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Abstract

Subword segmentation is typically applied in
preprocessing and stays fixed during training.
Alternatively, it can be learned during train-
ing to optimise the training objective. In this
paper we study the learning dynamics of sub-
word segmentation: if a language model can
dynamically optimise tokenisation, how do its
subwords evolve during training? To explore
this, we extend the subword segmental lan-
guage model (SSLM), a framework for learning
subwords during training, to support pretrain-
ing and finetuning. We train models for three
typologically diverse languages to study learn-
ing dynamics across the morphological spec-
trum: IsiXhosa is conjunctive (long word forms
composed of many morphemes), Setswana is
disjunctive (morphemes written as separate
words), and English represents a typological
middle ground. We analyse subword dynamics
from a linguistic perspective, tracking morphol-
ogy, productivity, and fertility. We identify four
stages of subword learning, with the morpho-
logically complex isiXhosa exhibiting greater
instability. During finetuning, subword bound-
aries shift to become finer-grained. Lastly, we
show that learnable subwords offers a promis-
ing approach to improve text generation and
cross-lingual transfer for low-resource, mor-
phologically complex languages.

1 Introduction

Subword tokenisers like BPE (Sennrich et al.,
2016) and ULM (Kudo, 2018) are applied during
preprocessing, after which they remain unchanged
during language model (LM) pretraining and fine-
tuning. If tokenisers produce subwords that are
ineffective units for language modelling, this can-
not be fixed during training. This is especially
problematic for settings in which models are sensi-
tive to tokenisation decisions, such as low-resource
tasks (Zhu et al., 2019a; Wang et al., 2021) and
morphologically rich languages (Zhu et al., 2019b;
Klein and Tsarfaty, 2020).
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Figure 1: Subword fertility (average subwords per word)
gradually plateaus for isiXhosa, while converging early
for English and Setswana.

Ideally, subword segmentation should be learned
during end-to-end training. Previous works achieve
this by jointly optimising segmentation and model
parameters (Kreutzer and Sokolov, 2018; He et al.,
2020; Meyer and Buys, 2022). In this paper, we
use this paradigm to study the learning dynamics
of subword segmentation. When an LM is able to
learn subword segmentation, how do its subword
boundaries evolve over the course of pretraining
and finetuning? The question has practical implica-
tions, as it reveals how tokenisation requirements
vary across different stages of training. There is
no guarantee that subword units that are optimal
for the early epochs of pretraining would also be
suitable for later stages of pretraining, or meet the
demands of subsequent task-specific finetuning.

Subword learning dynamics may also depend on
linguistic properties, particularly morphology. We
conduct experiments on three languages spanning
a range of morphological complexity: Setswana,
English, and isiXhosa. Setswana and isiXhosa are
South African languages that represent opposite
ends of the morpho-orthographic spectrum. Both
are classified as agglutinative, but they differ in
how orthographic (written) words are constructed
(Taljard and Bosch, 2006). IsiXhosa is conjunctive:
morphemes are concatenated into long word forms,
whose meaning depends on morphological decom-
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Setswana English isiXhosa
Ko o 1 (@ b s
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Table 1: Morphological decompositions of translations,
illustrating a spectrum from disjunctive (Setswana) to
conjunctive (isiXhosa), with English in between.

position. Setswana is disjunctive: morphemes are
written as space-separated words and many words
consist of single morphemes. English, with its
limited inflectional morphology, serves as a typo-
logical middle ground. The examples in Table 1
illustrate the contrasting subword structures.

Our study requires a model capable of dynam-
ically learning subword segmentation during pre-
training and finetuning. For this purpose we extend
the subword segmental language model (SSLM)
(Meyer and Buys, 2022), which jointly optimises
subword segmentation and LM training. We de-
velop a Transformer-based variant, T-SSLM, in-
corporating learnable subword segmentation into
modern LM practices like pretraining, task-specific
finetuning, and text generation.

We pretrain T-SSLMs for Setswana, English, and
isiXhosa, tracking learned subwords across check-
points from three linguistic perspectives. Morpho-
logical alignment measures how closely subwords
align with morphological boundaries. Productiv-
ity (Gutierrez-Vasques et al., 2023) measures the
generative capacity of subwords, while Fertility
(Acs, 2019) estimates lexical coverage. Across all
three criteria, isiXhosa exhibits the greatest insta-
bility, while Setswana converges earliest. We iden-
tify distinctive phases of subword learning, charac-
terised by clear changes and trends in our linguistic
metrics. Our results show that different stages of
training and different languages necessitate charac-
teristically different subword units.

Finally, to evaluate the impact of learnable sub-
words on downstream performance, we evaluate
T-SSLM on isiXhosa text generation. It comfort-
ably outperforms tokenisation-based LMs, with
isiXhosa data-to-text BLEU gains of 6.25 and a no-
table reduction in text degeneration. This suggests
finetuning subword segmentation as a promising
avenue for improving low-resource text generation,
while confirming — from a model performance per-
spective — that subword requirements evolve across
different stages of training.

