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Abstract

Stuttering is a complex speech disorder that
challenges both ASR systems and clinical as-
sessment. We propose a multimodal stutter-
ing detection and classification model that inte-
grates acoustic and linguistic features through
a two-stage fusion mechanism. Fine-tuned
Wav2Vec 2.0 and HuBERT extract acoustic em-
beddings, which are early fused with MFCC
features to capture fine-grained spectral and
phonetic variations, while Llama-2 embeddings
from Whisper ASR transcriptions provide lin-
guistic context. To enhance robustness against
out-of-distribution speech patterns, we incorpo-
rate Retrieval-Augmented Generation or adap-
tive classification. Our model achieves state-
of-the-art performance on SEP-28k and Flu-
encyBank, demonstrating significant improve-
ments in detecting challenging stuttering events.
Additionally, our analysis highlights the com-
plementary nature of acoustic and linguistic
modalities, reinforcing the need for multimodal
approaches in speech disorder detection.

1 Introduction

Stuttering is a multifactorial speech disorder char-
acterized by disruptions in the normal flow of
speech, including repetitions, prolongations, and
silent blocks (Smith and Weber, 2017). Affecting
approximately 1% of the global population (Yairi
and Ambrose, 2013), it can lead to avoidance be-
haviors, social anxiety, and reduced participation in
professional and educational settings (Craig et al.,
2009; Koedoot et al., 2011). The severity and mani-
festation of stuttering vary across individuals, influ-
enced by psychological, linguistic, and situational
factors (Bloodstein et al., 2021).

From a speech technology perspective, stuttering
presents a unique challenge for automatic speech
recognition (ASR) systems, as it disrupts the tempo-
ral and lexical structure of speech, leading to higher
word error rates (WERs) (Mendelev et al., 2021).
The accurate detection and classification of stut-
tering events, leveraging both acoustic and lexical
features, are essential for developing inclusive ASR

systems and personalized therapy solutions. Addi-
tionally, ensuring robustness to out-of-distribution
(OOD) scenarios—where models encounter speech
patterns not seen during training—remains a criti-
cal challenge. Advancing stuttering detection sys-
tems capable of handling such variability holds sig-
nificant promise for improving speech accessibility
and communication equity.

Another fundamental hurdle in reliable stuttering
detection is semantic ambiguity. Models must accu-
rately distinguish between genuine dysfluent repeti-
tions (e.g., ’I-I-I went’) and semantically valid, flu-
ent lexical repetitions or common speech patterns
(e.g., ’this is a do-do’ or ’He said, ’no, no, no!”).
Relying solely on acoustic features or lexicon-
agnostic approaches often leads to clinically un-
reliable false positives. Advancing stuttering de-
tection systems capable of handling such complex
variability, including semantic context, holds sig-
nificant promise for improving speech accessibility
and communication equity for millions. Dys-
fluency detection has traditionally relied heavily
on acoustic features, given that various dysfluency
types are distinctly observable in audio waveforms
and spectrograms (Sheikh et al., 2022; Barrett et al.,
2022). Early research predominantly employed tra-
ditional signal processing methods (Bayerl et al.,
2020; Esmaili et al., 2017), extracting handcrafted
features for classification via techniques such as
Support Vector Machines (SVMs). However, the
advent of deep neural networks has led to a signifi-
cant performance leap over these traditional meth-
ods. Models like StutterNet (Sheikh et al., 2021)
and similar architectures (Sheikh et al., 2022) have
effectively showcased the power of deep learning
for real-time dysfluency classification.

More recent advancements have capitalized on
neural representations derived from self-supervised
learning (SSL) models, including wav2vec 2.0
(Bayerl et al., 2022; Baevski et al., 2020). These
SSL models are adept at capturing rich, contextu-
alized speech features, markedly improving dys-
fluency detection without the need for extensive,
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manually labeled datasets. Fine-tuning wav2vec
2.0 on stuttered speech has yielded promising re-
sults for detecting stuttering events at both utter-
ance and frame levels. Nevertheless, a significant
gap persists in fully exploring truly multimodal ap-
proaches that seamlessly integrate both acoustic
and lexical features for comprehensive stuttering
analysis.

