
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 677–697

December 20-24, 2025 ©2025 Association for Computational Linguistics

Structured Document Translation via
Format Reinforcement Learning

Haiyue Song1, Johannes Eschbach-Dymanus2, Hour Kaing1, Sumire Honda2,
Hideki Tanaka1, Bianka Buschbeck2, Masao Utiyama1

1National Institute of Information and Communications Technology, Japan 2SAP, Germany
{haiyue.song,hour_kaing,hideki.tanaka,mutiyama}@nict.go.jp

{johannes.eschbach-dymanus,sumire.honda,bianka.buschbeck}@sap.com

Abstract
Recent works on structured text translation
remain limited to the sentence level, as they
struggle to effectively handle the complex
document-level XML or HTML structures. To
address this, we propose Format Reinforce-
ment Learning (FORMATRL), which employs
Group Relative Policy Optimization on top
of a supervised fine-tuning model to directly
optimize novel structure-aware rewards: 1)
TreeSim, which measures structural similarity
between predicted and reference XML trees
and 2) Node-chrF, which measures translation
quality at the level of XML nodes. Addi-
tionally, we apply StrucAUC, a fine-grained
metric distinguishing between minor errors
and major structural failures. Experiments on
the SAP software-documentation benchmark
demonstrate improvements across six metrics
and an analysis further shows how different re-
ward functions contribute to improvements in
both structural and translation quality.1

1 Introduction

Translating structured documents such as software
manuals is essential for product localization. As
shown in Figure 1, they carry markup that defines
layout and interactive elements, making structural
fidelity as important as content translation quality.

Until the advent of large language models
(LLMs), the most prevalent approach for trans-
lation with markup was the detag-and-project
pipeline (Joanis et al., 2013; Müller, 2017; Zenkel
et al., 2021). This pipeline usually leverages a ma-
chine translation (MT) system to translate plain text
(with tags removed) and a separate word aligner to
reinsert the tags into the translated text. Although
straightforward, it is prone to error propagation
from individual MT and alignment modules.

LLMs have emerged as a promising end-to-end
solution for markup translation (Dabre et al., 2023,
1Our code is available at https://github.com/
shyyhs/format-rl

<title>
Use

</title>
<p>

<uicontrol>Delivery Address</uicontrol> 
facet is available of the type 
<uicontrol>Standard Item</uicontrol>.

</p>
…
<section>

<sectiontitle>
Creating a sourcing project

</sectiontitle>
<p>

The value help is available for the 
<uicontrol>Name</uicontrol> field.
The data that has previously been 
defined for the selected entry is then 
copied into the <uicontrol>Delivery 
Address</uicontrol> section.

</p>
</section>

<title>
⽤途

</title>
<p>

<uicontrol>納⼊先住所</uicontrol>
ファセットは、<uicontrol>標準明細
</uicontrol>タイプで使⽤できます。

</p>
…
<section>

<sectiontitle>
供給元プロジェクトを登録する

</sectiontitle>
<p>

<uicontrol>名称</uicontrol>
項⽬は⼊⼒ヘルプを利⽤できます。
選択したエントリに対して以前に定
義されたデータが<uicontrol>納
⼊先住所</uicontrol>セクション
にコピーされます。

</p>
</section>

En あ

Use

ROOT

title

Delivery Address

…

… …
…

…

p section

⽤途

ROOT

title

納⼊先住所

…

… …
…

…

p section

parse

render

… …

𝜙 𝑣𝑠 → 𝑣𝑡
𝑡𝑎𝑔(𝜙 𝑣𝑠 ) = 𝑡𝑎𝑔(𝑣𝑠)
𝑡𝑒𝑥𝑡(𝜙 𝑣𝑠 ) ≈ 𝑡𝑒𝑥𝑡(𝑣𝑠)

Figure 1: A structured document translation example
(English→Japanese), with markup highlighted in color.
The lower part shows the translation of XML tree struc-
ture with node ϕ(·), tag(·), and text(·) mappings.

2024). Few-shot prompting is a convenient way to
enable LLMs to learn markup transfer patterns with
only a few examples (Brown et al., 2020; Lewis
et al., 2020; Dabre et al., 2023), and fine-tuning
provides more robust domain adaptation capabil-
ities thus better performance (Dabre et al., 2024).
However, the training objective of supervised fine-
tuning is to optimize token-level likelihood, leaving
markup accuracy largely unaddressed. Therefore,
it is difficult for them to handle complex structured
documents such as the one shown in Figure 1.

In this study, we address these limitations
by proposing Format Reinforcement Learning
(FORMATRL), which moves from the token-level
likelihood optimization to directly optimizing
structure-aware objectives. It first fine-tunes an
LLM for basic document translation capability,
then applies Group Relative Policy Optimization
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(GRPO) with two novel structure-aware rewards:
TreeSim for measuring XML tree structural similar-
ity via edit distance, and Node-chrF for node-level
translation quality assessment. The main contribu-
tions of this paper are summarized below:

• We propose Format Reinforcement Learn-
ing (FORMATRL) for structured document
translation. It utilizes Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024)
to optimize structural fidelity through novel
structure-aware rewards TreeSim and Node-
chrF. We also investigate a range of addi-
tional rewards to reinforce structural fidelity
and translation quality.

• We use a new metric, Structure-Aware Area
Under Curve (StrucAUC), which distin-
guishes between minor errors and major fail-
ures, then robustly combines both translation
and structural quality into a single score.

• Our experimental results demonstrate sig-
nificant improvements on the software doc-
umentation dataset (Buschbeck and Exel,
2020) across four translation directions, with
FORMATRL achieving average gains of 3.69
XML-Match, 2.16 XML-BLEU, 0.22 Content-
BLEU, and 0.93 StrucAUC scores compared
to a strong supervised fine-tuning baseline.

2 Related Work

This study focuses on §2.1 structured text transla-
tion and §2.2 reinforcement learning.

2.1 Structured Text Translation
The traditional detag-and-project approaches rely
on separate modules for translation and markup
handling (Du et al., 2010; Joanis et al., 2013;
Müller, 2017; Hanneman and Dinu, 2020; Zenkel
et al., 2021; Ryu et al., 2022; Steffen and van Gen-
abith, 2021; Zenkel et al., 2021). However, these
methods suffer from error propagation across mod-
ules, and the MT system translates at the sentence
level without using document-level context.

Recent end-to-end approaches for structured
text translation have become possible with LLMs
such as BLOOM (Le Scao et al., 2022), Chat-
GPT (Brown et al., 2020; OpenAI, 2023), and
Llama 3 (Dubey et al., 2024), owing to their strong
in-context learning and generalization capabilities.
Previous studies using few-shot prompting (Dabre
et al., 2023) or fine-tuning on a small dataset (Dabre
et al., 2024) work well for sentence translation with

markup. However, they struggle to handle complex
structures such as those found in XML documents.