2 Related Work

2.1 Learning dynamics of language models

Previous research tracked the evolution of syntac-
tic and semantic knowledge during training. Some
studies track internal representation change (Saphra
and Lopez, 2019; Chiang et al., 2020; Liu et al.,
2021; Miiller-Eberstein et al., 2023), while others
track performance on grammatical tasks (Choshen
et al., 2022; Evanson et al., 2023). In all these stud-
ies (as in most LM research) tokenisation is fixed,
so there is no subword learning trajectory to study.
Gutierrez-Vasques et al. (2023) analyse how BPE
token properties change over successive merges;
however, BPE is still fixed after preprocessing, so
the emergence of subwords in LM training is not
studied. That requires considering approaches that
incorporate subword learning into training.

2.2 Unifying training and tokenisation

Previous works unify training and subword learn-
ing by marginalising over different candidate to-
kenisations during training. This has been used
to learn subwords for translation (Kreutzer and
Sokolov, 2018; He et al., 2020; Meyer and Buys,
2023) and unsupervised Chinese word segmenta-
tion (Sun and Deng, 2018; Kawakami et al., 2019;
Downey et al., 2022). Meyer and Buys (2022)
adapt this technique to propose subword segmental
language modelling (SSLM), an LSTM-based LM
architecture that dynamically optimises subword
segmentation. They train small-scale SSLMs for
low-resource, agglutinative languages. They do
not conduct finetuning or downstream evaluation,
but perplexity-based evaluation demonstrates the
potential of SSLM over tokenisation-based LMs.

3 Transformer SSLM

We leverage the technique underlying the SSLM of
Meyer and Buys (2022) — learning subword units
during LM training by marginalising over poten-
tial tokenisations — as an opportunity to study sub-
word learning dynamics. The original SSLM ar-
chitecture is based on a shallow LSTM. To align
SSLM with current best practices for pretraining,
task-finetuning, and open-ended text generation,
we develop a Transformer version of the model.
We propose T-SSLLM, a Transformer-based adapta-
tion of SSLM that brings the model up to date with
modern LM architectures.

From a modelling perspective, our T-SSLM is a
conceptually straightforward but technically non-
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trivial extension of the original SSLM. We do not
position our architectural changes as the main con-
tribution of this paper. Our primary research goal
is empirical analysis: to study subword learning
dynamics across different stages of training. We de-
velop T-SSLLM as a new tool for studying subword
segmentation as a learnable component of language
modelling. We will release our implementation of
T-SSLM upon publication. '

In this section, we present a technical overview
of how T-SSLM dynamically learns subword seg-
mentation during pretraining and finetuning. For
a comprehensive introduction to the underlying
SSLM framework, we refer readers to Meyer and
Buys (2022). Here we summarise the method be-
hind the original SSLM, outline how we adapt it to
Transformer-based modelling, and explain how we
use T-SSLM to track subword learning.

3.1 SSLM background

For a standard tokenisation-based LM with param-
eters 6, the probability assigned to a document D
is based on a particular fixed subword tokenisation
T (e.g. obtained with BPE), computed using the
chain rule as

po(D, T) = [ [ po(tilt<i), (1)
i=1

where t1, to, ..., t, is the sequence of subwords that
D is tokenised into by 7.

Instead of using a single pre-determined tokeni-
sation 7', SSLM marginalises over all possible sub-
word segmentations during training. The probabil-
ity assigned to a document D is computed as

Z pg(D,T), 2

Ten(D)

po(D) =

where (D) denotes the set of all potential subword
segmentations of document D.

The number of possible subword segmentations
of a document D grows exponentially with its
length, so the marginalisation in Eq. 2 becomes
intractable. Meyer and Buys (2022) propose a dy-
namic programming algorithm to compute Eq. 2
efficiently. Suppose document D consists of char-
acters ¢ = ¢1,¢2,...,C|p|- The algorithm com-
putes the marginalised probability up to the k"
character as p(D7.;) = g, where ap = 1 and «,

1https://anonymous.4open.science/r/
transformer-sslm-E154

are forward scores computed as

k
ap= Y ojap(t=cixles;), 3
j:f(c,k)

where f returns the index of the first character in
the word containing the k*" character, thereby pro-
hibiting subwords that cross word boundaries. Dur-
ing pretraining, the marginal (Eq. 2) of the full doc-
ument is optimised by computing p(D) = «ap.

3.2 T-SSLM: adapting SSLM for pretraining
and finetuning

Meyer and Buys (2022) parameterise the SSLM
described above with an LSTM (Hochreiter and
Schmidhuber, 1997), so the subword probabilities
in Eq. 3 are conditioned on LSTM encodings. We
propose T-SSLLM, a new variant of SSLM parame-
terised by a Transformer (Vaswani et al., 2017).
This enables larger-scale pretraining and aligns
SSLM with modern LM architectures.

To construct a neural LM that can compute
po(D,T) for any candidate segmentation 7', Meyer
and Buys (2022) introduce several architectural in-
novations, which we replicate in T-SSLM. One of
these innovations is to encode the preceding text
t<; as an untokenised character sequence c; to
achieve computationally feasible conditioning on
the tokenisation history. In T-SSLM, we use a
character-level Transformer for this encoding in-
stead of an LSTM. This Transformer forms the
backbone of our architecture: the subword proba-
bilities computed in Eq. 3 are conditioned on its
learned output representations.