Efforts to incorporate lexical features are a
more recent but highly promising direction. Stud-
ies by Wagner et al. (Wagner et al., 2024) and
Changawala Rudzicz (Changawala and Rudzicz,
2024) have demonstrated the potential of combin-
ing ASR transcriptions with large language models
(LLMs) like Whisper (Radford et al., 2022) for dys-
fluency detection. Crucially, these methods have
largely been evaluated on in-distribution data, leav-
ing the critical challenge of Out-Of-Distribution
(OOD) handling largely unaddressed. While Wong
and Chen (Wong and Chen, 2024) attempted to
tackle OOD issues through uncertainty estimation,
their approach notably lacked the incorporation of
lexical context, thereby limiting its robustness to
novel stuttering patterns.

In this work, we aim to bridge these existing gaps
by proposing a comprehensive, multimodal frame-
work, StuD (Stutter Event Detection Model), that
robustly leverages both advanced self-supervised
speech models and state-of-the-art LLMs. Our con-
tributions are specifically designed to enhance ro-
bustness against diverse and unseen stuttering pat-
terns, significantly improve OOD handling through
Retrieval-Augmented Generation (RAG), and ul-
timately achieve state-of-the-art performance in
automated stuttering detection and classification on
benchmark datasets.

Our work makes the following key contributions
to the field of automated stuttering detection and
classification:

1. Multimodal Architecture with Two-Stage
Fusion: We propose a novel architecture
that combines acoustic and linguistic features
through early and late fusion mechanisms.
The model leverages fine-tuned wav2vec 2.0
and HuBERT(Hsu et al., 2021) early fused
with MFCCs for acoustic features and Llama-
2(Touvron et al., 2023) embeddings derived
from Whisper ASR transcriptions for linguis-
tic features.

2. Robust OOD Handling: We incorporate
Retrieval-Augmented Generation (RAG) to

enhance system robustness against OOD sam-
ples. The model retrieves and compares em-
beddings of unfamiliar stuttering patterns with
known training-set instances, allowing for
adaptive classification and improved perfor-
mance on diverse speech data.

3. State-of-the-Art Performance: Our model
outperforms previous methods on SEP-28k
and FluencyBank by 26% and 14% increase
in average f1-score, respectively.

2 Corpora and Feature Representation

This study utilizes two publicly available datasets
for stuttering event detection: SEP28k(Lea
et al., 2021) for model training and Fluency-
Bank(Bernstein Ratner and MacWhinney, 2018)
for cross-corpora validation. These datasets con-
tain labeled speech segments with explicitly de-
fined types of disfluency.

SEP28k is a stuttering event detection dataset
released by Apple in 2021. It consists of 28,177
three-second audio clips extracted from 265 pub-
licly available podcasts, where speakers discuss
stuttering. Each audio clip was labeled by three
independent human annotators, who assigned one
or more of the following disfluency types: Block,
Interjection, Prolongation, Sound Repetition, and
Word Repetition. Additional labels include Mu-
sic, NoStutteredWords, and NoSpeech. The final
annotation for each clip was determined using a
majority voting system, where a label was assigned
if at least two annotators agreed. In cases of full dis-
agreement, all assigned labels were retained. Cru-
cially, to ensure a robust evaluation of generaliza-
tion across speakers, our 5-fold cross-validation
strategy for SEP28k was implemented with strict
speaker-independent splits. This ensures that data
from any single speaker is confined entirely to ei-
ther the training or validation set within each fold,
mitigating potential data leakage and providing a
more realistic assessment of model performance on
unseen speakers.

This study utilizes the Adults Who Stutter por-
tion of FluencyBank, which consists of 4,144 three-
second labeled audio clips from 33 recorded ses-
sions involving 23 male and 10 female speak-
ers. The dataset follows a labeling scheme similar
to SEP28k, allowing direct comparison between
models trained on SEP28k and tested on Fluency-
Bank. Unlike SEP28k, which primarily contains
structured podcast speech, FluencyBank includes
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elicited speech responses based on the Overall As-
sessment of the Speaker’s Experience of Stuttering
(OASES) protocol. The differences in recording
environments, speaker demographics, and elicita-
tion methods make FluencyBank a suitable dataset
for evaluating cross-corpora generalization.

3 Proposed Methodology

Figure 1: Overview of the StuD Model Architecture.
Block 1 handles acoustic processing with Wav2Vec 2.0,
HuBERT, and MFCC features. Block 2 processes text
embeddings from Whisper ASR and LLaMA-2. Block
3 is the RAG module, retrieving contextual stutter pat-
terns. Block 4 performs late fusion and classification,
generating confidence-weighted predictions.