2.2 Reinforcement Learning
From the perspective of RL, generation is a se-
quence of actions to maximize the reward. Proxi-
mal Policy Optimization (PPO) (Schulman et al.,
2017) is the RL algorithm used in ChatGPT (Ope-
nAI, 2023), whereas GRPO (Shao et al., 2024)
used in DeepSeek-R1 (DeepSeek-AI, 2025) further
simplifies PPO by removing the separate value net-
work. RL has been applied to tasks such as code
generation (Dou et al., 2024), JSON generation (Lu
et al., 2025) and format instruction following (Yao
et al., 2024). To our knowledge, we are the first
to apply RL algorithms to the structured document
translation task, whose challenge lies in design-
ing rewards to guide generation of exactly the same
structure as that in the source document while main-
taining the high translation quality.

3 Method

Our pipeline is shown in Figure 2. We first define
the task in §3.1, then describe the supervised fine-
tuning (SFT) phase in §3.2, and finally present the
core reinforcement learning phase in §3.3.

3.1 Task Definition
This work addresses the task of translating a struc-
tured document Ds in the source language into
its counterpart Dt in the target language. A struc-
tured document D can be viewed as an XML tree
D = (VD, ED), where VD denotes the set of nodes
and ED the set of parent–child edges. Each node
is associated with a tag symbol tag(v) (e.g., <p>)
and may contain textual segments text(v).

The translation model πθ is a conditional proba-
bility distribution defined as follows:

πθ : Ds ×Dt → [0, 1] ⊂ R, πθ(Dt | Ds)

where πθ(Dt | Ds) denotes the probability of gen-
erating the target document Dt given the source
document Ds, and Ds and Dt are the spaces of all
possible structured documents in the source and
target languages. The predicted translation D̂t is
typically obtained by maximizing this probability:

D̂t = arg max
Dt∈Dt

πθ(Dt | Ds)

We assume that the predicted document D̂t satisfies
the following two conditions we target:
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Figure 2: Our FORMATRL pipeline consists of two stages. First, we fine-tune a pre-trained LLM (e.g., Llama-3.1-
8B-Instruct) using real and synthetic structured document pairs. Second, we reinforce the format handling ability
through GRPO with our proposed format reward functions.

1. Structural Identity: D̂t is isomorphic to the
source tree Ds. Formally, there exists a bijec-
tion ϕ : VDs → VD̂t

such that:

• For any edge (u, v) ∈ EDs , we have
(ϕ(u), ϕ(v)) ∈ ED̂t

.

• For any internal node v ∈ VDs , the cor-
responding target node shares the same
tag symbol: tag(ϕ(v)) = tag(v).

2. Translation Correspondence: For each
source node v ∈ VDs and its corresponding
target node ϕ(v) their textual contents text(v)
and text(ϕ(v)) are mutual translations.

To examine the extent to which both conditions
are satisfied, in practice, we measure the trans-
lation quality between the predicted tree D̂t and
a reference document D⋆

t using well-established
metrics such as BLEU (Papineni et al., 2002) and
COMET (Rei et al., 2020, 2022).

3.2 Phase I: Supervised Fine-Tuning

We fine-tune a pre-trained LLM on parallel struc-
tured documents. To address the data scarcity prob-
lem, we synthesize training data by injecting XML
markup into parallel plain-text documents.

Data Synthesis. Given a parallel corpus of plain
documents {(dis, dit)}Ni=1, we use GPT-4o to gener-
ate structured documents {(Di

s, D
i
t)}Mi=1 in which:

• Both Di
s and Di

t have the same structure;

• The original parallel texts are preserved.

We ensure structural identity through validation:
for each generated pair (Ds, Dt), we verify their
XML trees are isomorphic. Invalid pairs are regen-
erated until success or hitting the retry limit.

3.3 Phase II: Format Reinforcement

Initialized from the SFT checkpoint, we use our
designed rewards to optimize the translation model
(policy model as termed in GRPO) to generate
structurally correct and high-quality translations.

3.3.1 Reward Functions

The policy model learns from good samples gen-
erated by itself during training, where the reward
function defines what is good. During GRPO train-
ing, a reward function r(D̂t,i, D

⋆
t ) compares each

sampled output D̂t,i ∼ πθ(·|Ds) with the reference
document D⋆

t , and indicates how good each out-
put is. To reinforce structure-aware similarity, we
propose two rewards: TreeSim and Node-chrF.

TreeSim measures structural similarity between
the predicted and reference XML trees. It first
parses both documents as XML fragments wrapped
in a dummy root. The similarity is computed using
the Zhang-Shasha tree edit distance (Zhang and
Shasha, 1989), which counts the minimum number
of node insertions, deletions, or relabelings needed
to transform one tree into another. To obtain a
normalized similarity score, we use:

TreeSim(D̂t,i, D
⋆
t ) = 1− EditDist(D̂t,i, D

⋆
t )

max(|D̂t,i|, |D⋆
t |)

where EditDist is the tree edit distance and |D| de-
notes the number of nodes in tree D excluding the
dummy root. This normalization ensures that the
score remains in [0, 1], with 1 indicating identical
structures and 0 maximum dissimilarity. Specifi-
cally, we assign a penalty score of −0.1 for invalid
XML that cannot be parsed.
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Node-chrF measures translation quality at the
level of individual XML nodes. The algorithm
performs a parallel depth-first traversal of the pre-
dicted and reference XML trees, pairing nodes at
corresponding positions. When the sizes differ, the
algorithm extends the shorter traversal list to match
the longer one by adding empty placeholders. For
each node pair (vpred, vref), the metric computes:

• A score of 0 if the nodes have mismatched tags
(e.g., <p> vs <h1>) or are unpaired (e.g., one
subtree has more nodes than the other)

• The chrF score (Popović, 2015) of their textual
content (excluding child nodes) if tags match

• Skip node pairs that contain only whitespace

The final score is the average of all node pairs:

Node-chrF =

1

|P|
∑

(vpred,vref)∈P
1match(vpred, vref) · chrF(vpred, vref)

, where P is the set of all node pairs in the traversal
and 1 is the indicator function for tag matching.
For aligned trees, this metric focuses on translation
quality. If the translation contains structural mis-
takes, however, nodes become misaligned, and the
reward degrades substantially.

In practice, we scale each reward to |r| ∈ [0, 10]
for numerical stability. We also investigate the
use of other metrics (§6.5) as rewards and explore
combining two rewards (by summing the scores).

3.3.2 Optimization

After calculating reward scores for a group of sam-
ples, we encourage the model to generate similar
high-scoring outputs. In GRPO, we calculate the
relative performance comparisons within the group,
called advantages, which is then used to update the
document translation policy model πθ.