Like the original SSLM, T-SSLM computes the
next-subword probability pg(¢;|-) as a weighted
mixture of two distributions: one over character
sequences (Pchar) and another over a subword lex-
icon (prex). The lexicon contains a fixed set of
high-frequency subwords, while pcp., allows the
model to compose arbitrary subwords from charac-
ters. This design, with implementation details in
Appendix A.1, enables T-SSLM to adapt both its
segmentation algorithm and its subword vocabu-
lary over the course of training.

The Transformer backbone enables scalable pre-
training. In addition, we introduce two extensions
to the original SSLLM to enable downstream appli-
cation of T-SSLM. First, we modify the dynamic
programming algorithm. The original formulation
of Eq. 3 computes the marginal likelihood p(D)
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of a full sequence D, but prompt-based finetun-
ing requires maximising the conditional likelihood
p(O|C), where C' is an input prompt and O is
the expected completion. We derive a modified
version of the original dynamic program to han-
dle conditional likelihoods (see Appendix A.2 for
derivation). Second, we develop a custom decod-
ing algorithm (outlined in Appendix A.3) to enable
open-ended text generation with T-SSLM, since
standard beam search implementations are incom-
patible with the mixture model described above.

3.3 Extracting learned subwords for analysis

During pretraining, T-SSLM learns to assign higher
probability to segmentations 7' that maximise Eq. 2.
After pretraining, or for any intermediate check-
point, we can extract the model’s preferred seg-
mentation 7" of document D by applying Viterbi
decoding to the dynamic program of Eq. 3:

T* = argmaxpy(D,T). 4)
Ten(D)
This is the probability-maximising segmentation
according to the model’s current parameters 6, re-
flecting the subword segmentation that the model
has learned as optimal at that stage of training.
During finetuning, T-SSLM adapts its subword
segmentation to suit the requirements of the down-
stream task. Rather than optimising full-document
likelihood, as in pretraining, the model now max-
imises the conditional likelihood of output comple-
tions given prompts. This leads to new subword
preferences that better support task-specific genera-
tion. We again use the Viterbi algorithm to extract
the model’s preferred segmentation of a document
after finetuning, revealing how subword segmenta-
tion changes from pretraining to finetuning.

4 Experimental Setup

We pretrain monolingual T-SSLMs for Setswana,
English, and isiXhosa. Pretraining and finetuning
hyperparameters are provided in Appendix B.

4.1 Pretraining

T-SSLM’s time complexity (detailed in §8.1)
makes it computationally challenging to scale the
pretraining data size to match state-of-the-art LMs.
However, we view the technique as an opportu-
nity for analysis: a unique lens through which
to analyse the role of subword segmentation in
LM training. For pretraining, we prioritise high-
quality corpora over scale to ensure that models

Dataset Train  Valid Test
Pretraining (# words)

Setswana: PuoData 4.06m 247k 212k

English: BabyLM 9.95m 998k 994k

isiXhosa: WURA 13.08m 767k 724k

Downstream isiXhosa finetuning (# examples)

Triples-to-isiXhosa (T2X) 3,859 600 378
MasakhaNEWS (MNH) 1,032 147 297

Table 2: Pretraining and finetuning dataset statistics.

are trained on clean, representative language in-
put. Our corpus sizes are listed in Table 2. For isi-
Xhosa we use the 13m-word WURA (Oladipo et al.,
2023) corpus, created by filtering mC4 (Xue et al.,
2021) to discard low-quality data. For the lower-
resourced Setswana we use the 4m-word PuoData
corpus (Marivate et al., 2023). For English we
use the 10m-word BabyLLM corpus (Warstadt et al.,
2023). To track learning dynamics, we store model
checkpoints at regular pretraining intervals. Af-
ter pretraining, we analyse the subwords of nine
checkpoints spread evenly across pretraining: one
checkpoint after the first epoch, one after the final
epoch, and seven additional checkpoints spaced at
regular intervals (1/8ths of total pretraining).

4.2 Finetuning

We study how subwords change during finetuning
from two perspectives: how they adapt to a spe-
cific downstream task, and how they shift when
transferring across languages with different mor-
phological structures (i.e. cross-lingual finetuning).
We finetune all our T-SSLMs (Setswana, English,
isiXhosa) on two isiXhosa text generation tasks,
data-to-text and headline generation. We focus on
isiXhosa for finetuning because its complex mor-
phological structure makes it a challenging lan-
guage to adapt subword modelling cross-lingually.

For data-to-text we use the T2X dataset (Meyer
and Buys, 2024). It contains triples (subject, rela-
tion, object) paired with descriptive isiXhosa sen-
tences e.g. (South Africa, leader, Cyril Ramaphosa)
— “uCyril Ramaphosa yinkokheli yoMzantsi
Afrika” (“Cyril Ramaphosa is the leader of South
Africa”). For headline generation from the body
of a news article we use MasakhaNEWS (Adelani
et al., 2023), which contains news articles paired
with headlines. This is a much harder task than
data-to-text, especially considering the smaller fine-
tuning dataset (see Table 2).
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Figure 2: Morphological boundary overlap between learned subwords and morphological segmentations. Pretraining
is performed on Setswana/English/isiXhosa, while finetuning is performed on isiXhosa data-to-text.