In this section, we detail StuD (Stutter Event
Detection Model), a novel, comprehensive mul-
timodal architecture designed to significantly en-
hance stuttering detection accuracy and generaliza-
tion, particularly for challenging out-of-distribution
(OOD) speech. StuD’s architecture, visualized in
Fig. 1, comprises distinct feature encoding modules
for acoustic and linguistic information, a Retrieval-
Augmented Generation (RAG) module for context
enrichment, and a robust fusion network leading to
confidence-weighted predictions.

Unlike prior works that often employ simpler
fusion strategies or focus predominantly on in-

distribution data (Romana and Koishida, 2023;
Wagner et al., 2024), StuD integrates acoustic and
linguistic information through a sophisticated two-
stage fusion mechanism. This approach addresses
the limitations of methods that may overlook granu-
lar acoustic descriptors like MFCCs or lack explicit
mechanisms for handling novel speakers (Wong
and Chen, 2024). The pipeline begins with spe-
cialized feature encoders processing audio wave-
forms to extract rich acoustic and linguistic repre-
sentations. These are then fed into a hierarchical
fusion strategy: an early fusion stage combines
fine-grained acoustic features, followed by a late
fusion stage integrating the consolidated acoustic
representation with deep linguistic context. This
design is crucial for capturing the multifaceted na-
ture of stuttering, from subtle acoustic deviations
to complex semantic disruptions. StuD is exten-
sively trained on 18 hours of speech data from the
SEP-28k dataset (Lea et al., 2021).

3.1 Feature Encoding
Effective stuttering detection relies on analyzing
both acoustic and linguistic characteristics, as each
provides distinct yet complementary insights into
speech dysfluencies. Acoustic features are widely
used to capture prolongations, repetitions, and
other disruptions. Meanwhile, linguistic features
offer a textual perspective on dysfluencies. Our
architecture employs specific encoders for each
modality, detailed below, to generate robust, syn-
chronized frame-level representations.

3.1.1 Acoustic Feature Encoding
While transformer-based models like Wav2Vec 2.0
and HuBERT extract high-level contextual rep-
resentations, Mel-frequency cepstral coefficients
(MFCCs) provide fine-grained spectral details,
ensuring a multi-scale acoustic representation.
We adopt a multi-stage fine-tuning strategy for
Wav2Vec 2.0 and HuBERT to enhance sensitiv-
ity to stuttering characteristics, ensuring that both
models effectively capture the nuanced patterns of
dysfluent speech while preserving general speech
structure.

For Wav2Vec 2.0, we leverage the pretrained
XLSR-53 model1 with 315M parameters. During
Phase 1 of fine-tuning, the entire model is frozen
except for the newly added classification head, fo-
cusing solely on the classification head to allow
it to adapt to the task with minimal perturbation

1huggingface.co/docs/transformers/wav2vec2
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to the base model. In Phase 2, the Feature En-
coder (7 CNN blocks) and transformer layers 1-18
remain frozen, while layers 19-24 are unfrozen
to refine higher-level speech patterns relevant to
stuttering events. The classification head is contin-
uously trained with a slightly higher learning rate
than the transformer layers, ensuring synchronized
adaptation across components. In the final phase,
fine-tuning is confined to layers 19-24, with early
stopping and weight decay mechanisms employed
to prevent overfitting. Post-training, the classifica-
tion head is removed, and 768-dimensional embed-
dings are extracted from the last layer. To achieve
this, a linear projection layer was applied to reduce
the original 1024-dimensional XLSR-53 output to
the target 768 dimensions, ensuring synchroniza-
tion across all features at 150 frames per 3-second
segment.

For HuBERT, hubert-base-ls962 makes the back-
bone, and its fine-tuning process is divided into
three progressively adaptive phases. In Phase 1,
the CNN feature extractor and layers 1-8 are frozen
to preserve foundational acoustic features. Layers
9-12 and the classification head are trained with a
higher learning rate (2e-4) to promote rapid learn-
ing of high-level stutter patterns. Phase 2 involves
unfreezing layers 5-8, which handle speech rhythm
and patterns, while the upper layers continue to
adapt with a moderate learning rate. This phase
focuses on refining the model’s ability to capture
temporal and rhythmic stuttering patterns. In Phase
3, layers 1-4 remain frozen to maintain basic speech
knowledge, while layers 5-8 and upper layers are
fine-tuned with reduced learning rates for preci-
sion tuning of stutter detection. Mixed-precision
training, gradient clipping, and label smoothing are
utilized throughout the process to optimize learning
stability and mitigate class imbalances.

