
3M (Chao et al., 2022) extends GOPT by 
incorporating acoustic features, i.e., phone duration 
statistics and SSL-based features, and phonology 
features, i.e., vowel and consonant embeddings. 2) 
Hierarchical neural structure: HiPAMA (Do et al., 
2023) is a language hierarchy-aware APA model 
equipped with the trait attention mechanisms; 
HierTFR (Yan et al., 2024) stacked a hierarchical 
neural structure via Transformer blocks and 
proposed mask prediction to strengthen the 
relationships across granularities for model 
initialization. 

D Score Assignments for Speechocean762 
Corpus in the Simulated Free-speaking 
Scenario 

Speechocean762 was curated in a read-aloud 
learning scenario, where human annotators 
provided pronunciation scores at the utterance, 
word, and phone levels. These scores were 
assigned based on the reference text (for scoring 
utterance-level and word units) and the 
corresponding canonical phone sequence (for 
scoring phone units). To reorganize 
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Speechocean762 in the simulated free-speaking 
scenario, we first use a speech foundation model 
(whisper-large-v3) to transcribe the learners’ 
speech and convert the transcriptions into the 
corresponding phone sequences via a G2P 
converter (g2pE). Next, for each recording, we 
align the ASR transcription to reference text and 
the converted phone sequence to canonical phone 
sequence, respectively. Based on the resulting 
alignments, we first assigned pronunciation scores 
from human annotators to correctly recognized 
segments (i.e., including phone and word units). 
For subsequent score assignments, we handled 
ASR errors at both levels (viz., word and phone 
levels) as follows: 
• Deletion Errors: Ignored due to there are no 

corresponding segments in the transcribed 
words (or converted phones). 

• Substitution Errors: Assigned scores based on 
aligned segments, as most substitution error 
cases reflect subtle acoustic differences. 

• Insertion Errors: Assigned a score of zero. 
Figure 8 presents the alignment process for a 
sample recording. Note that insertion errors are 
retained, owing to the maintenance of phone-to-
word mappings for developing hierarchical neural 
structure. Figure 8(c) highlights how the score 
assignment process maintains phone-to-word 
relationships for converted phones (i.e., the 
mapping of phone segments p6 and pK to word G). 
 

 
Figure 8: Illustration of score assignments for 
Speechocean762 in simulated free-speaking 
scenarios. For a sample recording, we demonstrate 
the assignment process: (a) shows the reference 
text and an ASR transcription, along with their 
respective canonical and G2P converted phone 
sequences; (b) alignment of ASR transcription to 
reference text for human scoring; (c) alignment of 
G2P outputs to canonical phones for pronunciation 
scoring. 
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