Formally, the optimization process works as fol-
lows: for each source document Ds, we generate
K candidate translations {D̂t,i}Ki=1 from the cur-
rent policy πθ. Instead of requiring absolute quality
assessments, GRPO computes advantages by com-
paring each generation’s reward against the group
mean, effectively learning which translations are
better than average within the same context. Since
we perform a single gradient update per exploration
stage when computing gradients, we can remove
the min and clip operation. This yields the follow-

ing objective:

LGRPO =− EDs∼D,{D̂t,i}Ki=1∼πθ(·|Ds)[
1

K

K∑

i=1

Âi log πθ(D̂t,i|Ds)

]
(1a)

+ β ·DKL(πθ||πSFT) (1b)

The first term (1a) encourages the model to in-
crease the likelihood of generations with positive
advantages and to decrease the likelihood of those
with negative advantages, with Âi computed as:

Âi =
r(D̂t,i, D

⋆
t )− r̄

σr

r̄ =
1

K

K∑

j=1

r(D̂t,j , D
⋆
t )

σr =

√√√√ 1

K

K∑

j=1

(r(D̂t,j , D⋆
t )− r̄)2

The second term (1b) is a Kullback-Leibler diver-
gence regularizer that prevents the optimized policy
πθ from deviating too far from the supervised fine-
tuned model πSFT with β controlling its strength,
thereby avoiding catastrophic forgetting.

4 Evaluation Metrics: StrucAUC

Previous studies on structured data translation ap-
ply the XML-BLEU metric (Hashimoto et al., 2019)
as a combined score for both translation quality
and structural fidelity. However, it results in a
zero score on the document-level even with mi-
nor structural mismatch. To provide a more fine-
grained evaluation, we propose StrucAUC that dis-
tinguishes between minor errors and major struc-
tural failures. In detail, it provides a translation
quality evaluation by interpolating between two
scores, Node-chrF and Optimal Node-chrF, to mea-
sure quality with different levels of error tolerance.

Optimal Node-chrF provides a way to measure
Node-chrF for two documents with slightly differ-
ent structures by node alignment. It represents each
node by its entire subtree (including tags and de-
scendants) and computes a cost matrix C, where
Cij is the chrF distance between the i-th node’s sub-
tree in D̂t and the j-th node’s subtree in the D⋆

t . Us-
ing the Hungarian algorithm (Kuhn, 1955), it solves
the linear sum assignment problem to find the op-
timal one-to-one mappingM∗ that minimizes the
total distance:

M∗ = arg min
M

∑

(vpred,vref)∈M
Cvpred,vref
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The final score evaluates chrF on node-level tex-
tual content (excluding children) under this opti-
mal alignment: Nodes that cannot be matched are
scored 0, ensuring all nodes are accounted for.

StrucAUC then integrates structural tolerance
through tree edit distance (Zhang and Shasha,
1989) into Optimal Node-chrF. For each document,
we calculate the minimum number of edits required
to transform the predicted tree into its optimally
aligned version (as determined byM∗), with tag
mismatches counting as 0.5 edits. The metric then
computes a curve at the corpus level: at each edit
threshold k ∈ {0, 0.5, 1, ...,K}, documents requir-
ing at most k edits contribute their Optimal Node-
chrF score, while others contribute their regular
Node-chrF score. The area under this curve from
0 to K yields StrucAUC@K, providing a smooth
degradation from perfect structural alignment to
increasing structural deviations. This makes Stru-
cAUC robust for document-level evaluation: minor
structural errors (e.g., a misplaced formatting tag)
result in proportional score reductions rather than
complete failure, while still rewarding structural fi-
delity. In our experiments, we report StrucAUC@5,
allowing up to 5 structural edits before considering
a document structurally misaligned. We provide
the pseudo code in Appendix H.

5 Experimental Settings

This section describes our dataset, evaluation met-
rics, and implementation details of our method.

5.1 Dataset

We use the SAP software documentation dataset
(Buschbeck and Exel, 2020) that contains parallel
structured documents for language pairs including
Japanese–English and Chinese–English translated
by professional translators. Each language pair con-
sists of 190 document pairs for testing, and an ad-
ditional 195 document pairs, of which we use 100
for training and 95 for development. Each source–
target document pair contains the same number of
lines with a one-to-one, linear alignment, reflect-
ing the property of this task that the page layout in
different languages should be identical.

Statistics Documents in this dataset exhibit sub-
stantial structural variety. After converting docu-
ments into XML trees, each tree has an average
depth of 7.11 ± 1.51 and contains 27.36 ± 25.28
nodes, with a median of 18 nodes per document,

and an average of 14.62 text segments per docu-
ment. Overall, it covers 58 unique XML tags.

Inline Markup Setting The dataset also pro-
vides a simplified version with only sentence-
internal markup, as shown in Figure 3. We
name it the inline markup setup. Differ-
ent from the structured setup which preserves
non-translatable nodes (e.g., <source>In-App
Help</source> and metadata), the inline setup
keeps only translatable spans with inline tags. Con-
sequently the reference texts also differ between the
two setups. We construct the data for both setups
with the official SAP XSLT preprocessing scripts.

Use
<uicontrol>Delivery Address</uicontrol> facet is available of the type 
<uicontrol>Standard Item</uicontrol>.
Creating a sourcing project
The value help is available for the <uicontrol>Name</uicontrol> field.
The data that has previously been defined for the selected entry is then 
copied into the <uicontrol>Delivery Address</uicontrol> section.

Figure 3: Inline markup version of the example in Fig.1.

5.2 Evaluation
We apply six evaluation metrics, including four
from previous studies: Content-BLEU, XML-
Validity, XML-Match, XML-BLEU, and two pro-
posed metrics: Content-COMET and StrucAUC.
We classify them into three categories: 1) Transla-
tion: these mainly measure translation quality, 2)
Structure: the ones measure structure fidelity, and
3) Combined: the ones measure both.

Translation Content-BLEU is the BLEU for a
document with all XML markup removed. We
employ the SacreBLEU tool (Post, 2018) with
language-specific tokenizers.2 Content-COMET
is based on the neural MT metric COMET-22 (Rei
et al., 2022). The metric is applied to the document
texts without XML markup, as COMET-22 was
not trained on structured documents and therefore
cannot be directly applied to such data.

Structure XML-Validity returns a binary score
of one or zero whether the output Dt passed XML
parsing. XML-Match is also binary indicating
whether the XML trees of output Dt and reference
D⋆

t are exactly the same.