The output embeddings from the fine-tuned
Wav2Vec 2.0 and HuBERT models, both 768-
dimensional, are then passed to a Bi-directional
Long Short-Term Memory (BiLSTM) network.
While transformer-based models excel at captur-
ing global contextual dependencies in speech, BiL-
STMs are particularly adept at modeling local tem-
poral patterns and fine-grained sequential depen-
dencies within a sequence. By applying BiLSTMs
post-transformer embeddings, we aim to extract
more robust, stuttering-specific temporal dynamics
(e.g., precise rhythm disruptions, subtle prolonga-

2huggingface.co/facebook/hubert-base-ls960

tions, or repeated phonetic segments) that com-
plement the broader contextual understanding pro-
vided by the SSL models. This layered approach
ensures that both macro- and micro-temporal fea-
tures of dysfluent speech are effectively captured.
The BiLSTMs reduce the dimensionality of both
Wav2Vec 2.0 and HuBERT features to a hidden
size of 256 each. Similarly, the 40-dimensional
MFCC features are processed through their own
BiLSTM with a hidden size of 128. These BiL-
STMs are trained end-to-end as part of the overall
StuD model, learning to extract relevant temporal
features tailored for stuttering detection.

3.1.2 Linguistic Feature Encoding
To complement the acoustic embeddings, we in-
corporate ASR-derived word timing features from
Whisper3 and contextualized language representa-
tions from Llama 24. Whisper (1.55 billion param-
eters) provides word-level timestamps that allow
precise alignment of linguistic and acoustic fea-
tures. While Whisper’s internal acoustic features
are robust, our architectural design specifically
leverages fine-tuned Wav2Vec 2.0 and HuBERT
as primary acoustic encoders to capture stuttering-
specific acoustic nuances. Whisper’s role is thus fo-
cused on providing high-fidelity, time-aligned ASR
transcriptions, which serve as input for Llama-2 to
extract semantically rich linguistic context. This
alignment helps highlight different stutter events:
prolongations manifest as extended word durations,
blocks appear as silent pauses, and repetitions are
identified through sequential text patterns. Llama 2
(13 billion parameters) generates 4096-dimensional
embeddings that capture nuanced semantic rela-
tionships, enhancing detection of subtle stuttering
variations.

To tailor these Llama-2 embeddings for the stut-
tering detection task and ensure compatibility with
the acoustic modality, a trainable sequence of lay-
ers consisting of a linear projection (4096 → 512),
Layer Normalization, and a Dropout layer (0.1), fol-
lowed by a BiLSTM with a hidden size of 256, re-
duces their dimensionality. This structured adapta-
tion preserves the pre-trained knowledge of Llama-
2 while optimizing it for stuttering-specific lin-
guistic patterns. To ensure temporal alignment
between modalities, we employ a frame-level ex-
pansion strategy, where each word embedding from
Llama 2 is expanded to cover all frames within its

3github.com/openai/whisper
4huggingface.co/docs/transformers/en/modeldoc/llama2
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time span, with start and end frames determined
by Whisper’s ASR output. Frames without corre-
sponding words are filled with zero vectors, cre-
ating frame-level linguistic features that are fully
synchronized with the dimensions of the acoustic
features.

3.2 Feature Fusion and RAG Integration

StuD’s architecture integrates the extracted acous-
tic and linguistic features through a sophisticated
two-stage fusion process, enhanced by a Retrieval-
Augmented Generation (RAG) module. This ap-
proach ensures a comprehensive understanding of
stuttering events by combining fine-grained acous-
tic details, high-level linguistic context, and a ro-
bust mechanism for handling out-of-distribution
patterns.

3.2.1 Early Acoustic Fusion
The 256-dimensional features from the Wav2Vec
2.0 BiLSTM and the 256-dimensional features
from the HuBERT BiLSTM are first concatenated
to form a 512-dimensional representation. This
combined SSL-based acoustic stream is then pro-
cessed by a linear layer (512 → 256), followed
by Layer Normalization and a Dropout layer (0.1).
Simultaneously, the 128-dimensional features from
the MFCC BiLSTM undergo similar processing
with a linear layer (128 → 128), Layer Normaliza-
tion, and Dropout (0.1).

These two processed acoustic streams (256-dim
from SSL features and 128-dim from MFCCs) are
then concatenated again to form a 384-dimensional
early-fused acoustic feature. This early fusion step
is critical as it allows the model to integrate fine-
grained MFCC spectral information directly with
the high-level contextual features from SSL mod-
els at an early stage. This mitigation of potential
underrepresentation of MFCCs due to their lower
dimensionality ensures that their distinct insights
are fully leveraged before further processing.

