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Abstract

The success of Transformer language mod-
els is widely credited to their dot-product at-
tention mechanism, which interweaves a set
of key design principles: mixing information
across positions (enabling multi-token interac-
tions), sequence-dependent activations (where
attention weights adapt to each input), a spe-
cific mathematical form (dot-product similar-
ities plus softmax weighting), and coupling
of queries and keys to evolving hidden states
(grounding attention in the current layer). How-
ever, the necessity of each of these principles
remains largely untested. In this work, we sys-
tematically deconstruct attention by designing
controlled variants that selectively relax these
principles, applied both uniformly across all
layers and in hybrid architectures where only
some layers retain standard attention. Our em-
pirical analysis reveals that mechanisms for
mixing tokens are indispensable, as their ab-
sence collapses models to near-random behav-
ior, while the exact mathematical form and
sequence dependency can be substantially re-
laxed, especially when preserved in just a sub-
set of layers. Surprisingly, even variants that
fail in isolation can achieve robust performance
when interleaved with standard attention, high-
lighting a cooperative effect. These findings
deepen our understanding of what truly under-
pins attention’s effectiveness and open new av-
enues for simplifying language models without
sacrificing performance.’

1 Introduction

The remarkable success of Transformer-based lan-
guage models (Singh, 2025; Liu et al., 2024; Yang
et al., 2024a, LMs) is widely attributed to the dot-
product attention mechanism (i.e. standard atten-
tion), which enables these models to weight the
significance of each token in a sequence by com-
puting pairwise similarities of their contextual rep-

!Code is available at https://github.com/HUIYINXUE/
DeconAttn.

resentations (Vaswani et al., 2017). However, this
powerful mechanism comes at a substantial com-
putational cost with respect to the input sequence
length (L). This has led to a diverse landscape of
proposed mechanisms, including processing longer
context (Tay et al., 2022), token-mixing via pooling
and multi-layer perceptron MLP-Mixer (Tolstikhin
et al., 2021), non-parametric transformations (Yu
et al., 2022; Lee-Thorp et al., 2022), optimized ker-
nel functions (Aksenov et al., 2024; Arora et al.,
2024; Qin et al., 2022; Peng et al., 2021; Kasai
et al., 2021; Choromanski et al., 2021; Katharopou-
los et al., 2020), and linear recurrent neural network
(RNN) architectures (Siems et al., 2025; Peng et al.,
2025; Dao and Gu, 2024; Yang et al., 2024b; Qin
et al., 2024; Peng et al., 2024; Poli et al., 2023;
Peng et al., 2023; Orvieto et al., 2023).

Despite this rich body of work, most of these
approaches implicitly preserve several underlying
design principles inherited from standard attention.
Broadly, these principles include: (1) incorporating
mechanisms for mixing information across tokens
(Token Mixing), enabling multi-token interactions,
(2) emulating the original mathematical form of
standard attention (Mathematical Form),i.e. dot-
product similarities followed by softmax weight-
ing, (3) enforcing strict sequence-dependency in
activation maps (Sequence-Dependency), where
attention weights depend on the specific input se-
quence, and (4) deriving queries and keys from the
current layer’s hidden states (Current QK), as op-
posed to other input types such as uncontextualized
representations. However, the importance of each
of these principles remains largely untested. Are
all of these truly essential, or could relaxing some
of them suffice if applied selectively?

Motivated by this foundational question and
guided by Occam’s Razor (Baker, 2022), we take
a diagnostic approach: we systematically relax
these principles through controlled attention vari-
ants, evaluated in two settings: (1) uniform replace-
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ment across all layers, and (2) hybrid configura-
tions that interleave standard and simplified mod-
ules. Through extensive empirical analysis across
multiple model sizes, attention variants, and layer
configurations, while carefully matching parameter
counts of variants, we uncover a set of insights that
refine our understanding of key attention principles.

Under uniform replacement, mechanisms en-
abling token mixing prove indispensable: remov-
ing them, e.g. in MLP variants, leads to near-
random accuracy on challenging natural language
understanding (NLU) tasks, though such models
still capture superficial statistical patterns, as re-
flected in improved perplexity over trivial baselines.
Retaining the dot-product structure and sequence-
dependent weighting contributes to stability, but
these elements are not strictly necessary in every
layer, provided token interactions remain strong.

Notably, in hybrid configurations that interleave
simpler attention mechanisms with standard lay-
ers, we uncover a striking pattern: attention vari-
ants that fail in isolation can nonetheless contribute
meaningfully when paired with standard attention,
achieving robust performance that often matches or
exceeds fully standard models. This suggests stan-
dard layers may stabilize activations, mitigate dis-
tributional drift, and foster cooperative dynamics
across the network, as reflected in both predictive
outcomes and structural diagnostics such as atten-
tion entropy, head diversity, and sink behaviors.

While hybrid attention schemes have been ex-
plored in prior work, such as taking advantages
of state space models (Glorioso et al., 2024) or
augmenting feed-forward modules via mixture-of-
experts routing (Lenz et al., 2025), these are typ-
ically driven by performance or efficiency goals.
By contrast, our hybrid designs serve as deliberate
probes to isolate and examine the causal roles of
specific attention properties. Taken together, our
findings challenge the assumption that attention
mechanisms must adhere rigidly to their original
formulation. By identifying which components are
essential and which can be simplified, we outline
a path toward new LM architectures that can be
structurally leaner and adaptable.

2 Related Work

Prior research attributes the success of Transformer
models to their efficient token mixing mechanisms.
Consequently, numerous studies explore replacing
the standard dot-product attention with simpler ar-

chitectural components that enable parallel training.
For instance, Yu et al. (2022) demonstrate the ef-
fectiveness of pooling, MLPs, and convolution as
alternatives within vision Transformers. Similarly,
Lee-Thorp et al. (2022) highlight the efficiency
of token mixers based on Fourier transformation
and random projection in the BERT model (De-
vlin et al., 2019). However, these investigations
focus on encoder-only Transformer architectures
and may not readily adapt to causal language mod-
eling. While Tolstikhin et al. (2021) to introduce
a learnable linear layer for token mixing by em-
ploying position-wise projection vectors, similar to
Linformer (Wang et al., 2020), this approach en-
counters scalability challenges with long sequences
due to its parameter count growing linearly with
L. Concurrent research largely retains the stan-
dard dot-product attention mechanism as a foun-
dational principle. Efforts to reduce the compu-
tational cost of this mechanism primarily follow
two strategies: weight sharing (Rajabzadeh et al.,
2024; Ainslie et al., 2023; Xue and Aletras, 2023;
Yan et al., 2021; Kitaev et al., 2020; Shazeer, 2019;
Xiao et al., 2019) or input length shrinkage (Nawrot
et al., 2023; Clark et al., 2022; Xue and Aletras,
2022).