4.3 Baselines and morphemes. For Setswana and isiXhosa we
use the NCHLT test corpus (Eiselen and Puttkam-
mer, 2014), which contains 5,000 morphologically
annotated words for each language. For English

For each language, we pretrain and finetune five
LMs with fixed subword tokenisation (hyperparam-

eters are reported in Appendix C). We use the same
datasets as our T-SSLMs to ensure a fair compari- ~ W¢ use the 2022 SIGMORPHON dataset (Batsuren

son. Three baselines use well-established tokenis- ¢t @l-» 2022), which contains 18,000 morphologi-
ers: (1) BPE (Sennrich et al., 2016), (2) ULM cally segmented words. We compare the subwords
(Kudo, 2018), and (3) BPE-dropout (Provilkov learned by our models to the gold-standard morpho-

et al., 2020). Additionally, we use (4) character- logical segmentations. To measure morphological
alignment, we compute precision, recall, and F1

level segmentation and (5) byte-based modelling,
for morphological boundary identification.

both of which have been shown to outperform
subword-based LMs on low-resource languages
(Edman et al., 2022, 2024; Adelani et al., 2022).
These LMs are baselines for downstream evalua-
tion (Section 6), allowing us to compare learnable
subword segmentation and fixed tokenisation in
terms of text generation performance. Besides plot-
ting BPE as a reference in Figure 1, we do not
include these baselines in our analysis of subword
learning dynamics (Section 5), since their tokenisa-
tion is fixed and does not evolve during training.

4.4.2 Productivity and Idiosyncrasy

Morphological productivity is the capacity of a
morpheme to combine with other morphemes to
form new words (Bybee, 2001). Productive mor-
phemes occur in many word types, often forming
regular morphological patterns. For example, in isi-
Xhosa prefixes can be attached to stems to indicate
plurality e.g. “abahlobo” (friends) and “abazali”
(parents). In contrast, idiosyncratic morphemes are
contained in few word types, but these types occur
4.4 Subword analysis frequently. For example, the isiXhosa stem “—ntu”
(human) will not occur in as many unique words as
prefixal morphemes, but the words in which “-ntu”
occurs are commonly used e.g. “umntu” (person)
and “abantu” (people).

We quantify productivity and idiosyncrasy as
proposed by Gutierrez-Vasques et al. (2023),

For any given T-SSLM checkpoint, we can encode
a document and extract its probability-maximising
subword segmentation using the Viterbi algorithm.
This reveals the model’s preferred tokenisation of
the text at that point in pretraining/finetuning. We
analyse and track these learned segmentations from
three linguistic perspectives.
£ petsp productivity(s) = |Ws], (5)
ZwEWS freq(w)
Wl ’

4.4.1 Morphological alignment

(6)

Our models do not have access to morphological idiosyncrasy(s) =

annotations, but we investigate to what extent they
“discover” morphemes as subword units by tracking ~ where W is the set of unique words in which s oc-
the amount of overlap between learned subwords  curs and freq(w) is the corpus frequency of a word
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Figure 3: The average productivity and idiosyncrasy of learned subwords. Pretraining is performed on isiXhosa and
Setswana, respectively, while finetuning is conducted on isiXhosa data-to-text generation.

w. Productivity quantifies how many fypes contain
a subword, while idiosyncrasy is the average token
frequency of types containing a subword. We com-
pute these metrics from the subword segmentation
and frequencies of our LM validation corpora.

4.4.3 Fertility

The fertility of a tokeniser is the average number
of subwords per segmented word (Acs, 2019). It
is a measure of lexical coverage — the extent to
which the words of a language are included in the
tokeniser vocabulary. A fertility of 1 indicates that
every word in a corpus is included in the vocabulary
(no segmented words), while a higher fertility cor-
responds to finer-grained segmentation and lower
lexical coverage. We also compute fertility based
on the segmentation of our LM validation corpora.

5 Subword Learning Dynamics

We analyse how T-SSLM subword units evolve
during pretraining and finetuning.” The learning
dynamics are visualised in Figures 1, 2 and 3. We
identify four distinctive stages of subword learning.
We include representative examples of segmenta-
tions at each stage in Tables 3 and 4.

Stage 1: Rapid evolution of subwords

The initial stage of subword learning (first 20% of
pretraining) is characterised by dramatic changes
in subword boundaries. The models start with ran-
domly initialised subword boundaries and find sub-
word units that optimise the training objective in the
initial period of a high-loss training. As shown in
Figure 2, initial subwords have little morphological
alignment, but models quickly adjust their subword

2We present the analysis for finetuning on isiXhosa data-to-
text. Results are similar for our other task, headline generation.

boundaries to more closely align with morpheme
boundaries. This shows that an important part of
the early subword learning is the emergence of mor-
phemes, to an extent, as subword units. We include
examples of morphological subwords emerging af-
ter stage 1 in Table 3.

Figure 3 shows similarly rapid changes in sub-
word productivity. For English and isiXhosa, pro-
ductivity and idiosyncrasy decrease at a constant
rate. Gutierrez-Vasques et al. (2023) found a sim-
ilar pattern in early BPE merges. Highly pro-
ductive, high-frequency subwords are identified
at the outset, after which the model incorporates
progressively less common subwords. This leads
to decreased productivity and idiosyncrasy. For
Setswana, the learning trajectory is different. Pro-
ductivity also decreases, but idiosyncrasy remains
stable. This also agrees with Gutierrez-Vasques
et al. (2023), who showed that BPE tokens for mor-
phological simple languages have low productivity
but high idiosyncrasy. Many Setswana subwords
are near-whole words, so they occur in few types,
but the types are not rare (i.e. high idiosyncrasy).