3.3 Retrieval-Augmented Generation (RAG)
Module

The RAG module, illustrated in detail in Fig. 2,
serves as a bimodal context-enrichment system for
stuttering detection, specifically designed to en-
hance robustness against OOD samples and rare
stuttering patterns. It consists of three core compo-
nents: reference database construction, similarity
search, and context processing with cross-attention
integration.

Figure 2: Detailed RAG Module.

3.3.1 RAG Reference Database Construction
The RAG reference database is constructed offline
using the entire training partition of SEP-28k (Lea
et al., 2021) and remains static throughout the main
model training. For each utterance in the SEP-
28k training set, a combined acoustic-linguistic
embedding is generated by concatenating its 256-
dimensional early-fused acoustic feature (output
of the early fusion block) and its 256-dimensional
linguistic feature (output of the Llama-2 processing
block), resulting in a 512-dimensional vector.

K-means clustering is then applied to these com-
bined 512-dimensional embeddings to identify pro-
totypical stuttering patterns for each dysfluency
type. The number of clusters, k, for each stutter-
ing type (Block, Interjection, Prolongation, Sound
Repetition, Word Repetition) is determined propor-
tionally to its empirical frequency in the SEP-28k
training set. This proportional sampling strategy
ensures adequate representation for less frequent
stuttering manifestations, preventing their under-
representation in the reference pool. From each
cluster, the utterance whose combined embedding
is closest to the cluster centroid (measured by Eu-
clidean distance) is selected as the representative
reference example. These selected examples, along
with their associated acoustic and linguistic fea-
tures, form the static RAG reference database.

3.3.2 Similarity Search and Dynamic
Weighting

For an incoming query (current input utterance),
its 256-dimensional early-fused acoustic feature
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and 256-dimensional linguistic feature are com-
pared against the static RAG reference database.
Cosine similarity is computed independently be-
tween the query’s acoustic features and all acoustic
features in the database, and similarly for linguistic
features. These raw similarity scores undergo L2-
normalization and temperature scaling to ensure
comparability across modalities.

The contributions of these acoustic and linguis-
tic similarity scores are then dynamically bal-
anced through learnable weights, wacoustic and
wlinguistic, which are trainable parameters initial-
ized for each modality (wacoustic+wlinguistic = 1).
The learning of these weights is driven by a con-
trastive loss function applied during training, along-
side the main classification loss. This loss encour-
ages the weights to emphasize the modality (acous-
tic or linguistic) that yields higher similarity for
positive pairs (query and retrieved sample belong-
ing to the same stuttering type) and lower similarity
for negative pairs (different stuttering types). A
learnable temperature parameter further sharpens
the similarity distributions, refining the alignment
between modalities. The specific formulation of
the contrastive loss for weight optimization is de-
tailed in Section 3.5.

The FAISS approximate nearest neighbor search
algorithm (Johnson et al., 2017) is employed for ef-
ficient retrieval of the top-k (k = 8) most relevant
samples from the database. To ensure diversity and
prevent redundancy in the contextual information
provided to the model, Maximum Marginal Rele-
vance (MMR) is applied, balancing the similarity
score with a diversity penalty during retrieval.

3.3.3 Context Processing and Cross-Attention
Integration

The top-k retrieved samples undergo modality-
specific transformations, followed by projection
onto a shared latent space for unified representa-
tion within the RAG context. In the cross-attention
integration mechanism, the current input’s 256-
dimensional early-fused acoustic feature and 256-
dimensional linguistic feature are projected into
query vectors (Q). The retrieved contextual fea-
tures (both acoustic and linguistic, processed from
the RAG database) are transformed into corre-
sponding key (K) and value (V ) pairs. Multi-head
attention (with 8 attention heads, as specified in
Section 3.5) is then applied, allowing the model to
capture diverse aspects of the retrieved context in
parallel. An integration layer then applies learned

weights to combine the attended outputs, producing
the final RAG Context embedding.

3.4 Late Fusion Network and Classification
In the final stage of StuD, the consolidated acous-
tic, linguistic, and RAG context embeddings are
fused and processed through a pipeline designed
to capture local temporal patterns and generate
confidence-weighted predictions.