Recent work revisits linear RNNs to handle in-
puts of varying length (Gu and Dao, 2024; Poli
et al., 2023; Peng et al., 2023; Orvieto et al., 2023;
Gu et al., 2022). Follow-up research further im-
proves performance by designing more sophisti-
cated gating mechanisms and update rules (He
et al., 2025; Lin et al., 2025; Siems et al., 2025;
Peng et al., 2025; Dao and Gu, 2024; Yang et al.,
2024b; Qin et al., 2024; Peng et al., 2024), with
the goal of mimicking human memory, drawing
inspiration from the work of Schlag et al. (2021)
on fast weight programmers. Notably, such replace-
ments can also be selectively applied to a subset
of attention layers or heads (Lenz et al., 2025; Ren
etal., 2025; Team et al., 2024; Glorioso et al., 2024;
Peng and Cao, 2024; Dong et al., 2025; Tay et al.,
2019). Additionally, this work operates on the con-
textual representations encoded by deep networks
to generate activation maps dynamically.

Another line of research approximates the dot-
product computation to achieve linear complexity.
These methods rely on various kernel functions that
emulate the exponential function using its Taylor
expansion (Aksenov et al., 2024; Arora et al., 2024;
Qin et al., 2022; Peng et al., 2021; Kasai et al.,
2021; Choromanski et al., 2021; Katharopoulos
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et al., 2020). This allows for prioritization of the
key-value dot product through feature mapping.
However, this line of work does not examine the
necessity of the other key principles of attention
mechanism identified in §1.

3 Attention Variants

To operationalize our investigation of the four key
design principles identified in §1, we design tar-
geted variations of attention that selectively relax
each property. This allows us to probe their neces-
sity in a controlled, principled framework.

3.1 Standard Dot-product Attention

We take standard scaled dot-product atten-
tion (Vaswani et al., 2017) as our baseline, where
queries (Q), keys (K), and values (V) are com-
puted from the layer hidden states H € RE*4m:

0 = Att(Q,K, V) = AV )
A = Softmax (QKT/\/E) ?2)
Q. K,V=HWKV 3)

This follows all principles: mixing information
across positions via A, using a similarity-softmax
form, adapting to each input sequence, and tying
Q, K to the current hidden state H.

3.2 Relaxing Token Mixing

MLP. To directly examine the necessity of cross-
token interactions, we replace attention with
a gated MLP layer, consisting of three fully-
connected (FC) layers (FCpy, FCqy, FCyyp) for
down-projection, gating and down-projection re-
spectively. This effectively eliminates token mix-
ing and each token is processed independently, only
attending to itself.
O = GatedMLP(H) (@)
— FCpn(SiLU(FCq (H)) - FCup(H))  (5)

We use a SiLU activation (Elfwing et al., 2018) and
match the parameter count of standard attention.
This variant serves as a minimal baseline to as-
sess how much attention’s effectiveness depends on
cross-token interaction, beyond what feed-forward
paths alone can provide without using any Q, K
and V.

3.3 Relaxing the Mathematical Form

We assess whether attention must strictly follow the
canonical dot-product plus softmax formulation.
To this end, we evaluate two variants that either
approximate or break this form.

Approximate. Following Arora et al. (2024), we
preserve the mathematical intention of similarity-
based weighting, while relaxing the exact form
of softmax via a second-order Taylor expansion,
yielding a linear-time recurrent form (Appx. I):

A =~ Taylor (QKT/\/E) (©)
Q, K and V are computed using Eq. 3.

Non-approximate. To contrast this, we intro-
duce a new variant that discards explicit pairwise
similarity altogether. Instead of computing an at-
tention matrix via QK ', it uses element-wise self-
gating, multiplying Q and K derived from the same
hidden state, and normalizes the result across time
steps with softmax:

A = Softmax ((Q ® K)lT/\/ﬂ) @)

Q=SiLU(HW?); K, V=HW*' @

This variant follows an entirely different mathemat-
ical form to standard attention. We expect that this
should make it harder for adjacent context tokens to
receive large attention scores, as the denominator in
the softmax computation monotonically increases
(see recurrent form in Appx. I). Notably, the SiLU
activation is applied element-wise and does not in-
troduce additional complexity. We apply SiLLU ac-
tivation on Q projection to add non-linearity. This
does not require additional parameters and allows
parallelism during training.

3.4 Relaxing Sequence Dependency

To test whether attention weights must be dynami-
cally adapted to each input sequence (i.e. sequence-
dependent), we construct two variants where Q
and K are fixed across all inputs, inspired by
MLP-Mixer (Fusco et al., 2023; Tolstikhin et al.,
2021), but making the parameter count in atten-
tion blocks independent of the maximum sequence
length. Relaxing sequence dependency allows at-
tention scores for all inputs to be pre-computed and
cached during inference.

Random-fixed (RndEmbQK). We initialize a
set of random embeddings € ~ N(0, o%I) that
remain constant across inputs. These are passed

through the Transformer stack up to layer [:
X = TransformerBlock'” (), e~ N(0,01) (9)
QK =XW%E, v=pw" (10)

Since Q and K do not depend on the input, atten-
tion maps are fixed and do not adapt to context.
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Text-fixed (FixedSeqQK). Instead of random
embeddings, we use a randomly selected fixed se-
quence of natural language tokens t° (first 2048 to-
kens from FineWeb-10BT (Lozhkov et al., 2024)).
These are embedded and passed through the Trans-
former to generate X:

X = TransformerBlock"” (Emb(t*)) (11)

QK =XW%E, v=pw" 12)

This setup also produces fixed attention maps, but
grounded in natural text instead of completely
randomly initialized embeddings. Compared to
RndEmbQXK, it may encode weak structural pri-
ors, such as grammatical patterns or token co-
occurrences. These variants allow us to test
whether dynamic, input-conditioned attention maps
are necessary, or whether fixed maps, paired with
learned value paths, are sufficient.

3.5 Relaxing the Derivation of Q and K

StaticEmbQK. Finally, to test whether tying
Q, K to current layer hidden states (H or X above)
is essential, we compute them directly from static
input embeddings e corresponding to the input se-
quence t:

Q. K=eW“" . V=HWY; e=Emb(t) 13

This means that while attention maps are not fixed,
they are computed without contextualization from
the evolving hidden representations. It further al-
lows attention scores from different layers to be
computed in parallel.

4 Experimental Setup
4.1 Data

We use seven zero-shot NLU tasks in English:
ARC-E (Clark et al., 2018), BooLQ (Clark
et al., 2019), COPA (Roemmele et al., 2011),
PIQA (Bisk et al., 2020), Sc1Q (Welbl et al., 2017),
RTE (Wang et al., 2019) and HELLASWAG (Zellers
et al., 2019). We also experiment with two LM
tasks: WIKITEXT (Merity et al., 2017) and LAM-
BADA OPENAI (Radford et al., 2019).

4.2 Implementation Details

Base model. Our models are built upon
Qwen2.5 (Yang et al., 2024a). However, we re-
place its standard attention mechanism with the
alternative attention modules detailed in § 3. To
ensure a strict parameter count match across all

attention variants, we use multi-head attention
(Vaswani et al., 2017), deviating from Qwen2.5’s
default grouped-query attention (Ainslie et al.,
2023). For tokenization, we use the 50K English-
centric BPE (Sennrich et al., 2016) vocabulary of
Pythia (Biderman et al., 2023), offering small mem-
ory footprint, and fast training.