Combined The XML-BLEU metric (Hashimoto
et al., 2019) is a combined score for both trans-
lation quality and structural fidelity. First, both
2e.g., signature for Japanese: "nrefs:1|case:lc|eff:no|tok:ja-
mecab-0.996-IPA|smooth:exp|version:2.5.1"
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translated and reference documents are split into
text segments at XML tag boundaries. If a transla-
tion’s XML-Match is true, the segments are paired
for BLEU computation. Otherwise, the reference’s
segments are paired with empty strings, thereby
penalizing structural errors. The metric is then
computed on the corpus level across all segments
of all documents. StrucAUC is also a combined
metric as described in §4.

Additionally, we report empirical p-values from
statistical significance testing using bootstrap re-
sampling with 1, 000 trials.

5.3 Implementations
We report implementation details and hyperparame-
ters selected based on our preliminary experiments.

5.3.1 Prompting Baseline
For the few-shot prompting baseline (Dabre et al.,
2023), we evaluate pre-trained language models
(GPT-4o and meta-llama/Llama-3.1-8B-Instruct)
using in-context learning with k ∈ {0, 1, 2, 3, 4, 5}
full document pairs as exemplars, and report the
k-shot setting with the highest XML-BLEU. We
use greedy decoding for deterministic outputs and
set the maximum generation length to 2,000 tokens
which is sufficient to accommodate long document
translations.

5.3.2 Supervised Fine-Tuning
This section describes the LLM fine-tuning method
as in Dabre et al. (2024) on our document-level
data. We use Llama-3.1-8B-Instruct (Dubey et al.,
2024) as the base model in our experiments.

Synthetic Data We use GPT-4o3 to synthesize
markup using the Asian Language Treebank (ALT)
corpus (Thu et al., 2016; Riza et al., 2016), gener-
ating 900 structured document pairs per language.
ALT contains high-quality general domain paral-
lel document units and aligns with our target lan-
guage pairs. The prompt includes a random exam-
ple from the development set of SAP dataset and a
sample of five tags from the target tag vocabulary.
Without domain-specific guidance, LLM defaults
to generic tags (e.g., <person>), causing train-
test mismatches. See full prompt in Appendix A.

Hyperparameters The SFT model πSFT
θ is then

trained on both 100 real and 0 to 400 synthetic
structured document pairs using standard cross-
entropy loss. We fine-tune for 20 epochs with batch
3gpt-4o-2024-08-06

size of 8, a learning rate of 3 × 10−7 and cosine
learning rate scheduling with a warmup ratio of
0.1. We use the AdamW optimizer (Loshchilov and
Hutter, 2017). Early stopping is triggered after 10
evaluations without improvement, with evaluation
performed every 10 steps.

5.3.3 Format Reinforcement
We now describe the hyperparameter configuration
for the reinforcement learning phase (§3.3), chosen
based on our preliminary experiments.

Training Configuration. We report results using
TreeSim reward in §6.1, and results for Node-chrF
and other rewards in §6.5. We use a small learning
rate of 10−6 and train for 5 epochs with early stop-
ping based on validation loss. Early stopping is trig-
gered after 3 evaluation steps without improvement,
with evaluation and checkpointing performed every
3 training steps. We set the maximum sequence
length to 2, 000 tokens for both prompts and com-
pletions. The KL penalty coefficient β is set to the
default value of 0.01. We select the checkpoint for
testing based on the development set performance.

Batch and Generation Settings. We use 8 gen-
erations per document (K = 8) with a per-device
batch size of 8 and gradient accumulation steps of
1, resulting in an effective batch size of 64 across 8
H200 GPUs. For generation, we use sampling with
default temperature of 1.0.

5.3.4 Computational Efficiency
During training, we leverage DeepSpeed ZeRO-
3 optimization and mixed precision training with
bfloat16 for memory and computational efficiency.
Each SFT model takes about 2.1 hours and GRPO
model takes about 1.3 hours of training. We employ
vLLM (Kwon et al., 2023) for efficient inference
where it takes 2 minutes on test set.

6 Results and Analysis

6.1 Main Results

Table 1 presents our main results on the structured
document translation task across four language
pairs. FORMATRL using TreeSim reward consis-
tently outperforms both the prompting and SFT
baselines across nearly all evaluation metrics. Re-
sults of other rewards are shown in Appendix C.

Structural Fidelity Improvements. FORMATRL
with TreeSim shows significant gains in structural
preservation. XML-Match scores improve by an
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Src→Tgt Method Translation Structure Combined Avg.
Content-BLEU Content-COMET XML-Validity XML-Match XML-BLEU StrucAUC

En→Zh
Prompt 49.88 86.16 91.05 76.84 27.50 57.75 64.86

SFT 49.66 86.47 94.21 85.26 36.38 63.57 69.26
FORMATRL 49.88 86.48 95.26 87.37 38.07 64.12 70.20

Zh→En
Prompt 48.82 85.25 93.16 82.11 26.34 71.39 67.84

SFT 56.41 85.34 94.74 83.68 27.58 71.66 69.90
FORMATRL 56.28 85.25 95.26 86.84 29.14 72.84 70.94

En→Ja
Prompt 36.60 87.17 87.89 67.37 14.49 48.60 57.02

SFT 39.11 88.22 95.26 84.21 27.47 60.40 65.78
FORMATRL 39.30 88.20 95.79 88.42 30.32 60.48 67.09

Ja→En
Prompt 44.14 85.93 90.53 80.00 22.38 65.25 64.70

SFT 52.19 85.96 95.26 82.11 24.15 67.92 67.93
FORMATRL 52.79 86.01 94.74 87.37 26.67 69.82 69.57

Table 1: Results of FORMATRL and two baselines on structured documents. Bold indicates the best performance.
Background colors indicate statistical significance p < 0.05 compared to SFT.

Src→Tgt Method Translation Structure Combined Avg.
Content-BLEU Content-COMET XML-Validity XML-Match XML-BLEU StrucAUC

En→Zh
Prompt 54.79 85.87 96.32 84.74 43.33 56.62 70.28

SFT 57.95 86.19 98.42 89.47 47.51 63.14 73.78
FORMATRL 57.70 86.22 98.42 90.00 47.63 64.29 74.04

Zh→En
Prompt 39.92 83.31 95.26 83.68 33.83 67.06 67.18

SFT 32.24 83.06 95.26 81.05 33.01 65.77 65.07
FORMATRL 34.76 82.83 95.79 84.74 34.74 66.28 66.52

En→Ja
Prompt 40.13 87.90 96.32 79.47 26.78 45.07 62.61

SFT 44.42 88.40 97.37 84.21 32.27 54.93 66.93
FORMATRL 45.60 88.60 98.42 86.84 35.44 55.04 68.32

Ja→En
Prompt 35.61 84.86 98.95 81.58 27.58 64.65 65.54

SFT 34.74 84.66 97.89 82.63 26.72 63.60 65.04
FORMATRL 37.02 84.96 98.42 86.84 30.13 65.82 67.20

Table 2: Results of FORMATRL and two baselines on inline markup dataset. Bold indicates the best performance.
Background colors indicate statistical significance p < 0.05 compared to SFT.

average of 3.69 over SFT, with the largest improve-
ment of 5.26 points observed for Ja→En. This indi-
cates that FORMATRL effectively learns to maintain
document structure beyond what SFT achieves.