Stage 2: Inflection point for English & isiXhosa

After an initial period of adjustment, Setswana sub-
words stablise. In contrast, at this stage (between
20% and 40% of pretraining) isiXhosa and English
undergo a sudden change in learning trajectories.
After the initial period of decreasing productivity
and idiosyncrasy, both metrics increase (Figure 3c).
This also coincides with a large increase in fertility
(Figure 1), indicating finer grained segmentation.
We interpret this as the initially expanded vocab-
ulary being trimmed down. In the initial phase of
exploration, the model identified a broad set of can-
didates for effective subwords. Subsequently, learn-

652



Language ‘ Setswana ‘ English ‘ isiXhosa

Word ‘ malapa dingwe  rona ‘ assuming lately donuts ‘ umntu ukuxhasa zoncedo

Stage 1 @@ dingw @ @} assu|ming ately @Iuts] umntu uku xhasa zon cedo

Stage 2 ma {lapal di ngwel {rona} @{ssum mg {lateIly} {donut S um ntu uku xhas a zoncedo
P —

Stage 3 ‘lapa‘ di ngwe‘ {rona} a“ssum ‘ latel Hy‘ ‘donut Im ntu

@U donut |s .

uku xhas |a zo‘ncedo‘
uku Xha%a ZO ncedo

Table 3: Examples of changes in learned subword segmentations throughout training, highlighting subwords
corresponding to morphemes (morphemes obtained from linguistically annotated datasets introduced in §4.4.1).

Pretrained ‘ [B@] [@

(e Now) (Y]t

| (efxfico] | [sasefLfo]s] (Afngele]s]

Finctned | (35 fe|m) D]e]n [ | ase]8Je[w ¥Jo[r[s | M 1ol | s Llos) (A|alelils

Table 4: Segmentations of entities in the data-to-text dataset, produced by isiXhosa T-SSLM before/after finetuning.
Fertility increases as named entities, which lack meaningful subword units, are segmented into characters.

ing shifts to finding subwords that improve LM
generalisation, by preferring subwords that occur
in many word types (e.g. productive morphemes)
and/or in high-frequency words (idiosyncratic).

This inflection point represents a shift in the
morphological alignment of isiXhosa subwords,
as shown by Figure 2c. Initially a large proportion
of subwords have morphological boundaries (high
precision). After the inflection point, the model
increases its coverage of morphological boundaries
(high recall), but at the cost of more morpholog-
ically unsound boundaries. The model is erring
on the side of overly-aggressive segmentation, as
shown in the finer-grained segmentation of “um-
ntu” and “zoncedo” in Table 3 (from stage 2 to 3).
This increases morphological boundary coverage
but over-segments some morphemes.

Stage 3: Stabilised learning dynamics

The mid-to-late phases of pretraining are more sta-
ble than early subword learning. Throughout pre-
training, isiXhosa and English dynamics are more
variable than Setswana. For example, Setswana
fertility quickly converges to a low value of 1.66.
Because of its disjunctive orthography, Setswana
leaves little opportunity for aggressive subword
segmentation, so low fertility is unsurprising. En-
glish, which exhibits some morphological inflec-
tion, settles on a slightly higher fertility of 1.8. In
contrast, isiXhosa fertility gradually increases to
3.05, almost double that of Setswana.

The unstable dynamics of isiXhosa demonstrates
the challenges of modelling the subword structure
of a morphologically complex language. Even late
in pretraining, optimising the loss requires changes

in subword boundaries, as better subword units
continually emerge. In contrast, the Setswana sub-
words discovered early on are sufficient for the
remainder of pretraining.

Figure 1 plots fertility of BPE tokenisers for each
language (from the baselines of §4.3) as fixed ref-
erences. For each language, the fertility of learned
subwords is slightly higher than BPE. Equipped
with the ability to optimise subword boundaries, T-
SSLM learns finer-grained segmentation than BPE.
One possibility is that T-SSLM converges on to-
kenisation that balances the benefits of BPE and
character-level modelling, suggesting a potentially
more optimal middle ground between them.

Stage 4: Task-oriented realignment

During finetuning, fertility increases for all three
languages (Figure 1). Previous work showed finer-
grained units, such as characters or bytes, are ben-
eficial for low-resource languages with small fine-
tuning datasets (Edman et al., 2022, 2024; Adelani
et al., 2022). More aggressive segmentation may
also suit the data-to-text dataset, since it contains
many named entities (e.g. “Akeen Dent” in Table
4). Names cannot be segmented into semantically
coherent subwords, since they do not consist of
morphemes. It is reasonable to model names as
character sequences, which is what we observe af-
ter finetuning. We present examples of this change
from pretraining to finetuning in Table 4.