Model configurations. We pretrain models with
approximately SO0OM parameters, using two config-
urations: (1) Uniform with simple attention mech-
anisms across all Transformer layers; (2) Hybrid
that integrates simple attention mechanisms in odd-
numbered layers and standard attention in even-
numbered layers. To assess the contribution of the
modified attention variants within the hybrid con-
figuration, we introduce a configuration where we
remove the odd-numbered layers from pre-trained
hybrid models (skip) and evaluate the resulting per-
formance without additional training.

We further test these three configurations by
training models of 70 million and 160 million pa-
rameters (see Appx. A). We finally explore various
alternative hybrid configurations such as changing
the simple attention replacement ratio, the details
of which are presented in § 6. Specific model size
details are provided in Appx. L. Meanwhile, we
strictly constrain all models with different attention
variants to have the same number of parameters to
eliminate any effects from differences in size.

Pre-training. All models are pre-trained on the
SlimPajama dataset (Soboleva et al., 2023) for up
to 15 billion tokens, following Chinchilla scaling
laws (Hoffmann et al., 2022). We use a mini-batch
size of 500K tokens, aligning with the training
budget outlined in Titans (Behrouz et al., 2024). To
optimize pre-training efficiency, we use a sequence
length of 2048 tokens.?

4.3 Predictive Performance Evaluation

We use the LM-evaluation-harness toolkit
v0.4.8 (Gao et al., 2024) for evaluation. We report
accuracy for all NLU tasks and perplexity (PPL)
for LM tasks. For LAMBADA OPENAI, we report
both.

4.4 Attention Pattern Indicators

Looking at the performance itself may not offer a
comprehensive picture of the behavior of the dif-

"Details on hyperparameter selection is provided in
Appx. J. For both pre-training and evaluation, we use a single
AMD Instinct MI300X accelerator.
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ferent attention mechanisms we test. To obtain a
more granular understanding of their internal work-
ings, we investigate their attention patterns. We
compute eight indicators from the attention matri-
ces A € RE*L for each head j = 1,...,ny, in
a given layer. We specifically focus on attention
sinks, i.e. over-attending to the initial token in a
sequence, and local patterns within attention matri-
ces, i.e. prioritizing nearby tokens, following prior
work (Xiao et al., 2024; Han et al., 2024).3

Entropy (H). Measures the randomness of at-
tention scores. Higher ENTROPY indicates more
uniform attention distribution across tokens, simi-
lar to mean-pooling: H= —3" A a-log(a).

Concentration (Conc). Measures the concentra-
tion of attention. A higher Frobenius norm ||A ||z
indicates attention is focused on a limited number

of tokens: Conc = [|Al|r = /> ,eca 02

Head diversity (HeadDiv). Quantifies the vari-
ability of attention patterns across different heads.
Calculated as the average position-wise standard
deviation across heads, higher HEADDIV suggests
better use of the multi-head mechanism.

. 2
HeadDiv = mz Std({Al, ey Anh})

Attention sink (Sink). Detects focus on the first
token. It is the average attention score assigned by
all queries to the initial token. Higher Sink means
a stronger attention sink: Sink = ) A. /L.

Local Focus (LocFocN). Measures the attention
focus on nearby tokens. It is the average atten-
tion score for tokens at a fixed relative distance N
(here N € {0,1,2,3}). Higher LocFocN suggests
stronger contribution from local context.

LocFocN =Y "Ar ni-n/(L—N)

5 Results

Tbl. 1 shows the performance of all model variants
(§3), employing uniform, hybrid, and skip configu-
rations across NLU and LM tasks. Results illumi-

SENTROPY (H), Conc, and HEADDIV are min-max
normalized. SINK and LOCFOCN use absolute values
(LocFoCN is scaled by two for visibility). High ENTROPY
and low CONC suggest mean-pooling like behavior. High
CONC and low ENTROPY indicate focus on a few tokens.
Further examination of SINK and LOCFOCN clarifies if this
focus is on the first token or local tokens. Low ENTROPY
and high CONC with low scores elsewhere (except HEADDI1V)
may point to sparse attention on mid-sequence tokens.

nate the role each design principle plays in effective
language modeling.

Token mixing is crucial. The uniform MLP
model, which lacks any cross-token interaction,
performs near chance on most NLU tasks, high-
lighting that token mixing is essential for reasoning
and understanding. Despite this, it achieves a much
lower perplexity on WikiText (993.5 vs. 300K for
RndEmbQK), indicating that even without explicit
mixing, MLP can memorize or exploit local token
statistics, likely unigram or bigram patterns. Intro-
ducing token mixing in a hybrid setup substantially
improves NLU performance (e.g. 9.2 average ac-
curacy points over uniform MLP), showing that
mixing in part of the network can compensate to a
degree. Still, the hybrid MLP variant has the high-
est WikiText perplexity among all hybrids, indicat-
ing that token mixing across all layers is important
for fully modeling long-range dependencies.

Standard mathematical form is important in
uniform. When applied uniformly, variants that
retain the core structure of attention (e.g. Approx-
imate, RndEmbQK, FixedSeqQK and StaticEm-
bQK) restore over 92% of the average NLU accu-
racy of attention. In contrast, Non-approximate,
which discards this structure, performs close to
random guess (39.3 vs. 39.9 on NLU Avg. accu-
racy). Approximate achieves the strongest results
among uniform variants (8.8 higher PPL on Wiki-
Text), suggesting that preserving or closely approx-
imating its mathematical form appears critical for
maintaining predictive performance.

Sequence-dependency enhances the generaliza-
tion ability. To assess the role of sequence-
dependent attention, we compare variants that re-
tain similar architectures but differ in whether at-
tention scores vary across inputs. StaticEmbQK,
which preserves Sequence-Dependency, consis-
tently outperforms RndEmbQK and FixedSeqQK,
which use fixed attention patterns, particularly on
LAMBADA OPENAI by around 2% higher accuracy.
This pattern holds across both uniform and hybrid
settings. Additionally, hybrid models that preserve
sequence-dependency, such as Approximate, Stat-
icEmbQK, and Non-approximate, tend to perform
better on global-context benchmarks. These results
suggest that input-specific attention contributes to
better generalization, even when other attention
properties are simplified.