Translation Quality Gains. Importantly, FOR-
MATRL maintains or slightly improves translation
quality while enhancing structural fidelity. Content-
BLEU scores increase by an average of 0.22 points
over SFT. Content-COMET scores remain stable,
suggesting that our structural improvements do not
come at the cost of translation quality.

Combined Performance. We show the com-
bined improvement through XML-BLEU, which
is widely used in previous work on structured data
translation (Hashimoto et al., 2019; Dabre et al.,
2024). It improves by 2.16 points on average, and
our proposed StrucAUC metric shows gains of 0.93
points, confirming that improvements are robust
across different structural error tolerances.

Human Evaluation. We performed a small-scale
human evaluation on 60 rendered En→Ja pages
comparing FORMATRL and prompting methods.
For each page, an annotator compared the outputs
of two methods against the reference, where the or-
der of two outputs are randomly shuffled each time.
Results show FORMATRL won 29, prompting won
13, and 18 were ties. Qualitatively, outputs with
(i) correct structure and (ii) correct embedded UI
were preferred, suggesting that structural fidelity
may be important in user experience.

6.2 Results on Documents with Inline Markup

Table 2 presents results on the inline markup
dataset, where structural complexity is reduced
to inline markup. We found that although FOR-
MATRL with TreeSim still shows improvements
in all metrics, the performance gap between the
baseline method and FORMATRL narrows consid-
erably compared to structured documents. For ex-
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Figure 4: Comparison with GPT-4.1-nano (2025-04-14),
GPT-4o-mini (2024-07-18), and GPT-4o (2024-08-06).

ample, the XML-Match gap between Prompt and
FORMATRL narrows from 10.92 to 4.74. This sug-
gests that LLMs handle simpler inline structures
effectively through in-context learning, but struggle
with more structured documents. We show results
of different rewards in Appendix D.

6.3 Comparison with GPT-4 Models

We compare our approach to three GPT mod-
els which serve as reference. We show results
of En→Ja in Figure 4 and all directions in Ap-
pendix F. We found FORMATRL shows compa-
rable performance on most metrics with GPT-4o
and outperforms GPT-4.1-nano and GPT-4o-mini.
Although with similar scores in automatic evalua-
tion, after analyzing 60 outputs of GPT-4o and our
model, we found FORMATRL outputs match the
style (e.g. word choice is more formal) in source
documents better than prompting with GPT-4o.

6.4 Comparison with Parse-and-Assemble

We implemented two parse-and-assemble base-
lines, where we first extract translatable text blocks,
then apply an LLM-based sentence-level transla-
tor, and finally assemble the texts to form the out-
put document. SFT-Sent trains Llama 3.1 8B on
parallel sentences whereas SFT-Sent w/ Content
extents this by providing the whole document as
context. Figure 5 shows that for En→Ja, transla-
tion quality is comparable but FORMATRL achieves
higher XML-Match. Although parse-and-assemble
ensures correct document structure, it struggles
with in-line tags whose positions vary across tar-
get language syntax. Furthermore, providing full
documents for every sentence makes training 4.2×
slower and inference 5.7× slower than standard
SFT, showing that the end-to-end paradigm offers
a more natural and efficient solution.
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Figure 5: Comparison with parse-and-assemble base-
lines, in which the LLM acts as sentence-level MT
model with or without document context.

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Content-BLEU

0.0

0.5

1.0

1.5

2.0

2.5

3.0

XM
L-

M
at

ch

Rewards
1. TreeSim
2. Node-ChrF
3. Optimal Node-ChrF
4. Content-BLEU
5. XML-Match
6. XML-Valid
7. XML-BLEU
8. StrucAUC
9. TreeSim + XML-BLEU
10. Node-ChrF + XML-BLEU
11. Optimal Node-ChrF + XML-BLEU

Figure 6: Improvement of FORMATRL over SFT using
various single rewards, and combinations of two re-
wards. Points represent mean improvement and ellipses
visualize the local covariance directional structure be-
tween two metrics improvements.

6.5 Analysis: Reward Choice
Figure 6 shows the effect of different reward func-
tions during GRPO training, including: 1) proposed
TreeSim and Node-chrF, 2) metrics used in eval-
uation as rewards,4 and 3) combination of two re-
wards. Estimates are constructed from 8 runs of RL
results. Refer to Appendix G for results featuring
COMET instead of BLEU.

First, we found all rewards except XML-Validity
to improve translation quality measured by Content-
BLEU. Even pure structure-aware rewards, such as
TreeSim and XML-Match, can improve translation.
The combined reward Node-chrf improves both in
good balance. However, not aligning to the refer-
ence (XML-Validity) is bad, hurting both transla-
tion and structure quality. Second, the best way to
optimize a specific metric is using it as a reward.
Reinforcement learning with Content-BLEU as re-
ward achieves the highest gain in Content-BLEU,
and similarly, the XML-Match reward achieves the
best XML-Match performance. Finally, we observe
4Content-BLEU and XML-BLEU here are document-level.
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Src→Tgt Method TreeSim Node-chrF

En→Zh

Prompt 95.97 56.33
SFT 97.86 62.67

FORMATRL
w/ TreeSim 98.19 63.24

w/ Node-chrF 97.70 64.41

Zh→En

Prompt 97.24 69.97
SFT 97.54 70.58

FORMATRL
w/ TreeSim 98.12 71.77

w/ Node-chrF 97.97 73.00

En→Ja

Prompt 94.40 47.64
SFT 97.55 59.77

FORMATRL
w/ TreeSim 97.98 59.77

w/ Node-chrF 97.23 59.26

Ja→En

Prompt 96.69 63.93
SFT 97.82 66.47

FORMATRL
w/ TreeSim 98.28 68.51

w/ Node-chrF 98.02 68.93

Table 3: Performance comparison when optimizing
TreeSim and Node-chrF rewards. Bold indicates the
best performance.

reward combination yields averaging effects, e.g.,
combining TreeSim with XML-BLEU shows better
Content-BLEU improvement than TreeSim alone.

6.6 Analysis: Reward-Metric Alignment

Table 3 compares the direct optimization effects
of our two proposed rewards. We observe clear
reward-metric alignment: using TreeSim as reward
achieves the highest TreeSim scores, while Node-
chrF reward yields the best Node-chrF scores in
most directions. This confirms that reinforcement
learning can effectively improve the specific struc-
tural properties defined by the reward.