The 384-dimensional early-fused acoustic fea-
ture (output from Section 3.2.1), the 256-
dimensional linguistic feature from Llama-2 (out-
put from Section 3.1.2), and the RAG context
embedding (output from Section 3.3.3) are con-
catenated to form a comprehensive multimodal
representation. This fused representation is then
passed through a series of layers designed to cap-
ture higher-level patterns and temporal dependen-
cies, including: a Linear layer (input dimension
determined by concatenated features), followed
by Layer Normalization; a Transformer block; a
Conv1D layer with a kernel size of 3 for local fea-
ture extraction; a BiLSTM with a hidden size of
256 for further temporal modeling; and finally, an
Attention Pooling layer to aggregate information
across the sequence.

The output of the attention pooling layer is fed
into a Dense layer, which serves as the classifica-
tion head. This head generates raw classification
logits p ∈ Rc, where c is the number of stuttering
classes: Block, Interjection, Prolongation, Sound
Repetition, Word Repetition. Each class-specific
uncertainty score Uclass is defined as:

Uclass = [U1, U2, U3, U4, U5] ∈ Rc

For each stutter class i, the uncertainty Ui is com-
puted as:

Ui = α(1−mean(si))+βH(di)+γ(1−mean(ci))

Here, si represents similarity scores specifically for
examples of class i, di is the label distribution in
the local neighborhood of class i, and ci denotes
the context matching scores for examples of class i.
The parameters α, β, and γ are learnable weights
that sum to 1, optimized end-to-end as part of the
overall network training. H(di) represents the en-
tropy of the label distribution for class i.

Confidence-weighted predictions ŷ are com-
puted by adjusting the softmax of the classification
logits p ∈ Rc with the class-specific uncertainties
via element-wise multiplication:

ŷ = softmax(p)⊙ (1−Uclass)
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This class-specific uncertainty formulation im-
proves the model’s ability to identify and down-
weight unreliable predictions, enhancing robust-
ness when encountering OOD stutter patterns.

3.5 Training Details
The overall StuD model is trained end-to-end. The
primary objective is to minimize a Binary Cross-
Entropy Loss with logits (BCEWithLogitsLoss),
suitable for multi-label classification, which as-
sesses the discrepancy between predicted logits
and true labels for each stuttering class. Addition-
ally, the contrastive loss function (as introduced in
Section 3.3.2) is incorporated to guide the learning
of dynamic weights within the RAG’s similarity
search. The total loss function is a weighted sum of
these components: Ltotal = LBCE+λLcontrastive,
where λ is a hyperparameter balancing the two
losses, empirically set to 0.1. The specific formu-
lation of the contrastive loss, targeting the RAG
module’s dynamic weights, is a triplet-based loss.
For a given anchor embedding A, a positive sample
P (same stuttering type), and a negative sample N
(different stuttering type), the loss encourages the
distance between A and P to be smaller than the
distance between A and N by a margin m:

Lcontrastive = max(0, d(A,P )− d(A,N) +m)

where d(·, ·) is the Euclidean distance between
weighted similarity scores, and m is a predefined
margin. Positive and negative pairs are sampled
dynamically from the current batch and the RAG
reference database.

The model was trained with a batch size of 32.
Optimization was performed using the AdamW
optimizer (base learning rate: 2e-4) and a linear
learning rate schedule that included 5% warmup
steps. Early stopping was employed with a patience
of 5 epochs, triggered by the lowest development
set loss to prevent overfitting.

The model architecture included BiLSTMs for
early-stage SSL and MFCC processing, each with
hidden sizes of 512 and 128, respectively, and
dropout rates of 0.1. Cross-attention modules and
late-fusion transformers used 8 attention heads and
a hidden size of 512. Training followed an end-
to-end strategy, leveraging mixed precision (fp16)
for computational efficiency and gradient clipping
(max norm 1.0) to stabilize training. Training
and feature extraction were distributed across 4
NVIDIA RTX 2080 Ti GPUs, leveraging 40 virtual
CPU cores for data loading and preprocessing.

4 Experiments and Results

Table 1: F1 Scores for Multilabel Stutter Detection on
SEP28k with 5-Fold Cross-Validation

No. Acoustic Features Text Embeddings INJ BLK PRO SND WRD AVG F1
1 Bayerl et al. (Bayerl et al., 2023) 0.32 0.77 0.53 0.53 0.64 0.56
2 Wagner et al. (Wagner et al., 2024) 0.57 0.74 0.56 0.54 0.64 0.61
3 ✓ (ALL) ✗ (Without) 0.56 0.75 0.55 0.58 0.60 0.60
4 ✗ (Without) ✓ (Llama-2) 0.23 0.31 0.24 0.29 0.35 0.28
5 ✓ (Except Wav2Vec2.0) ✓ (Llama-2) 0.59 0.69 0.61 0.52 0.59 0.60
6 ✓ (Except HuBERT) ✓ (Llama-2) 0.62 0.63 0.51 0.47 0.43 0.53
7 ✓ (Except MFCC) ✓ (Llama-2) 0.79 0.71 0.59 0.69 0.72 0.70
8 ✓ (ALL) ✓ (Llama-2) 0.90 0.78 0.81 0.78 0.83 0.82