712



ARC-E BoolQ COPA PiQA SciQ RTE HellaSwag Avg. Wiki LAMBADA

accT accT accT acct accT accT accT accT ppll ppll accT

Rnd. Guess 25.00.0 50.00.0 50.00.0 50.00.0 25.00.0 50.00.0 25.00.0 39.9 3E+5 3E+6 0.00.0
Majority 25700 62200 56.000 50.50.0 25.000 52700 25.00.0 39.9 - - -

"7 7 Standard ~ ~ 415, 56609 63.0.0 609, 602, 5 531,  283,, 519 381 ~ 1341 229,;

MLP 28500 37805 54050 548.2 2594 52730 26.10.4 40.0 993.5 1E+5 0.00.0

= Approx. 40.7,0 S1.509 64.0:5 599, 550,65 52330 28.10.4 50.2 47.9 238.6 18.505
% Non-apx. 268009 37.80s 60.0.9 532,5 193,25 52330 26.00 4 393 9E+4 2E+6 0.00.0
= RndEmbQK 395,60 55309 57050 59.8,, 4645 5090 27.20.4 48.0 84.8 6402.4 1.30.2
% FixedSeqQK 394,50 59.009 61.0,0 594,, 5125 52750 27.50.4 50.0 79.1 19578.1 142
StaticEmbQK  39.6, 0 52909 63.0.0 594, 492,5 542, 27.20.4 494 79.9 2287.4 3.30.2
MLP 3755 498,95 60.0.o 602, 543,45 5270 26.10 4 48.7 45.8 228.7 20.80

A Approx. 399, 51509 670, 604,; 605 5 5345, 28.4( 4 51.6 39.4 140.0 23.79
& Non-apx. 423, 568p9 63.0.0 617,71 63.0,5 5495, 28.5) 5 52.9 39.4 133.1  23.806
g RndEmeK 401 1.0 48.3[; ) 6101 9 61 .21_1 6001 5 50.9;1} 27.2(; 1 498 393 ]575 22.0“'(,
T  FixedSeqQK 405,07 58505 640.5 619, 6205 52759 28.4¢.4 52.6 38.5 3547 20306
StaticEmbQK  39.2,, 54709 64.0.5 609, 584, 574;, 28.20.4 51.8 38.7 140.7 23.80

& MLP 244,09 41809 54050 52.8,> 19.0,> 469~ 25.60.4 37.8  2E+5 SE+6 0.00.0
% Approx. 26.6(1 ) 46.1n ) 590\ 9 5281 2 20.1 1.3 480, 0 26.0(; 1 39.8 2E+6 1E+7 0.0n 0
A~ Non-apx. 26.60.0 39209 52.050 S5l4:> 204;3 46.9:, 25.80.4 375 SE+5 9E+6 0.00.0
~ RndEmbQK 27409 37808 58050 533:2 21.1,3 52730 26.10 4 395 2E+4 3E+6 0.00.0
a FixedSeqQK 27209 39409 59.0.9 523,5 2213 4843, 25.90.4 39.2  2E+5 S5E+6 0.00.0
T StaticEmbQK  25.509 43.009 57.050 53.1:,2 2203 51.630 25.90.4 39.7 TE+4 5E+6 0.00.0

Table 1: Performance of uniform, hybrid, skip and standard models (500M). Purple (MLP), blue (Approx., Non-
apx.), green (RndEmbQK, FixedSeqQK) and yellow (StaticEmbQK) denote variants that relax Token Mixing,
Mathematical Form, Sequence-Dependency and Current QK, respectively.

Current QK is not as essential as expected.
StaticEmbQK relaxes Current QK. Though it does
not match the PPL of standard across language
modeling tasks, it results in PPL of 79.9 twice
as high as 38.1 of standard under uniform con-
figuration on WIKITEXT. It also greatly outper-
forms MLP, reducing PPL tenfold (from 993.5 on
WIKITEXT), while its predictive performance is
comparable to standard. Moreover, under hybrid
configuration, it achieves predictive performance
comparable to standard baseline across all tasks. It
indicates Current QK is not as essential for strong
predictive performance as initially believed.

Layer collaboration matters. All hybrid mod-
els where simple attention variants are used in odd
layers and standard attention in even layers achieve
predictive performance comparable to Standard at-
tention on both NLU and language modeling tasks.
Surprisingly, Non-approximate attention, the worst
performer in the uniform configuration, demon-
strates strong performance in this hybrid setup,
slightly surpassing Standard on average NLU ac-
curacy (+1.8%) and LAMBADA OPENAI accuracy
(+0.9%), while reducing PPL by 1.0. The hybrid
configuration also alleviates the relatively higher
uncertainty observed with RndEmbQK and Fixed-
SeqQK, halving their WIKITEXT PPL by incorpo-
rating standard layers that aid in grounding atten-
tion to individual inputs. These findings suggest

that layers exhibiting poor performance in isola-
tion can be effective when combined with stronger
layers (i.e. standard attention).

Considering the residual connections, which fa-
cilitate information flow along a shortcut pathway
bypassing the simple attention alternatives, we fur-
ther conduct an ablation study to constrain infor-
mation flow solely through these residual connec-
tions. This involves skipping the non-Standard
layers when pre-training hybrid models (denoted
as SKIP in Tbl. 1). The results provide further sup-
port to the assumption of layer collaboration. All
variants in w/ SKIP perform even slightly worse
than random guessing (i.e. average accuracy lower
than 39.9 on NLU) and further result in PPL ex-
plosion in language modeling compared to hybrid
by a margin. This indicates that the non-Standard
layers, despite their simplicity or poor performance
in uniform configurations, contribute positively to
the overall predictive performance in hybrid archi-
tectures.

6 Analysis and Discussion

Attention variants. Non-approximate attention
that relaxes standard attention’s Mathematical
Form appears to be the most challenging to train
in a uniform configuration. Radar plots in Fig. 1
show very low ENTROPY alongside high CONC
and HEADDI1V, indicating that most heads place

713



——Standard Approx. ——Non-apx. ——RndEmbQK FixedSeqQK StaticEmbQK

LAYER 1 LAYER 7 LAYER 13 LAYER 19
H_ H H_ H
s / ¢ s N s s e
LF? % HD LF? @ HD LF} @ HD LF} @ HD
P g} Pl LF_ AFO - _AFO LR _AFO
LFT IFT IFT LFT
LAYER 4 LAYER 10 LAYER 16 LAYER 22
_H_ _H_ H _H_

O S U S S U SR
LF} HD LF3 @ HD LF} \@wu LF? @ HD
P P T R G = AP LR P
——Standard ——Non-apx. ——RndEmbQK ~--Non-apx. (hybrid) ---RndEmbQK (hybrid)
LAYER 1 LAYER 7 LAYER 13 LAYER 19
H H H H

0 N =
I
LF} HDLF} @ HD LF? ‘ HDLF} @ HD
LF2. 1o LF2. _AFO LFE _AFO L2 (Fo
LFT LFT LFY LFT
LAYER 4 LAYER 10 LAYER 16 LAYER 22
H H H H

y O\ N
LF} s SHDLF} HD LF} ) DLF} @ )
\
;
P2 P LF2 _AFO LF2_ _Fo LF2 AFO

Figure 1: Layer-wise attention indicators for Approx.,
Non-approx., RndEmbQK, FixedSeqQK and StaticEm-
bQK in uniform (top) and hybrid (bottom) configura-
tions, and Standard (H: ENTROPY, C: CONC, HD:
HEADDI1V, LF: LOoCFOCN, S: SINK).

almost all probability mass on a narrow set of
mid-sequence tokens. This behavior might stem
from its monotonically increasing denominators
(seeEq. 18). This could make it progressively
harder for later tokens in the sequence to attract
attention, thereby hindering effective training in
uniform configurations. StaticEmbQK relaxing
Current QK coupling, generally presents active to-
ken mixing from Layer 7, however, its mid-layers
exhibit high similarity. Its reliance on static em-
beddings for attention computation limits its adapt-
ability to individual layers, further constraining
predictive performance. Approximate and Fixed-
SeqQK, showing attention patterns most similar
to Standard across all layers. However, the per-
formance of FixedSeqQK generally lags behind
Approximate. This due to FixedSeqQK’s deriva-
tion of Q and K matrices from a fixed, pre-defined
text sequence, which remains constant for all in-
puts. Consequently, the model might become prone
to simulating this specific text sequence, thereby
compromising its generalization ability. RndEm-
bQK attention faces a similar issue to FixedSeqQK,
but suffers additional marginal performance drops,
perhaps due to its inability to encode syntactic in-

formation.