6.7 Analysis: Synthetic Data Strategies

We explore the effect of using different synthetic
data strategies to train the SFT model. As shown
in Figure 7, although the translation quality comes
close to training on real data, using synthetic data
alone can lead to catastrophic structure failure,
with XML-Match scores dropping below 20%.
We suppose that the domain shift in textual con-
tent likely has adverse interaction effects with the
structural performance. Because it is unlikely the
model completely independently learns structural
transfer and translation. This phenomenon high-
lights the crucial role of real target-domain XML
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Figure 7: SFT Model performance comparison for En-
glish to Chinese translation by composition of training
data. syn-ALT refers to fine-tuning using the raw ALT
document pairs. syn-0-shot refers to data synthesized
in a zero-shot manner. For syn-1-shot, the synthesizing
LLM was provided with one example. The *-tag setups
additionally guided the LLM with example XML tags
from the development set. The Xreal+Ysyn setups are
a mixture of real data and synthetic data generated with
the syn-1-shot-tag approach.

markup. The importance of such markup is further
underscored by observations that models trained
on synthetic data generated without explicit guid-
ance from in-domain examples and markup tags
were more prone to structural errors. When com-
bined with real data using the syn-1-shot-tag syn-
thetic data, moderate amounts of synthetic data
(e.g., 100real+100syn) can improve performance,
whereas excessive amounts (e.g., 100real+400syn)
can degrade it. For translation quality, this is not
surprising: the Asian Language Treebank (Thu
et al., 2016) used for data generation differs sub-
stantially in domain from software documentation.
Results of all language pairs are shown in Fig-
ure 10.

7 Conclusion

To address the challenge of translating documents
with complex structures, we propose FORMATRL,
a novel reinforcement learning approach with
proposed structure-aware rewards: TreeSim and
Node-chrF. We further propose StrucAUC as a
fine-grained evaluation metric. Experimental re-
sults show FORMATRL improves the structural fi-
delity of translated documents without compromis-
ing translation quality across both simple inline
markup and complex structured documents.
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8 Limitations

Limited Tag Set. We restricted the tag set used
during synthetic data generation to those present in
the development set. While this approach provides
consistency, it raises questions about the down-
stream translation models’ ability to extrapolate to
documents containing previously unseen tags. We
did not evaluate this extrapolation capability due
to budget constraints, as such an experiment would
require generating substantially larger quantities of
synthetic data with diverse markup using GPT. We
did not explore tag abstraction using placeholder
tags (e.g., <t1>) as which may help generalization
but in the same time introduces pre-/post-editing
and ignore semantics in human-interpretable tags.

Applying Sentence-level Metrics to Documents.
While we applied BLEU and COMET-22 to XML-
stripped documents, these metrics, however, have
known shortcomings when applied at the document-
level as they are not designed/trained for such data
(Jiang et al., 2022; Vernikos et al., 2022).

Lack of Rigorous Human Evaluation. We per-
formed a simple human evaluation in the result
section. However, we are aware that a rigorous eval-
uation would require multiple annotators together
with well-defined annotation instructions such as
error taxonomies tailored to structured documents
(e.g., MQM (Freitag et al., 2021) or ESA (Kocmi
et al., 2024) style annotation) that explicitly capture
tag mismatch, nesting errors, and their severities.
We leave this to future work.
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Popović, Mrinmaya Sachan, and Mariya Shmatova.
2024. Error span annotation: A balanced approach
for human evaluation of machine translation. In
Proceedings of the Ninth Conference on Machine
Translation, pages 1440–1453, Miami, Florida, USA.
Association for Computational Linguistics.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
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A Synthetic Data Generation

We show the prompt template used for synthetic
data generation in Figure 8. It instructs GPT-4o to
augment existing translation pairs without markup
by inserting hierarchical XML markup elements
into both source and target documents while main-
taining alignment between the structures. In all
k-shot settings we include full source–target doc-
ument pairs as exemplars. For k=5, their com-
bined length is about ∼9,800 characters (∼5,070
Llama 3.1 tokens), which will differ for different
language pairs.

B Example: Metrics Calculation

We illustrate how the metrics work using a toy ex-
ample in Figure 9, including XML-Validity, XML-
Match, XML-BLEU, and the proposed StrucAUC
(including the calculation of Node-chrF and Opti-
mal Node-chrF).

C Full Results of Structured Document
Setting

Table 4 shows the detailed results of each reward
function on the structured document setting across
four language pairs (En→ Zh, Zh→ En, En→ Ja,
Ja→ En). We found most of the rewards except
XML-Validity improves across most metrics com-
pared to supervised fine-tuning. Among the single
reward functions, TreeSim usually achieves the
best on structure score XML-Match, while Node-
chrF shows the highest combined scores in three
directions.

D Full Results of Inline Markup Setting

Table 5 shows the detailed results of each reward
function on the inline markup setting across four
language pairs (En→ Zh, Zh→ En, En→ Ja, Ja→
En). We have similar observations that most of
the rewards except XML-Validity improves across
most metrics compared to supervised fine-tuning
especially on structure and combined scores.

E Synthetic Data Performance: All
Translation Directions

We show the effect of using different data when
training the SFT model for all translation directions
in Figure 10. The trends are similar: involving
real data usually surpass pure synthetic data by a
large margin (which is also expected). And the
ratio of synthetic data and real data did not affect

the performance that much. Usually 1:1 is a good
balance, where too much synthetic data such as 4:1
slightly hurts the performance of the SFT model
trained on such data.

F Comparison with GPT

We compare our approach to three GPT variants
of different sizes in Figure 11 which contains full
results across all translation directions. FORMATRL
is usually better than GPT-4.1-nano, comparable
to GPT-4o-mini, and not as good as GPT-4o. We
found GPT-4o is especially strong at preserving
XML markup, achieving the highest scores on
structural and combined metrics.

G Ablation: Reward Choice on
Content-COMET and XML-Match

Similar to Figure 6, Figure 12 shows the effect
of different reward functions during GRPO train-
ing using the improvement of Content-COMET
instead of that of Content-BLEU. We found this
time using Content-BLEU as a reward function
did not achieve the best improvement on Content-
COMET, indicating the effect of reward overfitting:
achieving the best on a given metric while it is
promised to achieve the best on a similar metric
(that measures the similar dimension). Neverthe-
less, TreeSim achieved the highest XML-Match
improvement among single rewards except using
XML-Match itself, and Node-chrF achieved the
highest Content-COMET improvement, indicating
the effect of the proposed rewards.

H Details in StrucAUC

We show the StrucAUC algorithm in Algorithm 1.
It is a very fast algorithm, the Hungarian matching
is O(n3) in the number of text nodes n per doc-
ument, where in our dataset n<20, so matching
costs are negligible versus model inference. Tree
edit operations are linear in tree size under our
restricted XML grammar.