For isiXhosa, productivity and idiosyncrasy de-
crease during finetuning (Figure 3c). As the model
narrows in on subword patterns that occur fre-
quently in the data-to-text dataset, its subword units
lose the more general morphological expressivity
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Pretrained — | isiXhosa | English Setswana | isiXhosa | English
Finetuned — \ isiXhosa data-to-text \ isiXhosa headline generation
Model | chrF BLEU deg%| chrF BLEU deg%| chrF BLEU deg%| chrF BLEU deg%| chrF BLEU deg%
BPE 449 120 64 | 411 101 1.6 | 41.8 103 3.7 | 149 0.0 108 | 123 0.2 1.0
ULM 46.1 132 6.1 | 365 82 2.1 | 425 115 11 | 156 00 81 | 123 02 20

BPE-dropout 446 11.0 45 | 356 74 2.7

Characters 435 7.6 53 | 490 100 24
Bytes 482 132 45 | 487 143 3.7
T-SSLM 492 195 1.1 | 491 17.0 1.6

399 938 19 | 144 0.0 84 | 139 02 2.0
445 13 48 | 17.1 0.8 24 | 173 02 07
451 101 79 | 18.0 0.0 51 | 185 02 1.0
46.3

144 24 | 217 19 03 | 216 09 34

Table 5: Test set performance of finetuned LMs on isiXhosa tasks, measured by BLEU and chrF (normalised
between 0 and 100) and text degeneration (deg% is the proportion of examples that produce incoherent, repetitive
text). We omit headline generation results for Setswana-pretrained models, as all models produced zero scores.

required for isiXhosa pretraining. Our Setswana
and English T-SSLMs are finetuned cross-lingually
on isiXhosa data-to-text. To model the complex
morphological structure of isiXhosa, they lose
some morphological alignment in the language of
pretraining (Figure 2a) and improve isiXhosa mor-
phological alignment (Figure 5 in the appendix).

6 Downstream Text Generation

Next we study subword learning dynamics via its
effect on downstream performance. Our preceding
analysis found that finetuning subword segmenta-
tion leads to the emergence of task-specific sub-
words (examples in Table 4). This raises the ques-
tion of whether the ability to adapt subword bound-
aries during finetuning provides a performance ad-
vantage over models with fixed tokenisation (e.g.
BPE or ULM), which lack this flexibility.

We finetune T-SSLM and five tokenisation-based
baseline LMs (see §4.3) on two isiXhosa text gen-
eration tasks (data-to-text and headline generation,
see §4.2). We evaluate performance with BLEU
(Papineni et al., 2002) and chrF (Popovi¢, 2015),
which quantifies subword-level overlap. Addition-
ally we measure the proportion of test examples
that produce degenerative text (incoherent or repet-
itive language). A generation is considered degen-
erative if a word is repeated at least three times
(word-level repetition) or if a word is longer than
30 characters (subword-level repetition).

The results in Table 5 shows that T-SSLM outper-
forms tokenisation-based models across reference-
based metrics, with substantial BLEU gains. It
overcomes text degeneration to a considerable de-
gree for in-language (isiXhosa) pretraining and
finetuning, producing much less repetition (Table 7
in the appendix shows examples of generated text).
Text degeneration is a challenging problem in low-
resource tasks, as evidenced by the high propor-

tions of degenerative examples produced by base-
lines. T-SSLLM does not match the performance of
massively multilingual LMs (Meyer et al., 2024),
but our aim is to isolate the effect of task-adaptable
subwords over fixed tokenisation. We therefore
focus on comparing SSLM to tokenisation-based
LMs of the same size trained on the same datasets.
In this comparison our results demonstrate the ben-
efit of learnable subwords in data-scarce settings.
We observe similar cross-lingual results, where
T-SSLM:s pretrained on Setswana/English are fine-
tuned on isiXhosa text generation. T-SSLM con-
sistently outperforms baselines across BLEU and
chrF, with competitive text degeneration scores (es-
pecially considering reference-based performance
differences). This demonstrates the model’s ability
to improve performance by adapting its subword
boundaries to the complex morphology of isiXhosa.
These results highlight the potential of learnable
subwords, not only for in-language finetuning, but
also for cross-lingual transfer in low-resource tasks.

7 Conclusion

We investigated the learning dynamics of LMs
where the subword segmentation is learnt jointly
with knowledge of other aspects of language, in
contrast to previous studies that only considered
a setup where the subwords segmentation is fixed.
We identified contrasting patterns in the subword
dynamics of Setswana, English, and isiXhosa.
While learning subword boundaries dynamically
may be computationally prohibitive for larger-scale
pretraining, it enables a new type of LM analy-
sis, providing insight into the role of subwords in
different stages of training and demonstrating the
potential of task-adaptable segmentation. Our find-
ings also underscore the distinct subword needs of
typologically diverse languages, particularly in low-
resource and morphologically complex settings.
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8 Limitations

8.1 Computational complexity

Like other models that marginalise over multiple to-
kenisations (Kreutzer and Sokolov, 2018; He et al.,
2020; Meyer and Buys, 2022), T-SSLM is computa-
tionally more expensive than standard LM training.
Despite the dynamic program of Eq. 3, marginali-
sation adds unavoidable cost by computing proba-
bilities for multiple candidate subword sequences
(standard LMs compute the likelihood for a single
subword sequence). In practice, T-SSLM training
times increase by an order of magnitude (x 10) over
tokenisation-based LMs.