Configurations. To illustrate the impact of dif-
ferent configurations, Fig. 1 shows the attention
patterns of RndEmbQK and Non-approximate vari-
ants as representative methods for studying the be-
havior of different attention variants in uniform and
hybrid configurations (see Fig. 8 for all layers).

With uniform RndEmbQK (and uniform Stan-
dard), the top-most layers (e.g. layer 22) ex-
hibit high concentration (low ENTROPY and high
CoNC). This indicates a probability mass predomi-
nated by few selective tokens. In the hybrid design,
those same layers become less selective (higher EN-
TROPY, lower CONC), leading to a decreased SINK
score, suggesting that the hybrid mix alleviates first-
token ‘sink’ effects. In the Non-approximate hy-
brid model, odd layers keep the Non-approximate
heads while even layers revert to Standard. A clear
division of labor emerges: even (Standard) lay-
ers mirror the baseline, balancing token mixing
and focus, while odd (Non-approximate) layers
specialize, either acting as attention sinks (high
SINK, low ENTROPY) or as mean-poolers (high
ENTROPY, low CONC). This complementary inter-
play compensates for the lower expressiveness of
Non-approximate heads observed in the uniform
setting, explaining why the hybrid configuration
trains successfully while the uniform one does not.

Why hybrid works. We investigate the mag-
nitude of raw activations (logits before softmax)
within each RndEmbQK and Non-approximate
layer in the hybrid configuration (Fig. 2). Our anal-
ysis reveals that activations generally exhibit lower
magnitudes compared to the uniform configuration
for both attention variants. Notably, the uniform
Non-approximate model shows activation outliers
exceeding 103 in the final Transformer layers (e.g.
Layer 21). In contrast, the hybrid configuration
maintains activations below 10'. This suggests
that the Standard layers in the hybrid architecture
might serve as a normalization mechanism. This
normalization could mitigate over-concentration
and the formation of highly sparse attention matri-
ces, which can arise from large magnitude outliers
during the numerically stable softmax operation.
This normalizing effect appears sufficiently strong
to rescue models that are otherwise challenging to
train and prone to gradient vanishing (e.g. Non-
approximate in the uniform configuration).
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Figure 2: Distribution of pre-softmax activations for
RndEmbQK (left) and Non-approximate (right) across
two different configurations. See Fig. 6 for all layers.

Theoretical analysis. Li et al. (2024) connects
Transformer LMs to spin glass models. They
suggest standard attention matrices align with the
Gibbs-Boltzmann distribution (Gibbs, 1902), im-
plying an implicit energy minimization process
with tokens as spins. Input-independent Q and
K or form deviations disrupt this. This perspective
provides a theoretical basis for the performance
variations observed in our uniform replacement
experiments. While Zhang et al. (2022) suggests
full-rank attention offers maximal flexibility, causal
attention can be low-rank due to stable softmax al-
lowing zeros in diagonals with activation outliers.
This supports our normalization analysis in hybrid
configurations, with Neyshabur et al. (2017)’s ob-
servation on unbalanced network training difficulty.

Model size. We also evaluate all attention vari-
ants across models of 70M, 160M, and 500M pa-
rameters. Our main observations remain consistent
across these different model sizes. See Appx. A for
detailed results.

Hybrid configuration ablation. To investigate
the impact of replacing subsets of layers with sim-
pler attention mechanisms, we consider nine dif-
ferent configurations. These focus on different
segments of a 24-layer architecture of the S00M
model: (1) even or 50% configuration, where even-
numbered layers retain standard attention while
odd-numbered layers are replaced; (2) odd con-
figuration, with the reverse arrangement; (3) top
configuration, where the upper layers (13-24) em-
ploy the simpler attention mechanism; (4) middle
configuration, targeting the middle layers (7-18);
(5) bottom configuration, focusing on the initial lay-
ers (1-6); (6) 25%, replacing layers except Layer
4,8,12,16,20,24 with simpler attention; (7) first, re-
placing all layers with simpler attention except the
first layer; (8) last, replacing all layers with simpler
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Figure 3: Performance of RndEmbQK and Non-
approximate across nine hybrid configurations. The
vertical dotted lines represent the Standard baseline.

attention except the last layer; (9) bilateral, replac-
ing all layers with simpler attention except Layer 1
and 24. See Tbl. 11 in Appx. P for details.

Fig. 3 presents the predictive performance us-
ing these nine settings. For both RndEmbQK and
Non-approximate mechanisms, the difference in
performance across these hybrid configurations is
marginal (e.g. all with a PPL around 40.0 on WIKI-
TEXT). However, this observation does not general-
ize to extreme settings, such as employing Standard
attention in only the first or the last layer. For Rn-
dEmbQK attention, the predictive performance re-
mains comparable to Standard if only the last layer
(or layers at both ends) uses Standard. Neverthe-
less, its accuracy on LAMBADA OPENATI drops to
zero in such extreme cases. For Non-approximate
attention, using Standard attention mechanism only
in the last layer greatly harms performance, leading
to PPL exceeding 400 on WIKITEXT. This indi-
cates that the normalization strength provided by
a single Standard layer is limited. Therefore, in
extreme hybrid settings where we can afford only
one or two Standard layers, we should choose a
substitute that still respects the main design princi-
ples presented in the uniform setting (i.e. a stronger
lightweight attention). Conversely, if the compute
budget allows using even a small fraction of Stan-
dard transformer layers (e.g. 25%), we can safely
replace the remainder with a much simpler mecha-
nism and still maintain competitive accuracy.

7 Conclusion

We systematically relax core design principles in
a controlled setting, offering the first principled
framework for assessing which aspects of attention
are truly foundational and which can be safely sim-
plified in language modeling. Our findings reveal
that adhering to standard attention design principles
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varies between uniform and hybrid architectures.
Token mixing and following the mathematical form
are crucial for attention alternatives when applied
uniformly, but not necessary for hybrid. Strategi-
cally integrating a few standard attention layers
within LMs can greatly improve, even overcome,
limitations of less powerful attention mechanisms.
This is likely due to the inherent normalization of
standard attention, fostering training stability.