Table 2: FluencyBank F1 scores for model trained on
SEP28k

No. Method INJ BLK REP PRO AVG F1
1 Lea et al. (Lea et al., 2021) 0.82 0.56 0.66 0.67 0.68
2 Bayerl et al. (Bayerl et al., 2023) 0.84 0.33 0.51 0.60 0.57
3 Sheikh et al. (Sheikh et al., 2023) 0.64 0.04 0.22 0.42 0.33
4 Changawala et al. (Changawala and Rudzicz, 2024) 0.86 0.43 0.73 0.63 0.66
5 Proposed (w/o RAG) 0.84 0.66 0.72 0.64 0.71
6 Proposed 0.91 0.73 0.80 0.82 0.81

This section details the empirical evaluation of
the proposed StuD model’s performance on both in-
distribution and out-of-distribution stuttering detec-
tion. Experiments validated our multimodal fusion,
individual feature contributions, and the impact of
the Retrieval-Augmented Generation (RAG) mod-
ule for generalizing to unseen speech patterns. All
evaluations utilized the F1 score, a critical metric
in clinical and educational contexts for balancing
precision and recall. Detailed training parameters
are in Section 3.5.

4.1 Preliminary Feature Effectiveness
Initial experiments revealed that while lexical fea-
tures alone underperformed acoustic-only features,
their combination consistently outperformed either
modality individually. This underscores the com-
plementary nature of acoustic and linguistic in-
formation for comprehensive stuttering detection.
Furthermore, Llama-2 consistently outperformed
frozen BERT embeddings (768-dim) for linguistic
feature extraction, demonstrating superior contex-
tual understanding from its larger-scale pretraining
on conversational data. This justified Llama-2’s
selection for our architecture.

4.2 Ablation Study on Acoustic Features
(SEP-28k)

An ablation study on the SEP-28k dataset, using
5-fold speaker-independent cross-validation (as de-
tailed in Section 2), evaluated the contribution of
each acoustic feature, with results in Table 1. Ta-
ble 1 highlights the differential importance of each
acoustic feature. Wav2Vec 2.0’s removal (row 5)
most significantly impacted Interjections (INJ) and
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Prolongations (PRO), dropping F1s from 0.82 to
0.60 and 0.61 respectively, likely due to its strength
in capturing fine-grained temporal and prosodic pat-
terns. Conversely, HuBERT’s absence (row 4) most
degraded performance for Prolongations (PRO),
Sound Repetitions (SND), and Word Repetitions
(WRD) (e.g., WRD from 0.83 to 0.43), aligning
with its effectiveness in identifying repeated pho-
netic units. MFCC removal (row 3) caused a gen-
eral, less severe, F1 decrease across all types, re-
flecting its foundational role in spectral information
without targeting specific patterns.

A notable observation from Table 1 is the
counter-intuitive behavior of MFCCs: while the
full model (row 8) performs best with all three
acoustic features, including MFCCs with only a sin-
gle SSL model (rows 4, 5) degrades performance
compared to using just Wav2Vec 2.0 and HuBERT
(row 3). This suggests a complex interplay. We
hypothesize that MFCCs provide unique low-level
spectral information that becomes synergistic only
when both high-level SSL features (Wav2Vec 2.0
and HuBERT) are present. Otherwise, MFCCs may
introduce redundancy or interference, leading to a
poorer fused representation. This dynamic under-
scores the necessity of a truly multi-scale acoustic
input for optimal stuttering detection.

4.3 Out-of-Distribution Performance
To rigorously assess StuD’s generalization capa-
bilities on unseen speech patterns and speakers,
we evaluated its performance on the FluencyBank
dataset, which remained entirely unseen during
training on SEP-28k. As discussed in Section
2, FluencyBank’s distinct recording environments,
speaker demographics, and elicitation methods
(OASES protocol) make it an ideal cross-corpora
dataset for evaluating OOD robustness. Table 2
presents the F1 scores for StuD compared to exist-
ing methods.