The added computational complexity of learning
subwords prevents us from pretraining on larger
datasets. It is an open question whether our find-
ings would scale — whether similar subword learn-
ing trajectories would be observed for larger-scale
pretraining and higher-resourced languages. This
would require pretraining a large-scale SSLM from
scratch on a massive corpus, which is not possible
given the compute resources at our disposal. The
claims of this paper are limited to smaller-scale
pretraining of low-resource languages. This is a
relevant and important use case, since data scarcity
and computational constraints often co-occur in
practice (Ahia et al., 2021).

8.2 Linguistic scope

Our findings are limited to three languages,
Setswana, English, and isiXhosa, so we cannot
guarantee that they will generalise to other lan-
guage families. We chose these languages based
on their morpho-orthopraphic properties, since it al-
lows us to compare the subword learning dynamics
of languages with contrasting linguistic subword
structures. This contrast simplifies the identifica-
tion and analysis of differences in subword learning
trajectories, making these languages ideal for an
initial exploration of subword dynamics.

Our downstream finetuning experiments are lim-
ited to isiXhosa data-to-text and headline genera-
tion. Given the under-resourcedness of isiXhosa,
these are the only text generation evaluation dataset
available with sufficient training instances for fine-
tuning. We cannot guarantee similar performance
gains for other text generation tasks. Throughout
our paper, we are careful not to overstate the im-
pact of our findings in terms of downstream task
performance. Instead of positioning T-SSLM as the
solution to low-resource text generation, we place

more emphasis on the learning dynamics analysis
and our finding that pretraining and downstream
tasks have different requirements with regards to
subword modelling.
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A T-SSLM Adaptation

A.1 Mixture model

T-SSLM encodes the preceding text as an unto-
kenised character sequence, using a character-level
Transformer. This discards information about seg-
mentation history, but achieves computationally
feasible conditioning. For next-subword predic-
tion, we adapt the approach of Meyer and Buys
(2022) to use a Transformer encoding. To condi-
tion next-subword prediction on preceding text, we
pass the final output embedding to two decoding

subnetworks, a character-level model and a softmax
layer over a subword lexicon.

We model next subword probability as a mixture
of the two distributions,

Po(tilt<i) = PiPehar(tilt<i)+
(1 - ¢i)plex(ti|t<i)a (7)

where ¢; is a mixture coefficient computed by a
fully connected layer ¢; = MLP(t-;). The sub-
word lexicon contains the V' most frequent char-
acter n-grams in the training corpus. The lex-
icon plex models common subwords (e.g. mor-
phemes), while the character-level decoder pe,,, al-
lows probability assignments to arbitrary character
sequences, even those unseen in training (e.g. rare
words, names). The lexicon and character compo-
nents are both softmax layers, jointly trained with
the mixture coefficient MLP, which allows T-SSLM
to learn in which contexts to rely on the lexicon or
character-level predictions.

A.2 Finetuning algorithm

While we can use the existing dynamic program-
ming algorithm of Meyer and Buys (2022) for
pretraining, we have to adapt it to finetune our
T-SSLM for prompt-based text generation. Their
dynamic program is represented by Eq. 3, which
computes (and thereby maximises) the likelihood
for a full text sequence. This is not compatible with
open-ended text generation, which are cast as text
completion tasks: given an input prompt C' as con-
text, generate the expected output O. The model
is finetuned to maximise p(O|C') directly, instead
of finetuning on generating both C' and O. Such
completion-only finetuning is standard practice in
prompt-based generation.

Suppose D is a completed prompt consisting of
(C, 0O). Instead of maximising p(D), we maximise

p(0C) = p(C,0) _pD) _ il o

p(C)  p(C) a|c|

where o is the forward score up to the end of the
input context. By maximising this finetuning ob-
jective, T-SSLM adapts its subword segmentation
to optimise the generation of completion O given
input context C'. This allows the model to adjust
the subword boundaries learned during pretraining
to optimise performance on the downstream task.

A.3 Decoding

Standard beam search operates on one vocabulary,
but the mixture model of T-SSLM combines two
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Figure 4: Fertility distributions (subwords per segmented word) across the four training stages identified in this
study. All languages exhibit increasing fertility as pretraining progresses, with a more pronounced shift during
finetuning. Changes are especially dramatic for isiXhosa, whose complex morphology leads to larger distributional
shifts than Setswana or English.
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Figure 5: Boundary overlap between isiXhosa morphemes and subwords learned by our T-SSLMs pretrained on
Setswana (left) and English (right). During isiXhosa finetuning, the models adjusts their subword segmentation to
align with the morphological boundaries of the new language.

vocabularies, subwords and characters, complicat-  block, and 512-dimensional embeddings. We pre-
ing text generation. We adapt dynamic decoding,  train our SSLMs until validation loss stops improv-
previously proposed for encoder-decoder subword  ing, which occurs by 40 epochs for English and
segmental models, for decoder-only generation. isiXhosa and by 100 epochs for Setswana.
Dynamic decoding (Meyer and Buys, 2023) gen-
erates the target translation one character at a time
and predicts subword boundaries based on mixture
model probabilities. We adapt this algorithm for
our model by conditioning next-character proba-
bilities on preceding prompt context, as opposed
to a source-language sentence. During generation,
we use a beam size of 5 in our dynamic decoding
algorithm.