Limitations

We performed experiments using a maximum
model size of 500M parameters and a pretraining
budget of 15B tokens, using a monolingual tok-
enizer and vocabulary, similar to Allal et al. (2025);
Poli et al. (2023). While experimenting with larger
models and different model families presents inter-
esting avenues for future work, we believe that the
current scope sufficiently supports our conclusions
regarding the relative effectiveness of different at-
tention designs.
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A Experiments with Different Model
Sizes

To assess the impact of model size, we evaluate all
attention mechanisms across models with approxi-
mately 70M, 160M, and 500M parameters. Fig. 4
illustrates the predictive performance of these mod-
els on the WIKITEXT, ARC-E, and ScIQ datasets.
Our results indicate that the predictive performance
of LMs with a hybrid configuration consistently
improves with increasing model size. For instance,
the accuracy of the Non-approximate method on
ARC-E improves from 34.3 to 42.3 when increas-
ing the model size from 70M to S00M. Further-
more, all attention mechanisms incorporating token
mixing achieve predictive performance comparable
to a same-sized model employing standard atten-
tion (indicated by the vertical dotted lines in Fig. 4).
For RndEmbQXK, such performance gap on WIKI-
TEXT PPL is even within 1.2 across all sizes. This
trend suggests that our observations may generalize
to larger models.

To further investigate the immediate generaliz-
ability of our findings, we further pretrain a larger
model (Yang et al., 2025, Qwen3-1.7b-Base) from
scratch on 45 billion tokens with Standard and

WikiText ARC-E SciQ
StaticEmbQK » ) o & ( o o@)®
FixedSeqQK e e 0 o « @
RndEmbQK »p ® 0 @ e (00O
Non-apx. » o @l i» e o ° L4
Approx. » ® o (L
MLP » ’ Y y «
Standard » o o 0
euniform ehybrid
20 2° 210 30 40 20 40 60

Figure 4: Predictive performance of 70M parameters
(small dots), 160M parameters (medium dots), and
500M parameters (large dots) models with different at-
tention mechanisms and configurations on WIKITEXT,
ARC-E, and ScIQ.

our proposed RndEmbQK and Non-approximate
variants in both uniform and hybrid configurations.
Tbl. 2 presents their performance on NLU and
LM tasks. We find both RndEmbQK and Non-
apx. under hybrid configuration, achieve perfor-
mance comparable to Standard across all down-
stream tasks, which is consistent to our observa-
tion on models with modest scales. However, dif-
ferent to the model with 500M parameters, Non-
approximate under uniform configuration success-
fully converges. This is because Qwen3 incorpo-
rates RSMNorm above the queries and key in its
attention module. This normalization helps to alle-
viate the potential for pre-softmax attention activa-
tions to explode, but it is less effective than using
several standard layers, as it restricts the length
of query and key vectors, narrowing the adaptable
range for raw pre-softmax activations.

B Grouped-query Attention Ablation

To confirm the generality of our main investiga-
tions, we also trained 500M parameter versions of
the Standard, Non-approximate, and RndEmbQK
models using the grouped-query attention config-
uration. These models are trained on the same 15
billion tokens, with precisely matched parameter
counts. We observe that the results on downstream
tasks remain consistent across both the multi-head
attention and grouped-query attention configura-
tions. Their performance on both NLU and LM
tasks is detailed in Tbl. 3.

C Robustness to Context Length

Tbl. 4 illustrates the perplexity scores of the UNI-
FORM, HYBRID and tandard models on WIKITEXT
dataset. These models were evaluated across vari-
ous contextual lengths (128, 256, 512, 1024, and
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ARC-E  BoolQ COPA PiQA SciQ RTE  HellaSwag Avg. Wiki LAMBADA
acc? acc?T acc?T acct acctT acct acct acct ppld prld acct
Rnd. Guess 25.000 50.00.0 50.00.0 50.00.0 25.00.0 50.00.0 25.00.0 39.9 3E+5 3E+6 0.00.0
___ Majority 25700 _ 62200 36000 _30.500_ 25000 32700 _ _25000__ 399 _ - - __ -

Standard 446] 0 56.4[) ) 640| 8 640\ 1 673\ 527; 0 30.5[) 5 542 276 600 28.9” 6

E‘ Non-apx. 41010 61909 58.050 59512 569:6 5243, 27.80.5 51.1 67.3 619.6 8.10.4
S  RndEmbQK 444,, 5025 60.0.0 624, 5635 549; 28.60.5 51.0 549 1872.8 3.80.3
g Non-apx. 450, 581p9 650.5 63411 662, 5 53.1;59 30.2, 54.4 29.9 774  26.8)
E RndEmbQK  45.4,, 57.009 67.0.7 645, 6555 55239 30.4 55.0 28.0 61.6 298,

Table 2: Performance of uniform, hybrid and standard models (1.7B). Blue (Non-apx.) and green (RndEmbQK)
denote variants that relax Mathematical Form, and Sequence-Dependency, respectively.

ARC-E  BoolQ COPA PiQA SciQ RTE HellaSwag  Avg. Wiki LAMBADA
accT acct acct accT acctT acct acct acct ppld ppld acct
Rnd. Guess 25.000 50.00.0 50.000 50.000 25000 50.000 25.00.0 39.9 3E+5 3E+6 0.00.0
___ Majority 25700 62200 56000 _50500_ 25000 52700 _ _25000_ _ 399 __ - - __ -

Standard 3949 49.600 60050 622, 5935 51.630 28.1¢ 50.0 38.6 154.0 2290

E Non—apx. 26.8(; ) 37.811 8 52.0 0 520] 2 2031 527 0 25.91; 1 38.2 54668 2E+6 0.0()_11
5 RndEmbQK  379,, 53205 56050 5831 467, 52730 27.20.4 474 84.6 64627 124,
m  Non-apx. 40.7,0 44.609 67.050 613, 6155 5245, 28305 50.8 38.1 133.1 23445
E RndEmbQK  40.1,, 45809 63.0.0 613, 618 5 52759 28.30.5 50.4 39.3 138.6  23.60.6

Table 3: Performance of uniform, hybrid and standard models (500m) using grouped-query attention. Blue
(Non-apx.) and green (RndEmbQK) denote variants that relax Mathematical Form, and Sequence-Dependency,

D Characteristics of Different Simpler
Attentions

Unlike previous work that primarily focused on
reducing computational time complexity to sub-

respectively.

PPL length 128 256 512 1024 2048
Standard 699 562 478 420 381

MLP 993.5 9935 9935 9935  993.5

S Approx. 817 664 572 512 479
& Non-apx. 10023.7 94768 91735 90648 9025.9
£ RndEmbQK 1071 957 896 863 848
& FixedSeqQK 1005 896 836 806  79.1
StaticEmbQK 1048 922 855 817 799

MLP 813 664 570 503 458

o) Approx. 71.8 57.8 493 434 394
&  Non-apx. 69.0 560 480 425 394
€ RndEmbQK 724 581 494 434 393
£ FixedSeqQK 69.0 560 480 423 385
StaticEmbQK 701 566 484 426 387

Table 4: Perplexities of uniform, hybrid and standard
models (500M) on WIKITEXT across different context
lengths.