I Discussion

We discuss some interesting aspects we think of
our implementation for people who are interested
in these details.

About the dataset, we wanted to try FORMATRL
on multiple datasets, after searching extensively for
structured document translation datasets, we only
found the SAP software document dataset. In the
future we plan to curate some by ourselves.
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Synthetic Data Generation Prompt

Your task is to synthesize training data for machine translation of structured XML documents. Given a provided
translation pair, insert well-aligned hierarchical XML markup into both source and target document. Do not translate
the markup elements or include language codes. Here is an example of a well-aligned document pair:

SOURCE:
<!DOCTYPE concept PUBLIC "-//SAP//DTD SAP DITA Composite//EN" "sap-ditabase.dtd">
<concept id="loio16f62395d57f487e9937a092e4caefe9" xml:lang="en-US">
<title>
Download
</title>
<shortdesc>
Downloads G/L account mappings into a .CSV file.
...

TARGET:
<!DOCTYPE concept PUBLIC "-//SAP//DTD SAP DITA Composite//EN" "sap-ditabase.dtd">
<concept id="loio16f62395d57f487e9937a092e4caefe9" xml:lang="en-US">
<title>
ダウンロード
</title>
<shortdesc>
G/L勘定マッピングを.CSVファイルにダウンロードします。 file.
...

Now, insert markup into the following document pair. Output only the augmented source and target docu-
ments. Here are some example markup tags:
<source></source>
<uicontrol></uicontrol>
<li></li>
<p></p>
<prolog></prolog>

SOURCE:
Every year around November 5th, people in Great Britain and some parts of the Commonwealth celebrate Guy Fawkes ...

TARGET:
毎年11月5日前後に、グレートブリテンと連邦の一部地域の人々は、１６０５年１１月５日に国会議事堂
を爆破することができなかったヨーク...

Figure 8: Prompt template of syn-1-shot-tag used for data synthesis for the structured markup translation task.
This prompt features an example document pair from the development set as well as example tags sampled from
development data to guide the LLM in data synthesis. For the syn-1-shot setup, the example tags are withhold. For
the syn-0-shot-tag, the one-shot example is withhold. syn-0-shot features only the initial prompt and the data to
synthesize from. For the inline setup, the initial prompt is altered to ’Your task is to synthesize training data for
machine translation of documents containing XML markup. Given a provided translation pair, insert well-aligned
XML markup into both source and target document. Here is an example of a well-aligned document pair’.

About hyper-parameters, we found GRPO does
not require much training signal is the base SFT
model has the basic structured document transla-
tion ability. In this case, the learning rate is a cru-
cial parameter, we have tried learning rate from
1e-5 to 1e-7 and found 1e-6 is a good balance. Ad-
ditionally, we save the checkpoint and evaluate it
every 3 steps to capture the best one. Due to its
efficiency, each training takes no more than 1.5
hours and we in total spend less than 800 GPU
hours (100 hours in 8 H200 GPUs) for all GRPO
experiments. For the memory efficiency, we found

setting K = 8, BatchSize = 8, and max genera-
tion token of 800 fits one H200 GPU with 141GB
memory.

In our analysis, we used Content-BLEU and
XML-Match as reward, which may sounds like
overfitting the metrics. However, the KL regular-
izer is added in the loss which prevents degenerate
solutions that optimize only a single metric. More-
over, our proposed novel metrics TreeSim and
Node-chrF do not overfit any metrics used in
evaluation.
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Figure 9: Toy-example of a model translation and reference with markings for purely structural errors.
XML-Validity: The translation can be successfully parsed into an XML and therefore achieves a score of 1.
XML-Match: The translation does not match the exact structure of the reference and therefore scores 0.
XML-BLEU: Since the translation XML tree does not match the one of the reference the node contents of the
reference will be paired with empty translations - e.g. (" ", "In-App-Help") - for corpus BLEU computation.
StrucAUC: The score is computed as a corpus level area under curve based on the respective Node-chrF and
Optimal Node-chrF.
Node-chrF: The structural errors of the translation will lead to misalignment in the parallel depth-first traversal.
For instance, we will see a pairing of [...,(<conbody>,<prolog>), (<prolog>, <source>), (<source>, <conbody>)...]
which overall results in a low node-level chrF score of 16.89.
Optimal Node-chrF: With 3.5 edit operations (note that changing the label of the <concept> is considered half an
edit), the nodes of the translation can be realigned to the reference, resulting in a Optimal Node-chrF of 52.92.

J License

We use the SAP software documentation dataset
which is under The Creative Commons license
Attribution-Non Commercial 4.0 International
(CC BY-NC 4.0), Asian Language Treebank (ALT)
corpus under The Creative Commons Attribu-
tion 4.0 International (CC BY 4.0) License, and
pre-trained models such as Llama-3.1-8B-Instruct
under The Llama 3.1 Community License for re-
search, which is consistent with their intended use.
We have verified that the datasets do not contain
personal information or offensive content.

We plan to release our code upon acceptance un-
der The Creative Commons license Attribution-
Non Commercial 4.0 International (CC BY-NC
4.0). The code is intended for research purposes
only and may not be used for commercial applica-
tions without explicit permission.

K The Use of AI Assistants

We used AI assistants for grammar and spelling
checks. We sometimes also turn our incoherent
listings of thoughts into a coherent paragraph which
has always undergone further manual revisions.
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Algorithm 1: StrucAUC Metric

Input: Hypotheses {D̂t,i}ni=1, References {D⋆,i
t }ni=1, Maximum operations K

Output: StrucAUC score
1 Initialize Sk ← {} for k ∈ {0, 0.5, 1, . . . ,K};
2 for i = 1 to n do
3 Parse D̂t,i and D⋆,i

t to XML trees;
4 if D⋆,i

t invalid then
5 continue;

6 if D̂t,i invalid then
7 Add 0 to all Sk and continue;

8 sunaligned ← Node-chrFparallel(D̂t,i, D
⋆,i
t );

9 M∗ ← OptimalAlignment(D̂t,i, D
⋆,i
t ) // Hungarian algorithm

10 d← TreeEditDistance(D̂t,i, D
⋆,i
t ,M∗);

11 soptimal ← Node-chrFoptimal(M∗);
12 S0 ← S0 ∪ {sunaligned};
13 for k ∈ {0.5, 1, . . . ,K} do
14 if d ≤ k then
15 Sk ← Sk ∪ {soptimal};
16 else
17 Sk ← Sk ∪ {sunaligned};

18 Compute AUC via trapezoidal integration over {(k/K,mean(Sk))};
19 return AUC ×100;
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Src→Tgt Method Translation Structure Combined