For isiXhosa pretraining, we use a learning rate
of 5e-4 with an inverse square-root scheduler, 4000
warmup steps, and a dropout rate of 0.1. We use
an effective batch size of 256 sequences with a
maximum sequence length of 512 characters. Our
subword lexicon consists of the 10k most frequent
character n-grams in the pretraining corpus and
we set the maximum subword segment length, a
hyperparamter of the SSLM training algorithm, to
B T-SSLM Hyperparameters 5 characters. For English and Setswana pretrain-
ing, we use the same architecture configuration and
training hyperparameters as isiXhosa pretraining,
Our SSLM architecture settings are based on  except that we use a subword vocabulary of 5k sub-
the fairseq base_lm_architecture: a 6-layer  words (since the English and Setswana pretraining
decoder-only model with 8 attention heads per  corpus are both smaller than the isiXhosa corpus).
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(a) Full prompt template examples for finetuning

South Africa + leaderName + Cyril Ramaphosa # # =uCyril Ramaphosa yinkokheli yomzantsi Afrika.
Ethiopia + currency + Ethiopian birr # # =Imali yase-Ethiopia yi-Ethiopian Birr.
Denmark + capital + Copenhagen # # =ICopenhagen likomkhulu laseDenmark.

(b) Incomplete prompt template examples for testing

Romania + capital + Bucharest # # =
India + currency + Indian rupee # # =
Netherlands + leaderName + Mark Rutte # # =

Table 6: To finetune decoder-only PLMS for T2X isiXhosa data-to-text generation, we cast the task as prompt
completion. Here we demonstrate the prompt template, “{input text} # # ={output text}”, with examples

from the T2X dataset. During finetuning (a), we only maximise the generation of text after the equals sign

_9

During testing (b), the special tokens “# # =" prompt output generation.

B.2 Finetuning

To finetune our LMs, we transform examples into
the following template:

{input text} # # = {output text}

During completion-only finetuning (§A.2), we
maximise the likelihood of the text following “=".
Table 6 contains examples of prompts created for
the T2X dataset. For finetuning, we perform a grid
search over varying hyperparameter settings and
select the final settings based on downstream vali-
dation performance. We use a batch size of 16 and
a learning rate of le-4. The learning rate under-
goes 500 warmup steps and an inverse square-root
scheduler. We perform finetuning for 20 epochs
and selected the final model checkpoint based on

validation performance.

C Baseline Hyperparameters

For BPE, ULM, and BPE-dropout, we use a sub-
word vocabulary size match the subword lexi-
con of our SSLM (5k for Setswana and English,
10k for isiXhosa). We implement our baselines
with the Huggingface Transformers library (Wolf
et al., 2020), training LMs of the same size as
our isiXhosa SSLMs (6 layers, 8 attention heads,
512-dimensional embeddings, maximum sequence
length of 512). We pretrain the baseline LMs us-
ing a batch size of 64 and the default Huggingface
pretraining hyperparameters for causal language
modelling: a learning rate of 5e-5, no warmup, a
linear scheduler, and a dropout rate of 0.1.

To finetune our baselines, we also performed a
validation-based grid search over hyperparameter
values, settling on a batch size of 4, a learning rate

of 5e-5 with no warmup and a linear scheduler.
As for our SSLM, we finetuned our baselines for
20 epochs and evaluated the checkpoints with the
best validation performance. For decoding, we use
standard beam search with beam size of 5.
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Example (a)
Reference output ‘ UMassimo Drago udlalela uA.S.D. S.S. Nola 1925.

BPE ‘ UMassimo Drago udlalele i-AS.D.S.
ULM Umdlali we-A.S. Nolandelilungu le-A.S. Nolandelilungu le-A.S. Nolandelilungu
le-A.S. Nolandelilungu le-A.

BPE-dropout ‘ UMassimo Drago wadlalela i-A.S. Nola 1925. S. Nola 1925. S. Nola 1925. ... ...
Char ‘ UMassimo Drago wayengumthetheli kwi - A. S. D.S.S.D.S.S.D.S.D. S. ...
Byte ‘ UMassimo Drago wayengumthetheli kwi-A.S.D. S.D.S. Nola 1925.
T-SSLM ‘ UMassimo Drago udlalela i-A.S.D. S.D.S. Nola 1925.

Example (b)
Reference output ‘ I-St. Vincent-St. Mary school samabanga aphakamileyo siseMelika.
BPE ‘ ISikhumbuzo i-St. Vincentlanticellanticellanticellanticellanticellanticellanticella...
ULM ‘ Isikolo seMary High School sise-United States.
BPE-dropout ‘ ISithili i-St Vincent St. Vincent St. St. Vincent St. Vincent St. ...
Char ‘ I - St. VincentacccceccecceeeeeccecceceeeeeeccecceCecCCceCceCceCceceeeeeec. ..
Byte ‘ ISt. Vincentury High School iseUnited States.
T-SSLM ‘ St. Vincent-St. Mary High School ifumaneka e United States.

Table 7: Examples of model generations on the T2X test set, compared to reference output texts. The tokenisation-
based baselines often generate incoherent, repetitive text, while SSLM avoids text degeneration in all instances.
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