2048 tokens), all while being trained on a max-
imum sequence length of 2048 tokens. The re-
sults clearly show that models incorporating to-
ken mixing achieve lower perplexity scores with
longer contexts. This indicates their ability to cap-
ture more contextual information for predicting the
next token. Furthermore, under the hybrid con-
figuration, the perplexity scores for the RndEm-
bQK, FixedSeqQK, StaticEmbQK, Approximate
and Non-approximate attention mechanisms con-
sistently match those of the standard model on
WIKITEXT, regardless of contextual length.

quadratic with respect to contextual sequence
length, we define “simpler attention” more broadly.
This encompasses mechanisms that reduce time
complexity concerning any factor: inference batch
size, sequence length, or hidden dimension. Below,
we systematically summarize the characteristics
of the different simpler attention mechanisms we
investigated.

RndEmbQK and FixedSeqQK. These mecha-
nisms create global static attention graphs during
inference. This approach reduces the computa-
tional time complexity and cache size within atten-
tion while enabling batched decoding (see Appx. E
and H).

StaticEmbQK. Inspired by cross-layer attention
sharing (Rajabzadeh et al., 2024; Xiao et al., 2019),
this mechanism primarily captures semantic sim-
ilarities between input tokens without contextual-
ization. It establishes an upper bound for broad-
casting attention matrices from initial layers to all
subsequent layers by aligning its parameter count
with standard attention. While StaticEmbQK atten-
tion does not explicitly reduce computational time
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complexity, it allows for system optimization by
computing attention scores asynchronously. This
enables scores to be prefetched before sequentially
retrieving output hidden states from each layer.

Approximate and Non-approximate. These at-
tention mechanisms result in time complexities
linear to sequence length. Their recurrent forms
are detailed in Appx. I. Non-approximate can fur-
ther reduce the activation memory, cache size, and
floating-point operations per iteration (FLOPs/it)
required for large LMs during the decode stage,
offering advantages over Approximate. The de-
tails for these reductions are provided in Appen-
dices G, H, and F, respectively.

E Time Complexities in Attention
Computation

Tbl. 5 details the computational time complex-
ity for a single forward pass, explicitly exclud-
ing any caching mechanisms. For RndEmbQK
and FixedSeqQK attention, which employ global
attention scores, the floating-operations could be
further reduced to through pre-computation and
subsequent caching of these scores (see Appx. F).
This optimization would free up computational re-
sources, enabling further software-level enhance-
ments such as coordinating CPUs and GPUs
to pre-fetch the pre-calculated attention scores.
While StaticEmbQK does not inherently offer
a lower computational time complexity, it pro-
vides an upper bound for pre-computing atten-
tion scores on static embeddings by aligning the
number of parameters. If attention scores on
static embeddings are pre-computed, the compu-
tational time complexity would be reduced by
O ((l—-1)-(BL*d+ BLd?)) in total, where !
represents the total number of Transformer layers.
Furthermore, an attention mechanism that supports
pre-computation offers the potential to proactively
evict values, which could lead to further reductions
in computation, particularly if the attention matri-
ces exhibit sparsity.

F Floating-point Operations per Token

Tbl. 6 details the floating-point operations per itera-
tion (FLOP/it) for inference with the cache enabled.
We focus solely on General Matrix Multiplica-
tions (GEMMs) (Narayanan et al., 2021, GEMMs),
as they are the dominant contributors to the total
floating-point operations.

Attention Complexity O(.)
Standard BL?d + BLd?

" MLP  BLd®
Approx. BLd?
Non-apx. BLd?
RndEmbQK BL?d + BLd?
FixedSeqQK BL?d + BLd?
StaticEmbQK ~~ BLZ?d + BLd?

Table 5: Details of time complexities for each atten-
tion across all attention variants, where h denotes the
number of attention heads, B denotes the batch size, L
denotes the input sequence length, d denotes the hidden
dimension. We assume d = h X dj,, where h is the
number of attention heads and dj, is the dimension of
each attention head. We also ignore those low-order
terms for element-wise activations and scaling factors
with a O(BLd) complexity.

Attention Prefill Decode

Standard 4BL?d + 6 BLd? 6Bd> + 4BLd

Y15 6BLd®> ~ T 6Bd%
Approx. 14BLd? 10Bd?
Non-apx. 6BLd? 6Bd>
RndEmbQK 2L2d 4+ 2BL?d + 6BLd?>  2Ld+ 2BLd + 6Bd?

2Ld 4+ 2BLd + 6Bd?
6Bd? + 4BLd

2L2d 4+ 2BL?d + 6 BLd?
4BL?d + 6 BLd?

FixedSeqQK
StaticEmbQK

Table 6: Details of floating-point operations per iteration
for each attention across all attention variants, where
h denotes the number of attention heads, B denotes
the batch size, L denotes the input sequence length, d
denotes the hidden dimension. We assume d = h X dj,,
where h is the number of attention heads and d}, is the
dimension of each attention head.

Non-approximate achieves a low FLOP/it, equiv-
alent to that of the simplest MLP model, because it
leverages vectors instead of the matrices employed
by the Approximate method for state tracking. This
structural difference significantly reduces the num-
ber of GEMMs required.

Furthermore, if RndEmbQK and FixedSeqQK
are allowed to use pre-computed global atten-
tion scores, their FLOP/it can be further reduced.
During the prefill stage, the operations drop to
2L%d + 2BLd? and 2BLd + 2d? during prefill
and decode stage respectively.
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Attention Activation memory
Standard 8BLd_|_thL2h
Twe s
Approx. 11]iLd n 3%5}2
Non-apx. SBLd4t_4BLh
RndEmbQK 4BLd+8%d+2L2h
FixedSeqQK 4BLd+Sfd+2L2h
StaticEmbQK SBLCH_tQBL2 h

Table 7: Details of activation memory for each atten-
tion across all attention variants, where h denotes the
number of attention heads, B denotes the batch size, L
denotes the input sequence length, d denotes the hid-
den dimension, ¢ denotes the tensor parallel size. We
assume d = h X dj,, where h is the number of attention
heads and dj, is the dimension of each attention head.
We ignore the attention dropout here.

G Activation Memory Required for
Attention Computation

We detail the activation memory required for half-
precision training in Tbl. 7. Unlike the full recom-
putation method mentioned in Smith et al. (2022),
our approach incorporates sequence parallelism
following Korthikanti et al. (2023). We find that
RndEmbQk and FixedSqeQK are effective at re-
ducing activation memory, particularly when using
a substantially large batch size. Furthermore, both
Approximate and Non-approximate enhance mem-
ory efficiency for long-context processing. Non-
approximate offers a superior reduction in activa-
tion memory compared to Approximate, especially
for large LMs characterized by a relatively large
hidden state dimension.