The results in Table 2 unequivocally demonstrate
the significant impact of the RAG module on OOD
generalization. Comparing "Proposed (w/o RAG)"
(row 5) with "StuD (with RAG)" (row 6), the RAG
module contributes to a substantial increase in aver-
age F1 score from 0.71 to 0.81, representing a 14%
relative improvement on FluencyBank. This im-
provement is consistent across all dysfluency types,
highlighting RAG’s effectiveness in enhancing ro-
bustness by comparing new, unfamiliar stuttering
patterns to known examples from the reference
database and adaptively adjusting confidence based

on similarity. This mechanism is crucial for im-
proving generalization to unseen data, a primary
goal of our research.

StuD also significantly outperforms all com-
pared baseline methods on FluencyBank, achiev-
ing an average F1 score of 0.81. This represents a
substantial leap in cross-corpora performance, par-
ticularly for challenging categories like Blocks and
Prolongations, where prior methods often strug-
gled.

4.4 Overall Performance and Context
Our comprehensive evaluation confirms that StuD
achieves state-of-the-art performance on both in-
distribution (SEP-28k, average F1 of 0.82) and
out-of-distribution (FluencyBank, average F1 of
0.81) datasets. This consistent high performance
across diverse datasets and stuttering types, par-
ticularly the significant improvements observed
with the RAG module on OOD data, validates the
efficacy of our multimodal architecture and two-
stage fusion mechanism. The complementary na-
ture of acoustic (Wav2Vec 2.0, HuBERT, MFCC)
and linguistic (Llama-2 from Whisper) modalities
is strongly reinforced by these results, emphasizing
the necessity of multimodal approaches for accu-
rate and robust speech disorder detection.

5 Conclusion and Future Work

In this work, we presented a novel approach to
stuttered speech classification - StuD - wherein in-
tegration of RAG not only improved performance
on known categories but also increased robustness
when handling speech from unfamiliar speakers.
Our fine-tuning procedure further refined the model
by emphasizing the most salient features of stut-
tered speech, resulting in a significant performance
boost on benchmark datasets.

Our work bridges the gap between controlled
experimental settings and real-world speech vari-
ability, laying the groundwork for more adaptive
and clinically relevant speech disorder diagnostic
tools.

Future research can explore multimodal integra-
tion, such as incorporating video data, though the
scarcity of annotated multimodal datasets poses a
challenge. Addressing this limitation, along with
leveraging transfer or unsupervised learning, could
further enhance model robustness and generaliz-
ability for real-world use.
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Limitations

While the StuD model demonstrates significant ad-
vancements in multimodal stuttering detection and
OOD generalization, this work also highlights sev-
eral inherent challenges in the field, which serve as
crucial directions for future research.

First, our current framework exclusively fo-
cuses on acoustic and linguistic modalities. While
these provide robust and complementary insights
into stuttering phenomena, incorporating additional
modalities, such as video data (e.g., facial expres-
sions, head movements, or articulatory gestures),
holds substantial promise. Such visual cues could
offer further discriminative information, particu-
larly for subtle or covert stuttering events. However,
the scarcity of large-scale, annotated multimodal
datasets for stuttered speech currently poses a sig-
nificant challenge for integrating these additional
data streams. Future work shall explore strategies
for leveraging limited multimodal data, potentially
through transfer learning or weakly supervised ap-
proaches, to develop more comprehensive diagnos-
tic tools.

Second, while our model aims to differentiate
genuine dysfluencies from semantically valid rep-
etitions, and our analysis provides a broad un-
derstanding of performance, a more granular and
clinically-oriented error analysis could further re-
fine its utility. Understanding specific patterns of
false positives (e.g., fluent speech misclassified as
stuttered repetitions due to natural linguistic pat-
terns like ’do-do’ or emphatic phrases) and false
negatives (e.g., missed subtle blocks or prolonga-
tions) is crucial for clinical deployment. Future
efforts will involve detailed qualitative error analy-
sis, potentially incorporating expert human review,
to pinpoint the precise types of dysfluencies the
model struggles with. This will guide targeted im-
provements, especially in enhancing the model’s
semantic grounding and lexical dependency.

Finally, while the Retrieval-Augmented Gener-
ation (RAG) module significantly enhances OOD
robustness, its current retrieval mechanism is not
end-to-end differentiable within the main optimiza-
tion loop. This means that the process of selecting
relevant reference examples is not directly opti-
mized by the final classification loss. Future re-
search could investigate differentiable retrieval ar-
chitectures or alternative forms of RAG integration
to allow for a more seamless, gradient-based opti-
mization of the entire system, potentially leading

to further performance gains and a deeper learned
synergy between retrieval and classification.
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