Content-BLEU Content-COMET XML-Validity XML-Match XML-BLEU StrucAUC

En→Zh

Prompt 49.88 86.16 91.05 76.84 27.50 57.75
SFT 49.66 86.47 94.21 85.26 36.38 63.57

FORMATRL w/ Reward of:
TreeSim 49.88 86.48 95.26 87.37 38.07 64.12

Node-chrF 50.07 86.54 95.26 86.32 38.31 65.39
Node-chrF (opt.) 49.70 86.47 94.74 85.26 36.17 63.06
Content-BLEU 49.78 86.32 94.74 85.79 36.64 64.01
XML-Validity 49.31 86.21 95.26 85.26 36.17 63.65
XML-Match 49.75 86.37 95.79 85.26 35.97 64.20
XML-BLEU 49.38 86.41 95.26 84.74 35.56 63.29

Zh→En

Prompt 48.82 85.25 93.16 82.11 26.34 71.39
SFT 56.41 85.34 94.74 83.68 27.58 71.66

FORMATRL w/ Reward of:
TreeSim 56.28 85.25 95.26 86.84 29.14 72.84

Node-chrF 57.34 85.36 95.79 87.89 31.22 74.12
Node-chrF (opt.) 56.98 85.32 95.26 86.84 30.52 72.76
Content-BLEU 57.71 85.41 95.26 85.26 30.34 72.75
XML-Validity 55.94 85.16 94.74 86.32 28.73 71.42
XML-Match 56.39 85.16 94.74 87.89 30.31 72.33
XML-BLEU 57.35 85.49 94.74 87.37 30.17 73.56

En→Ja

Prompt 36.60 87.17 87.89 67.37 14.49 48.60
SFT 39.11 88.22 95.26 84.21 27.47 60.40

FORMATRL w/ Reward of:
TreeSim 39.30 88.20 95.79 88.42 30.32 60.48

Node-chrF 39.56 88.07 95.79 81.58 26.12 60.29
Node-chrF (opt.) 39.38 88.19 94.21 83.16 26.46 59.52
Content-BLEU 39.51 88.09 95.26 82.63 25.96 60.07
XML-Validity 39.12 88.07 95.26 83.68 26.05 59.63
XML-Match 39.39 88.15 95.26 87.37 29.56 60.36
XML-BLEU 39.71 88.19 94.21 86.32 28.22 60.15

Ja→En

Prompt 44.14 85.93 90.53 80.00 22.38 65.25
SFT 52.19 85.96 95.26 82.11 24.15 67.92

FORMATRL w/ Reward of:
TreeSim 52.79 86.01 94.74 87.37 26.67 69.82

Node-chrF 53.67 86.19 95.26 84.21 26.29 70.58
Node-chrF (opt.) 53.20 86.03 94.74 84.74 25.96 69.70
Content-BLEU 53.12 86.05 95.26 82.63 25.60 69.48
XML-Validity 52.43 85.94 95.26 82.63 24.37 69.05
XML-Match 53.12 85.98 95.26 86.32 26.45 69.26
XML-BLEU 53.53 86.07 94.21 85.26 26.67 69.79

Table 4: Full evaluation on structured documents, contrasting Prompt, SFT, and FORMATRL with diverse reward
functions.
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Src→Tgt Method Translation Structure Combined

Content-BLEU Content-COMET XML-Validity XML-Match XML-BLEU StrucAUC

En→Zh

Prompt 54.79 85.87 96.32 84.74 43.33 56.62
SFT 57.95 86.19 98.42 89.47 47.51 63.14

FORMATRL w/ Reward of:
TreeSim 57.70 86.22 98.42 90.00 47.63 64.29

Node-chrF 57.80 86.39 97.89 89.47 47.64 64.46
Node-chrF (opt.) 56.95 86.10 98.42 88.42 45.28 63.13
Content-BLEU 58.08 86.23 97.89 88.95 47.00 63.01
XML-Validity 57.15 86.22 98.42 88.95 46.50 63.93
XML-Match 57.86 86.26 98.42 88.42 46.80 65.45

Zh→En

Prompt 39.92 83.31 95.26 83.68 33.83 67.06
SFT 32.24 83.06 95.26 81.05 33.01 65.77

FORMATRL w/ Reward of:
TreeSim 34.76 82.83 95.79 84.74 34.74 66.28

Node-chrF 28.39 82.48 94.21 81.58 32.85 65.54
Node-chrF (opt.) 29.71 82.60 94.21 80.53 32.50 65.11
Content-BLEU 36.78 83.44 96.32 82.11 33.78 66.01
XML-Validity 28.87 82.76 96.84 85.26 30.81 67.27
XML-Match 35.87 82.65 94.74 80.53 32.03 65.94
XML-BLEU 37.76 83.44 96.32 82.63 33.78 66.89

En→Ja

Prompt 40.13 87.90 96.32 79.47 26.78 45.07
SFT 44.42 88.40 97.37 84.21 32.27 54.93

FORMATRL w/ Reward of:
TreeSim 45.60 88.60 98.42 86.84 35.44 55.04

Node-chrF 45.04 88.50 97.37 86.84 34.90 54.89
Node-chrF (opt.) 44.11 87.87 97.89 85.26 34.40 53.12
Content-BLEU 45.72 88.62 98.42 85.79 34.86 56.08
XML-Validity 44.44 88.45 98.42 86.32 34.26 54.12
XML-Match 44.14 88.40 97.37 86.32 34.22 54.11
XML-BLEU 45.53 88.58 98.42 87.37 36.97 54.29

Ja→En

Prompt 35.61 84.86 98.95 81.58 27.58 64.65
SFT 34.74 84.66 97.89 82.63 26.72 63.60

FORMATRL w/ Reward of:
TreeSim 37.02 84.96 98.42 86.84 30.13 65.82

Node-chrF 35.13 84.89 98.42 82.11 28.61 64.41
Node-chrF (opt.) 32.61 84.91 98.95 83.16 28.98 64.46
Content-BLEU 35.76 85.02 97.37 86.84 31.17 66.05
XML-Validity 33.37 84.54 96.32 78.42 26.59 61.87
XML-Match 33.50 84.72 97.89 82.63 27.66 64.09
XML-BLEU 33.52 84.83 97.37 88.42 30.75 64.95

Table 5: Full evaluation on inline markup documents. Each language pair lists Prompt, SFT, and FORMATRL with
different reward functions.
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Figure 10: Comparison of performance of different synthetic generation methods used in supervised fine-tuning,
across four language pairs.
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Figure 11: Comparison with GPT models across four language pairs.
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Figure 12: Improvement of FORMATRL over SFT us-
ing various single rewards, and combinations of two
rewards. Points represent mean improvement and el-
lipses visualize the local covariance directional structure
between two metrics improvements. Estimates are con-
structed from RL results based on 8 SFT checkpoints
each.
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