H Cache Size Required for Inference

Tbl. 8 presents the cache size required for half-
precision inference. Both the Approximate and
Non-approximate variants allow the cache size
to be independent of the context sequence length.
Meanwhile, RndEmbQk and FixedSeqQK can re-
duce the cache size by nearly half by sharing the

Attention Cache Size for Inference
Standard 4BLd
ML 0
Approx. 6Bd + 4Bd?/h
Non-apx. 2Bd + 4Bh
RndEmbQK 2(B+ 1)Ld
FixedSeqQK 2(B+1)Ld
StaticEmbQK 4BLd

Table 8: Details of cache size (in bytes) per layer across
all attention variants required during inference, where
h denotes the number of attention heads, B denotes the
batch size, L denotes the context length, d denotes the
hidden dimension. We assume d = h X dj,, where h is
the number of attention heads and d}, is the dimension
of each attention head.

same set of keys within the same batch, provided
the batch size is sufficiently large. It is also im-
portant to note that RndEmbQK and FixedSeqQk
enable a cache size further optimized to (2L + 6)J.
This can be achieved by using a dynamic cache and
prefetching the attention scores for the next § steps
into a buffer, given that the attention matrices are
independent of the inputs.

I Recurrent Form of Linear Attentions

The recurrent form of the Approximate attention
computation, derived from Eq. 6, is presented in
Eq. 17. Similarly, Eq. 18 shows the recurrent
form of the Non-approximate attention computa-
tion, originating from Eq. 7. As detailed in Tbl. 5,
the Approximate attention mechanism necessitates
the computation of recursions for both first-order
and second-order terms in the Taylor expansion, re-
sulting in a higher time complexity compared to the
Non-approximate approach. A key characteristic
of O; in Eq. 18 is that its denominator strictly in-
creases with the index 7. Notably, as 7 grows along
the sequence, the attention score for the i™ token,

3T
ek y;

given by

—— -, becomes progressively
i—1 45 a;k;
ojoie I feliti

more challenging to increase.
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Hyperparameters in Pretraining

Maximum train steps 120000

Batch size (in total) 256 instances
Adam epsilon le-8

Adam (3, 0.9

Adam [2 0.9999

Sequence length 2048

Peak learning rate 4e-4 (3e-4 for Qwen3-1.7B)
Learning rate schedule CosineLLRScheduler
Number of cycles in scheduler 0.5

Warmup steps 2000 (1B tokens)
Weight decay 0.1

Max gradient norm clip value 1.0

11

10

training loss

MLP
Approx.

RndEmbQK

Non-apx. (hybrid)
RndEmbQK (hybrid)

StaticEmeK.(hybrid)

- ; ‘

\
P SR i v
Y y Yo

Table 9: Details of hyperparameters used in pre-training.

0; = 0p; + 01; + 02; (14)
Sl v+
0p; = I (15)
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01; = P —— (16)
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2 _ k2 k2
(ST + (T
09; = 5 ) 2 2 (17)
(T + )
i—1 qjk’T . qzk;T .
., eV s ettt
0; = 21 J ! (18)

- LT T
Z;zll el¥i 4 edik;

J Hyperparameters

The hyperparameters used in pre-training are listed
in Tbl. 9.

K Training Loss across all Attention
Mechanisms

Fig. 5 presents the loss curves across all model
variants and sizes, while training for 15B tokens.

L Model Configurations for Different
Sizes

Tbl. 10 presents the detailed configurations of mod-
els across various sizes (70M, 160M, 500M and
1.7B).

M Distribution of Raw Logits

Fig. 6 (the full version of Fig. 2) exhibits the mag-
nitude of pre-softmax activations within each 24-
layer (500M) RndEmbQK and Non-approximate
layer in the hybrid configuration.

1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B 13B 14B 15B
# tokens

(a) Training loss across models with 70M parameters

11

MLP
10 Approx.
9 RndEmbQK
o 8
o
g 7 Non-apXx. (hybtid)
c RndEmbQK (hybrid)
©
s 6 et ety bbbt g s ﬂw§tatic5nﬁb.ql(4hybvidl

1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B 13B 14B 15B
# tokens

(b) Training loss across models with 160M parameters

11
MLP
10 Approx.
9 RndEmbQK

Non-apx. (hybrid)
RndEmbQK (hybrid)

training loss

~StaticEmbQK thybrid)|

"
\y i "y
Y L

1B 2B 3B 4B 5B 6B 7B 8B 9B 10B 11B 12B 13B 14B 15B
# tokens

(c) Training loss across models with 500M parameters

Figure 5: Training loss across all model variants with
three different sizes.

N Attention Characteristics from All
Layers across Attention Variants

Fig. 7, the full version of the left subfigure in
Fig. 1), exhibits attention characterstics from all 24
layers across Standard attention and five attention
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1234567 8 9101112131415161718192021222324

RndEmbQK Layer ID

1234567 8 9101112131415161718192021222324

Non-apx. Layer ID

Figure 6: Distribution of raw logits in the pre-softmax activations for RndEmbQK (left) and Non-approximate
(right) attention mechanisms in both uniform and hybrid configurations.

Model Size 70M 160M 500M 1.7B
Hidden Size 512 768 896 2048
Intermediate Size 2048 3072 4864 6144
Num of Hidden Layers 6 12 24 28
Max Window Layers 6 12 24 28
Num of Attention Heads 8 12 14 16
Num of Key Value Heads 8 12 14 16

Table 10: Details of model configurations for different
sizes.

Config Standard Layer IDs

even (50%) {2,4,6,8,10,12,14,16,18,20,22,24}
odd {1,3,5,7,9,11,13,15,17,19,21,23}
top {1,2,3,4,5,6,7,8,9,10,11,12}
middle {1,2,3,4,5,6,19,20,21,22,23,24}
bottom {13,14,15,16,17,18,19,20,21,22,23,24}
25% {4,8,12,16,20,24}

first {1}

last {24}

bilteral {1,24}

Table 11: Details of model configurations for ablation
study.

variants - RndEmbQK, FixedSeqQK, StaticEm-
bQK, Approximate and Non-approximate.

O Attention Characteristics from All
Layers across Configurations

Fig. 8, the full version of the right subfigure in
Fig. 1, exhibits attention characterstics from all 24
layers across Standard and two representative atten-
tion variants - Approximate and Non-approximate
in both uniform and hybrid configurations.

P Model Configurations for Ablation
Study

Tbl. 11 details nine distinct hybrid architectures, as
discussed in § 6, for 24-layer model variants with
approximately 500 million parameters.
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Figure 7: Visualization of attention matrix characteristics across different layers for Approximate, Non-approximate,
RndEmbQXK, FixedSeqQK and StaticEmbQK, and their hybrid variants, compared to Standard (H: ENTROPY, C"
CONC, HD: HEADD1V, LF: LOCFOCN, S: SINK).
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Figure 8: Visualization of attention matrix characteristics across different layers for Non-approximate and RndEm-
bQK, and their hybrid variants, compared to Standard (H: ENTROPY, C: CONC, HD: HEADD1V, LF: LOCFOCN,
S: SINK).
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